JP3053323B2 - High speed plating method - Google Patents

High speed plating method

Info

Publication number
JP3053323B2
JP3053323B2 JP5314389A JP31438993A JP3053323B2 JP 3053323 B2 JP3053323 B2 JP 3053323B2 JP 5314389 A JP5314389 A JP 5314389A JP 31438993 A JP31438993 A JP 31438993A JP 3053323 B2 JP3053323 B2 JP 3053323B2
Authority
JP
Japan
Prior art keywords
plating
current
pulse
unit
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5314389A
Other languages
Japanese (ja)
Other versions
JPH07138797A (en
Inventor
浩志 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tech Inc
Original Assignee
Mitsui High Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tech Inc filed Critical Mitsui High Tech Inc
Priority to JP5314389A priority Critical patent/JP3053323B2/en
Publication of JPH07138797A publication Critical patent/JPH07138797A/en
Application granted granted Critical
Publication of JP3053323B2 publication Critical patent/JP3053323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、パルス電流を用いて高
速めっき方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed plating method using a pulse current.

【0002】[0002]

【従来の技術】リードフレームの表面にはニッケル、
金、銀、パラジウム等の電気めっき処理が行われてい
る。図7(B)にリードフレーム80の表面にめっきを
する方法を示すが、ノズル81からめっき液の噴流82
を発生させ、該噴流82を前記リードフレーム80の表
面に吹き付け、図示しない直流電源を用いて通電するこ
とによってリードフレーム80の表面にめっきを行って
いた(以下、該方法を噴流めっき法という)。
2. Description of the Related Art Nickel,
Electroplating of gold, silver, palladium and the like is performed. FIG. 7 (B) shows a method of plating the surface of the lead frame 80. A plating solution jet 82 from a nozzle 81 is shown.
Was generated, and the jet 82 was sprayed on the surface of the lead frame 80, and the surface of the lead frame 80 was plated by applying a current using a DC power supply (not shown) (hereinafter, this method is referred to as a jet plating method). .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記噴
流めっき法においては、めっき液がリードフレーム80
の中央部から周辺部に流れるので、連続通電をしながら
めっきを行うと、めっき液は中央部では濃度が高い。一
方、周辺部には中央部で既にめっき金属がある程度除去
されためっき液が流れるので、めっき液濃度が小さくな
り、結果として図7(A)に示すように、中央部のめっ
き厚が厚くなり、周辺部が薄くなるという現象を生じ
る。そこで、図6に示すように、通電期間にオフタイム
を設けるパルス通電による噴流めっき法を行うと、非通
電期間にノズル81から吹き出た濃いめっき液が周辺部
まで流れ、濃度の高いめっき液がリードフレーム80の
表面を覆った状態で通電するので、理論的にはめっき厚
みの均一化を図ることができる。ところが、前記パルス
めっき法においては、均一なめっき厚を得る為には、理
論的にはオフタイム( TOff )を、めっき液がリードフ
レーム80の表面を通過する時間以上にし、オンタイム
( TON)をめっき液の濃度が不均衡に下がらない短い範
囲にする必要があり、全体的なめっき量はファラディの
法則によって、通電電流値に比例するので、極めて能率
が悪くめっきラインの生産性が落ちるという問題点があ
った。そこで、実際のめっきラインにおいては、パルス
めっき法を採用しているが、オフタイム( TOff )を適
当に短くし、強い電流でめっきを行って生産性を向上さ
せている。従って、リードフレームの中央部(主として
パッド部)のめっき厚が厚く、リード先端部のめっき厚
が薄くなっており、この場合リード先端部のめっき厚を
基準にめっきをするので、余分なめっきを行い不経済で
あるという問題点があった。なお、このような問題点は
噴流めっき法のみでなく、めっき液が流動するめっき法
においては共通に生ずる問題点であった。本発明はかか
る事情に鑑みてなされたもので、めっき厚をより均一に
することが可能な高速めっき方法を提供することを目的
とする。
However, in the above-mentioned jet plating method, the plating solution does not
Flows from the central part to the peripheral part, and when plating is performed with continuous energization, the plating solution has a high concentration in the central part. On the other hand, since the plating solution from which the plating metal has already been removed to some extent flows in the peripheral portion, the plating solution concentration decreases, and as a result, the plating thickness in the central portion increases, as shown in FIG. This causes a phenomenon that the peripheral portion becomes thin. Therefore, as shown in FIG. 6, when the jet plating method by pulse current providing an off-time during the power-on period is performed, the strong plating solution blown out from the nozzle 81 flows to the peripheral portion during the non-power-on period, and the plating solution having a high concentration is discharged. Since power is supplied while covering the surface of the lead frame 80, the plating thickness can be theoretically made uniform. However, in the pulse plating method, in order to obtain a uniform plating thickness, the off time (T Off ) is theoretically set to be equal to or longer than the time when the plating solution passes through the surface of the lead frame 80, and the on time (T Off ) is set. ON ) must be within a short range where the concentration of the plating solution does not unbalancely decrease, and the overall plating amount is proportional to the current value according to Faraday's law. There was a problem of falling. Therefore, in the actual plating line, the pulse plating method is adopted, but the off-time (T Off ) is appropriately shortened, and plating is performed with a strong current to improve productivity. Therefore, the plating thickness at the center (mainly the pad portion) of the lead frame is thick and the plating thickness at the tip of the lead is thin. In this case, plating is performed based on the plating thickness at the tip of the lead. There was a problem that it was uneconomical. In addition, such a problem occurs not only in the jet plating method but also in a plating method in which a plating solution flows. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a high-speed plating method capable of making the plating thickness more uniform.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う請求項1
記載の高速めっき方法は、流動するめっき液を用い、平
面状のめっき対象物に正のパルスを通電してめっきを行
う高速めっき方法において、前記正のパルスの休止期間
全部に、その平均値が該正のパルスより小さい負のパル
スを通電し、前記めっき対象物の表面のより均一なめっ
きを行っている。
According to the present invention, there is provided a semiconductor device comprising:
The high-speed plating method described is a high-speed plating method using a flowing plating solution and applying a positive pulse to a planar plating target to perform plating. A negative pulse smaller than the positive pulse is applied to perform more uniform plating on the surface of the plating object.

【0005】[0005]

【作用】請求項1記載の高速めっき方法においては、パ
ルスめっき法における休止期間の全部に、平均値が該正
のパルスより小さい負のパルスを通電するようにしてい
るので、負のパルスが通電している期間中は、めっき対
象物の表面に形成されためっき金属が再度イオンとなっ
て下流側に移動する。この場合、突出しためっき金属部
分からイオンとなり(即ち、電解研磨され)イオンとな
った金属はめっき液の流動に伴って下流側に流れるの
で、これによって、負のパルス電流の流れる期間、即
ち、めっき電流となる正のパルス電流が途切れる時間が
短い場合であっても下流側のめっき液の濃度が確保され
るので、より均一なめっき厚を得ることができる。な
お、全体のめっき量はファラディの法則によって通電し
た電流に比例するので、正のパルス電流の平均値を、負
のパルス電流の平均値より十分大きくしておく必要があ
る。
In the high-speed plating method according to the first aspect of the present invention, a negative pulse whose average value is smaller than the positive pulse is supplied during the rest period in the pulse plating method. During this period, the plating metal formed on the surface of the plating object becomes ions again and moves downstream. In this case, the metal that has turned into ions (ie, electropolished) from the protruding plating metal portion flows downstream along with the flow of the plating solution, and thus, a period during which a negative pulse current flows, that is, Even when the time during which the positive pulse current serving as the plating current is interrupted is short, the concentration of the plating solution on the downstream side is ensured, so that a more uniform plating thickness can be obtained. Since the total plating amount is proportional to the current supplied according to Faraday's law, the average value of the positive pulse current needs to be sufficiently larger than the average value of the negative pulse current.

【0006】[0006]

【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例につき説明し、本発明の理解に供す
る。ここに、図1は本発明の一実施例に係るめっき電流
の波形を示すグラフ、図2は他の実施例に係るめっき電
流の波形を示すグラフ、図3は高速めっき用電源装置の
概略ブロック図、図4は電源部及びパワー制御部の回路
図、図5は高速めっき用電源装置の外形図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will now be described with reference to the accompanying drawings to provide an understanding of the present invention. 1 is a graph showing a waveform of a plating current according to one embodiment of the present invention, FIG. 2 is a graph showing a waveform of a plating current according to another embodiment, and FIG. 3 is a schematic block diagram of a power supply device for high-speed plating. FIG. 4 is a circuit diagram of a power supply unit and a power control unit. FIG. 5 is an external view of a power supply device for high-speed plating.

【0007】まず、高速めっき用電源装置について説明
すると、図3に示すようにAC200Vの商用電源から
電源部11において直列接続された2回路の直流電源を
作り、パワー制御部12によってこの2回路の直流電源
を制御し、正負のパルスを発生するようにしている。前
記電源部11及びパワー制御部12の詳細を図4に示す
が、電源部11はAC200Vに接続されるトランス1
3と、該トランス13の二次側に接続される整流器1
4、15とを有し、直列に接続された2電源を構成して
いる。そして、パワー制御部12は、前記2電源に接続
されるパワーMOS・FET16、17によって波形成
形を行い、所定の電流または電圧のパルス電流を出力で
きるようになっている。
First, a power supply unit for high-speed plating will be described. As shown in FIG. 3, a DC power supply of two circuits connected in series in a power supply unit 11 is formed from a commercial power supply of 200 V AC. The DC power supply is controlled to generate positive and negative pulses. FIG. 4 shows the details of the power supply unit 11 and the power control unit 12. The power supply unit 11 includes a transformer 1 connected to 200 VAC.
3 and a rectifier 1 connected to the secondary side of the transformer 13
4 and 15 and constitutes two power supplies connected in series. The power control unit 12 performs waveform shaping by the power MOS FETs 16 and 17 connected to the two power supplies, and can output a pulse current of a predetermined current or voltage.

【0008】前記パワーMOS・FET16、17の前
段には、オペアンプ18によって入力されるパルス信号
をプラス側の信号とマイナス側の信号に振り分けて、パ
ワーMOS・FET16、17を駆動するトランジスタ
19、20が設けられている。そして、パワー制御部1
2の出力側にはめっき電流を検出するためのシャント2
1が設けられてめっき電流と、めっき電圧をフィードバ
ックできるようになっている。
In the stage preceding the power MOS FETs 16 and 17, transistors 19 and 20 for driving the power MOS FETs 16 and 17 by dividing the pulse signal input by the operational amplifier 18 into a plus signal and a minus signal. Is provided. And the power control unit 1
2 is a shunt 2 for detecting plating current on the output side.
1 is provided so that the plating current and the plating voltage can be fed back.

【0009】図3に示すように、前記パワー制御部12
を制御する演算制御部22は、内部に情報処理を行うC
PU、プログラムが記載されたROM、及び演算データ
を一時保管するRAMを備える中央情報処理部23を有
している。この中央情報処理部23は、キー入力部2
4、RS−422またはRS−232C規格の信号を受
ける通信制御部25、及び内部にAD変換器を備え入力
されたアナログ信号をデジタル信号に変換して入力する
アナログ入力部27が接続され、更に電流、電圧の表示
を行うLED表示部28、測定された電流波形及び予め
設定する波形を表示する液晶表示部29、外部に入出力
を行うI/O制御部30、及び過去のめっき条件のデー
タあるいは新しく設定のめっき条件データ等を記憶する
波形データメモリ部31が接続されている。
As shown in FIG. 3, the power control unit 12
The arithmetic and control unit 22 for controlling C
The central processing unit 23 includes a PU, a ROM in which a program is described, and a RAM for temporarily storing operation data. The central information processing unit 23
4, a communication control unit 25 for receiving a signal of the RS-422 or RS-232C standard, and an analog input unit 27 which has an AD converter therein and converts an input analog signal into a digital signal and inputs the digital signal; LED display section 28 for displaying current and voltage, liquid crystal display section 29 for displaying a measured current waveform and a preset waveform, I / O control section 30 for performing input and output to the outside, and data of past plating conditions Alternatively, a waveform data memory unit 31 for storing newly set plating condition data and the like is connected.

【0010】前記パワー制御部12の出力側から測定さ
れた電流及び電圧のデータは、内部にAD変換器を備え
た測定部32に入力されてデジタル信号に変換されて、
中央情報処理部23によって信号処理され、めっき液の
濃度が変わる等の外乱があっても出力電流または出力電
圧の波形が設定された範囲で一定になるように制御され
ると共に、該電流値及び電圧値は図5に示すように別個
に設けられたLED表示部28に表示されるようになっ
ている。前記波形データメモリ部31の出力はアナログ
制御部33によって処理されて正負の一定高さ及び幅を
有するアナログパルス信号に変換され、前記オペアンプ
18に入力されている。
The current and voltage data measured from the output side of the power control unit 12 are input to a measurement unit 32 having an AD converter therein, and are converted into digital signals.
The signal processing is performed by the central information processing unit 23, and even if there is disturbance such as a change in the concentration of the plating solution, the waveform of the output current or the output voltage is controlled to be constant within a set range, and the current value and the current value are controlled. The voltage value is displayed on an LED display unit 28 provided separately as shown in FIG. The output of the waveform data memory unit 31 is processed by an analog control unit 33, converted into an analog pulse signal having a constant positive and negative height and width, and input to the operational amplifier 18.

【0011】めっき液は、図示しないめっき槽に蓄えら
れポンプによって汲み上げられてノズルから吹出される
が、前記めっき槽にはめっき液温度を測定する温度計
と、めっき液の濃度を測定する濃度計が設けられ、これ
らの出力はアナログ入力部27を介して前記中央情報処
理部23に伝えられるようになっている。そして、前記
中央情報処理部23には本出願人が先に出願した特開平
5−263299号公報にその一例を示すように、めっ
き液の温度及び濃度、パルス周期、正パルス通電時間、
正パルス電流値、負パルス通電時間、及び負パルス電流
値の状態値を入力として、めっき状態についてファジィ
推論を行い、その推論値と予め要求されるめっき条件に
よって決められる設定値とを比較し、前記ファジィ推論
によって決められる推論値と前記設定値が一致するまで
補正値を推論値に加減するファジィフィードバックを繰
り返して、前記状態値の最適制御値を推論するファジィ
制御プログラムを具備している。
The plating solution is stored in a plating tank (not shown), is pumped up by a pump, and is blown out from a nozzle. The plating tank has a thermometer for measuring the plating solution temperature and a concentration meter for measuring the concentration of the plating solution. These outputs are transmitted to the central information processing section 23 via an analog input section 27. Then, as shown in the central information processing section 23 as an example in Japanese Patent Application Laid-Open No. 5-263299 filed earlier by the present applicant, the temperature and concentration of the plating solution, the pulse period, the positive pulse energizing time,
With the positive pulse current value, the negative pulse conduction time, and the state value of the negative pulse current value as inputs, perform a fuzzy inference on the plating state, compare the inferred value with a set value determined by previously required plating conditions, There is provided a fuzzy control program for inferring an optimum control value of the state value by repeating fuzzy feedback for adding and subtracting a correction value to and from the inference value until the inference value determined by the fuzzy inference matches the set value.

【0012】即ち、適当な条件で、図1に示すように負
のパルスを含む適当なパルス電流を流して、図7(B)
に示すような方法でめっきを行うと、めっき液が平面状
のめっき対象物の一例であるリードフレーム80の裏面
を覆った時点で通電すると、均一な濃度のめっき液でめ
っきを行うので最初の正パルス通電の時は均一厚みにめ
っきされる。ところが、正パルス通電の周期が短い場合
には、めっき液がリードフレーム表面を通過する間に複
数のめっきが行なわれることになり、周辺部のめっき液
が薄くなってめっき厚みが薄くなるので、正パルス休止
期間に負パルス電流を入れると、リードフレームの中央
部付近に付着しためっき金属が電解されて周辺部に金属
イオンが移動するので、めっき液の均一化を図ることが
でき、これによって均一なめっきを行うことができる。
この場合のパルスの条件は、めっき液のポンプ圧を一定
とした場合には、めっきの状態値によって異なることに
なるので、種々の条件についてファジィ推論を行い、電
流波形を決定し、めっき速度も考慮して最適制御値を推
論する。
That is, under appropriate conditions, an appropriate pulse current including a negative pulse is applied as shown in FIG.
When plating is performed by a method as shown in the following, when the plating solution is energized when the plating solution covers the back surface of the lead frame 80 which is an example of a planar plating object, plating is performed with a plating solution having a uniform concentration. When a positive pulse is applied, plating is performed to a uniform thickness. However, if the cycle of the positive pulse current is short, a plurality of platings will be performed while the plating solution passes through the lead frame surface, and the plating solution in the peripheral portion becomes thinner and the plating thickness becomes thinner. When a negative pulse current is applied during the positive pulse rest period, the plating metal attached near the center of the lead frame is electrolyzed and metal ions move to the periphery, so that the plating solution can be made uniform, thereby Uniform plating can be performed.
In this case, the pulse conditions are different depending on the plating state value when the plating solution pump pressure is constant.Therefore, fuzzy inference is performed for various conditions, the current waveform is determined, and the plating speed is also determined. The optimum control value is inferred in consideration of the above.

【0013】これらの条件入力は、キー入力部24から
行い、LCD表示部29に表示しながら行う。なお、実
際のめっき状態を監視しながら、めっき電流、めっき電
圧の波形を測定し、測定部32によってデジタル信号に
変換し、中央情報処理部23によって信号変換し、LC
D表示部29に表示している。図5にLCD表示部29
が設けられた高速めっき用電源装置の全体を示すが、電
流波形(場合によっては電圧波形)を観察しながら、め
っき条件の設定、及び監視を行うことができる。そし
て、予め設定された最適制御値は、波形データメモリ部
に記憶され、めっきを行う場合には、条件にあった最適
の波形が中央情報処理部23によって選択され、これが
アナログ制御部33によって実際の波形に変換され、パ
ワー制御部12に加えられることになる。
These conditions are input from the key input unit 24 and are displayed on the LCD display unit 29. In addition, while monitoring the actual plating state, the waveforms of the plating current and the plating voltage are measured, converted into digital signals by the measuring unit 32, converted into signals by the central information processing unit 23,
This is displayed on the D display unit 29. FIG. 5 shows an LCD display unit 29.
Is shown, the plating conditions can be set and monitored while observing the current waveform (voltage waveform in some cases). The preset optimal control value is stored in the waveform data memory unit, and when plating is performed, the optimal waveform that meets the conditions is selected by the central information processing unit 23, and this is actually selected by the analog control unit 33. , And applied to the power control unit 12.

【0014】図2(A)〜(C)には、他の実施例に係
る負パルス電流を含む電流波形を示すが、めっき条件に
応じて波形を選択設定することができる。なお、これ以
外の電流波形であっても選択設定でき、波形データメモ
リ部に記憶させて自由に使用できる。
FIGS. 2A to 2C show current waveforms including a negative pulse current according to another embodiment, but the waveforms can be selectively set according to plating conditions. It is to be noted that other current waveforms can be selected and set, and can be freely used by being stored in the waveform data memory unit.

【0015】[0015]

【発明の効果】請求項1記載の高速めっき方法において
は、めっきを行う正のパルス電流の他に負のパルス電流
を流すことができるようになっているので、流動するめ
っき液を使用してめっきを行う場合、めっき液が薄くな
る部分のめっき液を、負のパルス電流を流すことによっ
てカバーでき、これによってより均一なめっきを行うこ
とができる。また、負のパルス電流値を大きくし、パル
ス幅を小さくすることが可能となり、通常のパルス電流
のめっきに比較してめっき時間を20〜30%短縮でき
る。このため、めっきの生産性を著しく高めることがで
きる。
According to the high-speed plating method of the present invention, since a negative pulse current can be passed in addition to a positive pulse current for plating, a flowing plating solution is used. When plating is performed, the plating solution in a portion where the plating solution becomes thin can be covered by passing a negative pulse current, and thereby more uniform plating can be performed. In addition, it is possible to increase the negative pulse current value and reduce the pulse width, so that the plating time can be reduced by 20 to 30% as compared with the normal pulse current plating. For this reason, the productivity of plating can be significantly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るめっき電流の波形を示
すグラフである。
FIG. 1 is a graph showing a waveform of a plating current according to one embodiment of the present invention.

【図2】他の実施例に係るめっき電流の波形を示すグラ
フである。
FIG. 2 is a graph showing a waveform of a plating current according to another example.

【図3】高速めっき用電源装置の概略ブロック図であ
る。
FIG. 3 is a schematic block diagram of a power supply device for high-speed plating.

【図4】電源部及びパワー制御部の回路図である。FIG. 4 is a circuit diagram of a power supply unit and a power control unit.

【図5】高速めっき用電源装置の外形図である。FIG. 5 is an external view of a power supply device for high-speed plating.

【図6】従来例に係るパルスめっきの電流波形である。FIG. 6 is a current waveform of pulse plating according to a conventional example.

【図7】めっきの状態の説明図である。FIG. 7 is an explanatory diagram of a plating state.

【符号の説明】[Explanation of symbols]

11:電源部、12:パワー制御部、13:トランス、
14:整流器、15:整流器、16:パワーMOS・F
ET、17:パワーMOS・FET、18:オペアン
プ、19:トランジスタ、20:トランジスタ、21:
シャント、22:演算制御部、23:中央情報処理部、
24:キー入力部、25:通信制御部、27:アナログ
入力部、28:LED表示部、29:LCD表示部、3
0:I/O制御部、31:波形データメモリ部、32:
測定部、33:アナログ制御部
11: power supply unit, 12: power control unit, 13: transformer,
14: Rectifier, 15: Rectifier, 16: Power MOS · F
ET, 17: power MOS-FET, 18: operational amplifier, 19: transistor, 20: transistor, 21:
Shunt, 22: arithmetic control unit, 23: central information processing unit,
24: key input unit, 25: communication control unit, 27: analog input unit, 28: LED display unit, 29: LCD display unit, 3
0: I / O control unit, 31: waveform data memory unit, 32:
Measuring unit 33: Analog control unit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流動するめっき液を用い、平面状のめっ
き対象物に正のパルスを通電してめっきを行う高速めっ
き方法において、 前記正のパルスの休止期間全部に、その平均値が該正の
パルスより小さい負のパルスを通電し、前記めっき対象
物の表面のより均一なめっきを行うことを特徴とする高
速めっき方法。
In a high-speed plating method in which a positive pulse is applied to a planar plating object by using a flowing plating solution to perform plating, an average value of the positive pulse is measured during all pauses of the positive pulse. A high-speed plating method, characterized in that a negative pulse smaller than the above pulse is energized to perform more uniform plating on the surface of the object to be plated.
JP5314389A 1993-11-18 1993-11-18 High speed plating method Expired - Fee Related JP3053323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5314389A JP3053323B2 (en) 1993-11-18 1993-11-18 High speed plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5314389A JP3053323B2 (en) 1993-11-18 1993-11-18 High speed plating method

Publications (2)

Publication Number Publication Date
JPH07138797A JPH07138797A (en) 1995-05-30
JP3053323B2 true JP3053323B2 (en) 2000-06-19

Family

ID=18052765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5314389A Expired - Fee Related JP3053323B2 (en) 1993-11-18 1993-11-18 High speed plating method

Country Status (1)

Country Link
JP (1) JP3053323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190088650A (en) * 2018-01-19 2019-07-29 한국과학기술원 Nanopatterning technique comprising secondary sputtering process and nanoscale electroplating process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235189A (en) * 2001-02-05 2002-08-23 Sansha Electric Mfg Co Ltd Power unit for feeding plating current
KR100476984B1 (en) * 2002-05-30 2005-03-18 김용욱 Plating power controller using quadratic function
JP3916586B2 (en) * 2003-05-16 2007-05-16 株式会社三井ハイテック Lead frame plating method
JP2005004839A (en) * 2003-06-10 2005-01-06 Hitachi Maxell Ltd Stamper for forming substrate, glass stamper for forming substrate, resin substrate for optical recording medium, optical recording medium, and method for manufacturing stamper for forming substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190088650A (en) * 2018-01-19 2019-07-29 한국과학기술원 Nanopatterning technique comprising secondary sputtering process and nanoscale electroplating process
KR102105881B1 (en) * 2018-01-19 2020-04-29 한국과학기술원 Nanopatterning technique comprising secondary sputtering process and nanoscale electroplating process

Also Published As

Publication number Publication date
JPH07138797A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
US4517059A (en) Automated alternating polarity direct current pulse electrolytic processing of metals
JP3053323B2 (en) High speed plating method
US4478689A (en) Automated alternating polarity direct current pulse electrolytic processing of metals
CA1136226A (en) Electrical arc welding apparatus using a welding sequence of intervals of high and low mean power
US4945199A (en) Electric discharge machining method and device
JPS58211826A (en) Electric discharge machining device
US4797897A (en) Apparatus for controlling the distance of a melting electrode from the surface of the melted material in a vacuum arc furnace
JPH09162031A (en) Current control device of pulse width modulation system and current control method thereof
CN101469442B (en) Pulse modulation power supply and electrochemical polish apparatus equipped therewith
JPH09323173A (en) Welding electric source device and controlling method thereof
US5225053A (en) Method for regulating the electrical current in an electrochemical working process
JP2997967B2 (en) Control method of plating equipment
JPS62267065A (en) Method and device for controlling solder jet wave height
JPH05263299A (en) Power source device for electroplating
JP3113305B2 (en) Electric discharge machine
US4800334A (en) Method of analyzing the voltage induced in an exciter coil of a stepping motor
JP2001162372A (en) Pulse arc welding equipment
SU1764878A1 (en) Device for tinning and soldering
JP2635783B2 (en) DC resistance welding equipment
SU992150A1 (en) Apparatus for automatic control of interelectrode gap
JPS6241057A (en) Thermal printer
JP2645145B2 (en) Surface roughness measuring device
JPH048424A (en) Electrochemical machine and electrochemical machining device
JP2987661B2 (en) Plating apparatus and plating method using the same
JP2956793B2 (en) Electronic calorimeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees