JP3050225B1 - Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same - Google Patents

Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same

Info

Publication number
JP3050225B1
JP3050225B1 JP11046243A JP4624399A JP3050225B1 JP 3050225 B1 JP3050225 B1 JP 3050225B1 JP 11046243 A JP11046243 A JP 11046243A JP 4624399 A JP4624399 A JP 4624399A JP 3050225 B1 JP3050225 B1 JP 3050225B1
Authority
JP
Japan
Prior art keywords
dielectric
ceramic capacitor
multilayer ceramic
internal electrode
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11046243A
Other languages
Japanese (ja)
Other versions
JP2000169227A (en
Inventor
淳夫 長井
克知 土本
和博 小松
克之 三浦
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP11046243A priority Critical patent/JP3050225B1/en
Application granted granted Critical
Publication of JP3050225B1 publication Critical patent/JP3050225B1/en
Publication of JP2000169227A publication Critical patent/JP2000169227A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

【要約】 【課題】 比誘電率及び絶縁抵抗の向上した誘電体磁器
組成物を提供することを目的とする。 【解決手段】 本発明は、(化1)で表されることを特
徴とする誘電体磁器組成物である。 【化1】
An object of the present invention is to provide a dielectric ceramic composition having improved relative dielectric constant and insulation resistance. SOLUTION: The present invention is a dielectric porcelain composition represented by the following (Formula 1). Embedded image

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はテレビジョンの受動
機の電子チューナ、携帯電話、ビデオカメラ等の各種電
気機器に利用されるセラミックコンデンサに用いる誘電
体磁器組成物とこれを用いた積層セラミックコンデンサ
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition used for a ceramic capacitor used for various electronic equipment such as an electronic tuner of a passive machine of a television, a portable telephone, a video camera and the like, and a multilayer ceramic capacitor using the same. And a method of manufacturing the same.

【0002】[0002]

【従来の技術】積層セラミックコンデンサは、BaTi
3を主成分とする誘電体層と内部電極層とを交互に積
層して積層体を形成して焼成した後、その端面に外部電
極を形成することにより、複数の並列等価なセラミック
コンデンサを有する製造を実現している。
2. Description of the Related Art A multilayer ceramic capacitor is made of BaTi.
After alternately laminating a dielectric layer mainly composed of O 3 and an internal electrode layer to form a laminate and firing it, an external electrode is formed on the end face of the laminate to form a plurality of parallel equivalent ceramic capacitors. Has been realized.

【0003】また、内部電極層の材料に安価な卑金属の
Niを用い低コスト化を図る試みがなされているが、N
iを内部電極層として使用すると、BaTiO3を主成
分とする誘電体層とNiとをNiが酸化されない還元雰
囲気で同時に焼成しなければならない。そこで中性また
は還元雰囲気で焼成しても還元されない材料として非還
元性セラミック材料の開発も行われており、BaTiO
3にMnO2、Yb23、Dy23、ThO2を添加する
ことが知られている(例えば特公平6−50700号公
報参照)。
Attempts have been made to reduce the cost by using inexpensive base metal Ni as the material of the internal electrode layer.
When i is used as the internal electrode layer, the dielectric layer mainly composed of BaTiO 3 and Ni must be fired simultaneously in a reducing atmosphere in which Ni is not oxidized. Therefore, a non-reducible ceramic material has been developed as a material that is not reduced even when fired in a neutral or reducing atmosphere.
3 It is known that the addition of MnO 2, Yb 2 O 3, Dy 2 D 3, ThO 2 ( e.g. see Japanese Patent Kokoku 6-50700).

【0004】このような誘電体磁器組成物は、比誘電率
が12000〜13000、絶縁抵抗は109Ω程度で
あった。
[0004] Such a dielectric ceramic composition has a relative dielectric constant of 12000 to 13000 and an insulation resistance of about 10 9 Ω.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、さら
に比誘電率および絶縁抵抗の向上した誘電体磁器組成物
とこれを用いた積層セラミックコンデンサおよびその製
造方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a dielectric ceramic composition further improved in relative dielectric constant and insulation resistance, a multilayer ceramic capacitor using the same, and a method of manufacturing the same. It is.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明の誘電体磁器組成物は、(化2)で表されるも
のである。
Means for Solving the Problems To achieve this object, a dielectric ceramic composition of the present invention is represented by the following formula (2).

【0007】[0007]

【化2】 Embedded image

【0008】Mn成分は絶縁抵抗の向上に寄与するが、
同時に比誘電率の低下を引き起こす。そこでMnO2
なく、Mn34として添加することによりMn成分の添
加量がMnOで添加するよりも少量になるので比誘電率
の低下を最小限に抑えることができるのである。また、
Baの一部をCaに置換することにより比誘電率が高く
なる。さらにBaO,Al 2 3 ,SiO 2 の三成分のみ
からなる所定の組成のガラスを所定量0.01〜0.5
重量%添加することにより、焼結性を向上させ、高誘電
率を有するものとなる。 さらにまたこのガラスは、大量
の積層体を重ねて焼成しても積層体同士が接着するのが
少ない。
Although the Mn component contributes to the improvement of the insulation resistance,
At the same time, the dielectric constant is reduced. Therefore, when Mn 3 O 4 is added instead of MnO 2 , the amount of the Mn component to be added becomes smaller than that when MnO is added, so that a decrease in relative dielectric constant can be minimized. Also,
Replacing part of Ba with Ca increases the relative dielectric constant. Furthermore, only three components of BaO, Al 2 O 3 and SiO 2
A glass having a predetermined composition consisting of a predetermined amount of 0.01 to 0.5
By adding the weight%, sinterability is improved and high dielectric
Rate. In addition, this glass
Even if the laminates are stacked and fired, the laminates adhere to each other.
Few.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の発明
は、(化2)で表される誘電体磁器組成物であり、比誘
電率および絶縁抵抗の高いものが提供できることにな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The invention described in claim 1 of the present invention is a dielectric ceramic composition represented by the following formula (2), which can provide a dielectric ceramic composition having a high relative dielectric constant and high insulation resistance.

【0010】請求項2に記載の発明は、誘電体層と内部
電極層とを交互に積層した積層体と、この積層体の前記
内部電極層の露出した端面に設けた外部電極とを備え、
前記誘電体層は(化2)で表される誘電体磁器組成物を
用いて形成された積層セラミックコンデンサであり、大
容量かつ信頼性の高いものである。
According to a second aspect of the present invention, there is provided a laminated body in which dielectric layers and internal electrode layers are alternately laminated, and an external electrode provided on an exposed end face of the internal electrode layer of the laminated body.
The dielectric layer is a multilayer ceramic capacitor formed by using the dielectric ceramic composition represented by Chemical Formula 2, and has a large capacity and high reliability.

【0011】請求項3に記載の発明は、内部電極層とし
てNiを主成分とする金属を用いた請求項2に記載の積
層セラミックコンデンサであり、安価な卑金属のNiを
用い、低コスト化を図ることができるものである。
According to a third aspect of the present invention, there is provided the multilayer ceramic capacitor according to the second aspect, wherein the internal electrode layer is made of a metal containing Ni as a main component. It can be planned.

【0012】請求項4に記載の発明は、誘電体材料を用
いて形成したグリーンシートと、Niを主成分とする内
部電極ペーストとを交互に積層して積層体を形成する工
程と、次にこの積層体を前記グリーンシートが焼結し始
める温度よりも低温で加熱処理する工程と、次いでこの
積層体をNiの融点より低温の還元雰囲気中で焼成する
工程と、その後前記積層体の端面に外部電極を形成する
工程とを有する積層セラミックコンデンサの製造方法に
おいて、前記誘電体材料は(化2)で表される組成とな
るようにした積層セラミックコンデンサの製造方法であ
り、安価に大容量かつ信頼性の高い積層セラミックコン
デンサが得られるものである。
According to a fourth aspect of the present invention, there is provided a method of forming a laminate by alternately laminating a green sheet formed using a dielectric material and an internal electrode paste containing Ni as a main component, Heating the laminate at a temperature lower than the temperature at which the green sheets start to sinter; and firing the laminate in a reducing atmosphere at a temperature lower than the melting point of Ni. Forming a multilayer ceramic capacitor having a step of forming an external electrode, wherein the dielectric material has a composition represented by the following chemical formula (2). A highly reliable multilayer ceramic capacitor can be obtained.

【0013】以下本発明の一実施の形態について積層セ
ラミックコンデンサを例に説明する。
An embodiment of the present invention will be described below by taking a multilayer ceramic capacitor as an example.

【0014】図1は本実施の形態における積層セラミッ
クコンデンサの一部断面斜視図であり、1は誘電体層、
2は内部電極層、3は外部電極であり、誘電体層1と内
部電極層2を交互に多数積層したものの両端に外部電極
3を設けて積層セラミックコンデンサとしている。
FIG. 1 is a partial cross-sectional perspective view of a multilayer ceramic capacitor according to the present embodiment.
Reference numeral 2 denotes an internal electrode layer, and reference numeral 3 denotes an external electrode. A multilayer ceramic capacitor is formed by providing external electrodes 3 at both ends of a multi-layer structure in which dielectric layers 1 and internal electrode layers 2 are alternately stacked.

【0015】次に本発明の積層セラミックコンデンサの
製造方法について説明する。
Next, a method for manufacturing the multilayer ceramic capacitor of the present invention will be described.

【0016】まず、誘電体層1の出発原料には高純度の
BaCO3、CaCO3、TiO2、ZrO2、Y23、M
34、Dy23、BaO−Al23−SiO2の三成
分系ガラスを(表1)に示すように炭酸塩は酸化物に換
算して本発明の範囲内外の組成比になるように秤量し
た。
First, high-purity BaCO 3 , CaCO 3 , TiO 2 , ZrO 2 , Y 2 O 3 , M
As shown in Table 1, carbonates are converted to oxides in ternary glasses of n 3 O 4 , Dy 2 O 3 , and BaO—Al 2 O 3 —SiO 2 , and composition ratios outside and within the range of the present invention. Was weighed so that

【0017】[0017]

【表1】 [Table 1]

【0018】次にジルコニアボールを備えたボールミル
に純水とともに入れ、湿式混合後、脱水乾燥した。次い
でこの乾燥粉末を高純度のアルミナルツボに入れ、空気
中で1100℃にて2時間仮焼した。
Next, the mixture was put into a ball mill equipped with zirconia balls together with pure water, wet-mixed, and dehydrated and dried. Next, the dried powder was put into a high-purity alumina crucible and calcined in air at 1100 ° C. for 2 hours.

【0019】その後この仮焼粉末をジルコニアボールを
備えたボールミルに純水とともに入れ、湿式粉砕後、脱
水乾燥した。この時粉砕粉の平均粒径が2μm以下にな
るようにした。次にこの粉砕粉末に有機バインダとして
ポリビニルブチラール樹脂、可塑剤としてBBP(ベン
ジルブチルフタレート)、溶剤としてn−酢酸ブチルを
加えてジルコニアを備えたボールミルにて混合し、スラ
リーを調整した。次にこのスラリーを真空脱泡した後、
ドクターブレード法によりフィルム状に造膜してグリー
ンシートを作製した。この時、乾燥後のグリーンシート
の厚みは約20μmとなるようにした。
Thereafter, the calcined powder was put into a ball mill equipped with zirconia balls together with pure water, wet-pulverized, and dehydrated and dried. At this time, the average particle size of the pulverized powder was adjusted to 2 μm or less. Next, a polyvinyl butyral resin as an organic binder, BBP (benzyl butyl phthalate) as a plasticizer, and n-butyl acetate as a solvent were added to the pulverized powder, and mixed with a ball mill equipped with zirconia to prepare a slurry. Next, after vacuum defoaming this slurry,
A green sheet was formed by forming a film into a film by a doctor blade method. At this time, the thickness of the dried green sheet was set to about 20 μm.

【0020】次に、このグリーンシート上に平均粒径約
1.0μmのNi粉末からなる電極ペーストを用い、所
望のパターンとなるようにスクリーン印刷を行った。N
i粉末は内部電極層2間に挟まれた誘電体層1の厚みよ
りも小さい粒径のものを用いた。
Next, screen printing was performed on this green sheet using an electrode paste made of Ni powder having an average particle size of about 1.0 μm so as to form a desired pattern. N
The i powder used had a particle diameter smaller than the thickness of the dielectric layer 1 sandwiched between the internal electrode layers 2.

【0021】次いで内部電極パターン形成済みのグリー
ンシートを内部電極パターンがグリーンシートを介して
対向するように100枚重ね合わせ、加熱加圧して一体
化した後、横3.8mm、縦1.8mmの寸法に切断し
て未焼結積層体を準備した。
Next, 100 green sheets on which the internal electrode patterns have been formed are overlapped with each other so that the internal electrode patterns face each other with the green sheets interposed therebetween, and heated and pressed to be integrated, and then 3.8 mm in width and 1.8 mm in length. An unsintered laminate was prepared by cutting into dimensions.

【0022】次にこの未焼結積層体をジルコニア粉末を
敷いたジルコニア質サヤに入れ、350℃まで空気中で
加熱して有機バインダを燃焼させ、その後N2+H2中、
1300℃で2時間焼成して焼結体を得た。
Next, this unsintered laminate is placed in a zirconia sheath covered with zirconia powder, heated to 350 ° C. in the air to burn the organic binder, and then placed in N 2 + H 2 .
The sintered body was obtained by firing at 1300 ° C. for 2 hours.

【0023】次に得られた焼結体の端面に外部電極3と
して市販の900℃窒素雰囲気焼成用銅ペーストを塗布
し、メッシュ型の連続ベルトによって焼付け、積層セラ
ミックコンデンサを得た。なお、誘電体層1の厚みは約
12μm、内部電極層2の厚みは約2〜2.5μmであ
った。
Next, a commercially available copper paste for baking in a nitrogen atmosphere at 900 ° C. was applied as an external electrode 3 to the end face of the obtained sintered body and baked by a continuous belt of a mesh type to obtain a multilayer ceramic capacitor. The thickness of the dielectric layer 1 was about 12 μm, and the thickness of the internal electrode layer 2 was about 2 to 2.5 μm.

【0024】次に得られた積層セラミックコンデンサの
静電容量および誘電損失を20℃の恒温槽中で周波数1
kHz、入力信号レベル1.0Vrmsにて測定し、静
電容量から(数1)を用いて比誘電率を算出した。
Next, the capacitance and dielectric loss of the obtained multilayer ceramic capacitor were measured at a frequency of 1 in a thermostat at 20 ° C.
The relative dielectric constant was calculated from the capacitance by using (Equation 1) based on the measurement at kHz and an input signal level of 1.0 Vrms.

【0025】[0025]

【数1】 (Equation 1)

【0026】その後、直流16Vを1分間印加しその時
の絶縁抵抗を測定した。上記の測定結果を(表2)に示
した。
Thereafter, 16 V DC was applied for 1 minute, and the insulation resistance at that time was measured. The above measurement results are shown in (Table 2).

【0027】[0027]

【表2】 [Table 2]

【0028】(表2)から明らかなように、本発明の範
囲内の誘電体磁器組成物を用いて作製した積層セラミッ
クコンデンサは、比誘電率が高く、誘電損失、絶縁抵抗
も実用上十分な値を示した。一方、本発明の範囲外の誘
電体磁器組成物を用いて作製した積層セラミックコンデ
ンサは、比誘電率や絶縁抵抗が低くなる傾向にあった。
As is clear from Table 2, the multilayer ceramic capacitor manufactured using the dielectric ceramic composition within the scope of the present invention has a high relative permittivity, and has practically sufficient dielectric loss and insulation resistance. The value was shown. On the other hand, a multilayer ceramic capacitor produced using a dielectric ceramic composition outside the scope of the present invention tended to have a low relative dielectric constant and insulation resistance.

【0029】つまりBaOをCaOで置換することによ
り、比誘電率、絶縁抵抗を高め誘電損失を低くすること
に効果がある。特に、比誘電率については、x=0.0
01〜0.05molの範囲内で高くなる傾向にあり、
この範囲で比誘電率の向上に関して有効である。また、
この時焼結体の粒径は2〜3μmであり、他の無機添加
物で比誘電率を高めた場合と比較しても小さく、大容量
の積層セラミックコンデンサの信頼性、強度を向上させ
るうえで有効である。強度を高めることは、積層セラミ
ックコンデンサを実装するときに発生する熱的および機
械的ストレスによるクラックの発生を抑制する作用を有
する。xが0.001molより小さいと比誘電率のみ
ならず絶縁抵抗が低下し、実用化には不向きである。一
方0.05molを越えた場合には比誘電率が低下す
る。
That is, by replacing BaO with CaO, it is effective to increase the relative dielectric constant and insulation resistance and reduce the dielectric loss. In particular, for the relative permittivity, x = 0.0
Tends to be high in the range of 01 to 0.05 mol,
This range is effective for improving the relative dielectric constant. Also,
At this time, the particle size of the sintered body is 2 to 3 μm, which is smaller than the case where the relative dielectric constant is increased by other inorganic additives, and improves the reliability and strength of the large-capacity multilayer ceramic capacitor. Is effective in Increasing the strength has the effect of suppressing the occurrence of cracks due to thermal and mechanical stress generated when mounting the multilayer ceramic capacitor. When x is smaller than 0.001 mol, not only the relative permittivity but also the insulation resistance decreases, which is not suitable for practical use. On the other hand, when it exceeds 0.05 mol, the relative dielectric constant decreases.

【0030】ZrO2については、焼成中にTiO2と置
換することによってシフターとして寄与することから、
y=0.2molを越えて置換するとキュリー点がかな
り低温側にシフトし、20℃での比誘電率が低下する。
ZrO 2 contributes as a shifter by substituting with TiO 2 during firing.
When the substitution exceeds y = 0.2 mol, the Curie point shifts considerably to the low temperature side, and the relative dielectric constant at 20 ° C. decreases.

【0031】Mn34は、MnO2等の他のMn化合物
と比較して微粒子で、かつ他の無機添加物と混合すると
きに非常に分散性が優れているため、少量の添加で耐還
元性を向上させることができ絶縁抵抗の劣化を防止でき
る。また、Mnを添加すると比誘電率が低下する傾向に
あるが、Mn34は他のMn化合物を用いた場合と比較
すると、その傾向が小さいといった作用を有する。
Mn 3 O 4 is a fine particle compared to other Mn compounds such as MnO 2 , and has excellent dispersibility when mixed with other inorganic additives. The reducibility can be improved, and the deterioration of the insulation resistance can be prevented. Further, when Mn is added, the relative permittivity tends to decrease, but Mn 3 O 4 has an effect of reducing the tendency as compared with the case where another Mn compound is used.

【0032】Mn34については、1/3Mn34に換
算して、α<0.001molの場合十分な絶縁抵抗が
得られず、α>0.05molの場合には絶縁抵抗およ
び比誘電率が低下する傾向にある。
In terms of Mn 3 O 4 , in terms of 1/3 Mn 3 O 4 , when α <0.001 mol, sufficient insulation resistance cannot be obtained, and when α> 0.05 mol, the insulation resistance and the specific resistance The dielectric constant tends to decrease.

【0033】Y23およびDy23は、他の希土類元素
と比較すると比誘電率を高める作用を有している。Y2
3およびDy23が他の希土類元素と異なるのはCa
O添加と組み合わせることでより高い比誘電率を得るこ
とができる点にある。無添加の場合、誘電体の粒成長を
促進せず、比誘電率が低いばかりか絶縁抵抗も低くなる
傾向にある。また、0.015molを越えて過度に添
加すると逆に焼結性が低下し比誘電率が低くなる。これ
らの効果は、それぞれを単独で添加した場合も複合して
添加した場合も同様の効果が得られる。複合して添加す
る場合は、Y23添加量よりもDy23添加量を少なく
する方がより高い比誘電率が得られる。
Y 2 O 3 and Dy 2 O 3 have an effect of increasing the relative dielectric constant as compared with other rare earth elements. Y 2
O 3 and Dy 2 O 3 are different from other rare earth elements because
The point is that a higher relative dielectric constant can be obtained by combining with the addition of O. In the case of no addition, it does not promote the grain growth of the dielectric and tends to have a low dielectric constant as well as a low insulation resistance. On the other hand, if it is added in excess of 0.015 mol, the sinterability is reduced and the relative dielectric constant is lowered. The same effects can be obtained when these effects are added alone or in combination. In the case of adding in combination, a higher relative dielectric constant can be obtained by reducing the amount of Dy 2 O 3 added than the amount of Y 2 O 3 added.

【0034】また、CaCO3、Mn34、Y23、D
23の粉末粒径が大きかったり、混合するときの分散
性が悪い場合には絶縁抵抗が低くなる傾向がある。した
がって、これらの粉末の比表面積は5m2/g以上のも
のを用いる必要がある。特に、内部電極層2間の厚みが
数μm〜数十μmと薄い大容量の積層セラミックコンデ
ンサに対して用いる場合、絶縁抵抗の劣化を招きやす
く、比表面積が10m2/g以上を用いることが好まし
い。
Further, CaCO 3 , Mn 3 O 4 , Y 2 O 3 , D
When the powder particle size of y 2 O 3 is large or the dispersibility at the time of mixing is poor, the insulation resistance tends to decrease. Therefore, it is necessary to use a powder having a specific surface area of 5 m 2 / g or more. In particular, when used for a large-capacity multilayer ceramic capacitor in which the thickness between the internal electrode layers 2 is as thin as several μm to several tens of μm, the insulation resistance is likely to be deteriorated, and a specific surface area of 10 m 2 / g or more is used. preferable.

【0035】BaO−Al23−SiO2の三成分系ガ
ラスは誘電体層1の焼結性を高める効果を有する。その
比表面積は1m2/g以上のものを用いることが好まし
い。また主成分(化3)を100重量%としたとき、主
成分に対し0.01重量%以上添加することで焼結性が
向上し、高誘電率が得られる。
The ternary glass of BaO—Al 2 O 3 —SiO 2 has the effect of improving the sinterability of the dielectric layer 1. It is preferable to use one having a specific surface area of 1 m 2 / g or more. When the main component (formula 3) is 100% by weight, adding 0.01% by weight or more to the main component improves sinterability and obtains a high dielectric constant.

【0036】[0036]

【化3】 Embedded image

【0037】ところが0.5重量%を越えて添加すると
絶縁抵抗が低下し好ましくない。SiO2やAl23
単体で添加することでも焼結性を向上させることができ
るが、本組成系の場合十分な比誘電率を得ることができ
ない。また、大量に積層体が重なって焼成される場合、
他のガラス系を焼結助剤として用いた場合、積層体どう
しがガラスを介して接着してしまう場合があるが、Ba
O−Al23−SiO 2の三成分系ガラスは比較的少量
で焼結助剤として寄与するためにそのようなことが少な
い。
However, if it exceeds 0.5% by weight,
It is not preferable because insulation resistance is lowered. SiOTwoAnd AlTwoOThreeTo
Sinterability can also be improved by adding it alone
However, in the case of this composition system, a sufficient relative dielectric constant can be obtained.
Absent. In addition, when the laminate is fired in a large amount,
When other glass materials are used as sintering aids,
In some cases, the lime may adhere through the glass.
O-AlTwoOThree-SiO TwoTernary glass is relatively small
Is less likely to contribute as a sintering aid
No.

【0038】更に、BaO−Al23−SiO2の三成
分系ガラス組成はBaOが10〜40重量%、Al23
が1〜15重量%、SiO2が45〜89重量%の合計
100重量%の組成比範囲で作製されたものであれば十
分な誘電率、絶縁抵抗が得られる。特に、BaOが25
〜40重量%、Al23が3〜10重量%、SiO2
50〜72重量%の範囲において15000を越える誘
電率を得ることができる。
Further, the ternary glass composition of BaO—Al 2 O 3 —SiO 2 is such that BaO is 10 to 40% by weight, Al 2 O 3
There 1-15 wt%, as long as the SiO 2 is produced by a composition ratio range of total 100 weight percent of 45 to 89 wt% sufficient dielectric constant, insulation resistance can be obtained. In particular, BaO is 25
A dielectric constant exceeding 15,000 can be obtained in the range of 4040% by weight, Al 2 O 3 of 3 to 10% by weight and SiO 2 of 50 to 72% by weight.

【0039】以上の結果より、本発明の組成範囲におい
てのみ、高誘電率で誘電損失が小さく、絶縁抵抗が十分
高い積層セラミックコンデンサの作製が可能となる。
From the above results, it is possible to produce a multilayer ceramic capacitor having a high dielectric constant, a small dielectric loss, and a sufficiently high insulation resistance only in the composition range of the present invention.

【0040】次に、(Ba+Ca)と(Ti+Zr)の
比率を変えた実験を行った。なお、この時Mn34は1
/3Mn34として0.015mol、Y23は0.0
1mol、BaO−Al23−SiO2の三成分系ガラ
スは0.1重量%添加し上記と同様な手順で積層セラミ
ックコンデンサを作製し特性の評価を行った。その結果
を(表3)に示した。
Next, an experiment was conducted in which the ratio of (Ba + Ca) to (Ti + Zr) was changed. At this time, Mn 3 O 4 is 1
/ 3 Mn 3 O 4 as 0.015 mol, Y 2 O 3 as 0.0
1 mol, the evaluation of the BaO-Al 2 O 3 -SiO 2 three-component glass was added 0.1 wt% to prepare a multilayer ceramic capacitor in the same procedure characteristics was performed. The results are shown in (Table 3).

【0041】[0041]

【表3】 [Table 3]

【0042】(表3)より明らかなように、本発明の範
囲内については比誘電率、誘電損失、絶縁抵抗ともに実
用上十分な値を示している。一方、範囲外のNo.00
1については絶縁抵抗が低く、試料No.005につい
ては焼結性が悪く比誘電率が低い。(表3)には、Mn
34、Y23の添加量を固定して行った結果を示した
が、本発明の範囲内での他の誘電体組成における(Ba
+Ca)/(Ti+Zr)比と特性の関係は同様の傾向
を示した。以上の結果より、(Ba+Ca)/(Ti+
Zr)比が1.00〜1.02の場合に誘電率が高く、
特に1.00〜1.01の範囲が望ましい。
As is clear from Table 3, within the range of the present invention, the relative permittivity, the dielectric loss, and the insulation resistance show practically sufficient values. On the other hand, No. out of the range. 00
In the case of Sample No. 1, the insulation resistance was low. 005 has poor sinterability and low relative dielectric constant. (Table 3) shows Mn
The results obtained by fixing the addition amounts of 3 O 4 and Y 2 O 3 are shown, but (Ba) in other dielectric compositions within the scope of the present invention is shown.
The relationship between the (+ Ca) / (Ti + Zr) ratio and the characteristics showed a similar tendency. From the above results, (Ba + Ca) / (Ti +
Zr) when the ratio is 1.00 to 1.02, the dielectric constant is high,
Particularly, a range of 1.00 to 1.01 is desirable.

【0043】以下本発明のポイントについて記載する。Hereinafter, the points of the present invention will be described.

【0044】(1)本実施の形態においては、誘電体層
1の出発原料としてBaCO3、CaCO3、TiO2
ZrO2、Y23、Dy23、Mn34を用いたが、所
望の組成比になるようにBaTiO3などの化合物ある
いは炭酸塩、水酸化物など空気中での加熱により、Ba
O、CaO、TiO2、ZrO2、Y23およびDy23
となる化合物を使用しても本実施の形態と同程度の特性
を得ることができる。
(1) In the present embodiment, BaCO 3 , CaCO 3 , TiO 2 ,
Although ZrO 2 , Y 2 O 3 , Dy 2 O 3 , and Mn 3 O 4 were used, a compound such as BaTiO 3 or a carbonate or a hydroxide was heated in the air such as a hydroxide so that a desired composition ratio was obtained. Ba
O, CaO, TiO 2, ZrO 2, Y 2 O 3 and Dy 2 O 3
Even when a compound that becomes the same is used, characteristics similar to those of the present embodiment can be obtained.

【0045】また、主成分となるBaとTiはBaTi
3の化合物で添加することにより、Tanδを向上さ
せることができる。この理由は、誘電体層1の主成分と
なるBaTiO3の結晶性が向上するとともにその粒子
径のバラツキも小さくなるからである。従ってBaTi
3は、シュウ酸塩法で作製されたものが一番好まし
く、次にゾルゲル法、続いて固相法で形成されたものを
用いることが好ましい。また、出発原料は全て粉末を用
いたが、副成分となるY23およびDy23、Mn34
は分散性を向上させるために液体にして添加しても良
い。
Ba and Ti as main components are made of BaTi.
By adding the compound of O 3 , Tan δ can be improved. The reason for this is that the crystallinity of BaTiO 3 , which is the main component of the dielectric layer 1, is improved, and the variation in the particle size is reduced. Therefore, BaTi
O 3 is most preferably formed by the oxalate method, and then preferably formed by the sol-gel method and subsequently by the solid phase method. In addition, powders were used as starting materials, but Y 2 O 3, Dy 2 O 3 , and Mn 3 O 4 serving as subcomponents were used.
May be added as a liquid in order to improve dispersibility.

【0046】さらに、チタン酸バリウムを出発原料とし
て用いる場合は、その比表面積がチタン酸バリウムより
もCaCO3、Mn34、Y23、Dy23の副成分の
方が大きくなるようにすることにより、主成分チタン酸
バリウムと副成分との反応性が向上し絶縁抵抗が向上す
る。具体的にはチタン酸バリウムの比表面積は3m2
g以上で、CaCO3、Mn34、Y23、Dy23
副成分の比表面積は5m2/g以上のものを用いること
が好ましい。
Furthermore, when barium titanate is used as a starting material, the specific surface area of the subcomponents of CaCO 3 , Mn 3 O 4 , Y 2 O 3 and Dy 2 O 3 is larger than that of barium titanate. By doing so, the reactivity between the main component barium titanate and the auxiliary component is improved, and the insulation resistance is improved. Specifically, the specific surface area of barium titanate is 3 m 2 /
g or more, and the specific surface area of the subcomponent of CaCO 3 , Mn 3 O 4 , Y 2 O 3 and Dy 2 O 3 is preferably 5 m 2 / g or more.

【0047】(2)内部電極層2としてNiを用いた
が、Ni−Cuなど、Niを含み、その融点が誘電体層
1の焼成温度よりも高い融点を持つ金属であれば内部電
極層2として用いることができる。具体的には1350
℃以上のものが好ましい。
(2) Although Ni is used for the internal electrode layer 2, any metal containing Ni, such as Ni—Cu, having a melting point higher than the firing temperature of the dielectric layer 1 may be used. Can be used as Specifically, 1350
C. or higher is preferred.

【0048】(3)さらに脱バインダ、焼成条件につい
ても固定して行ったが、脱バインダ工程は使用する有機
バインダの燃焼温度に応じて熱処理条件を最適に選択す
れば良く、焼成工程はN2+H2中での焼成に限らず、誘
電体層1が還元されず内部電極層2が過度に酸化されな
い雰囲気、つまり内部電極層2としての機能を果たせる
ように焼成できる雰囲気であればよい。しかしながら、
一度に大量の積層体を焼成する場合、脱バインダ工程に
おいて積層体中のバインダを分解しきれないことがあ
る。この分解されなかったバインダが誘電体層1の焼結
の際に残留していると、誘電体層1を還元したり構造欠
陥を招いたりする可能性がある。
[0048] (3) In addition to binder removal, but also performed to secure the firing conditions, binder removal step may be optimally chosen heat treatment conditions in accordance with the combustion temperature of the organic binder to be used, the firing step N 2 The atmosphere is not limited to firing in + H 2 , but may be any atmosphere in which the dielectric layer 1 is not reduced and the internal electrode layer 2 is not excessively oxidized, that is, an atmosphere which can be fired so as to function as the internal electrode layer 2. However,
When firing a large number of laminates at once, the binder in the laminates may not be completely decomposed in the binder removal step. If the undecomposed binder remains during the sintering of the dielectric layer 1, the binder may reduce the dielectric layer 1 or cause a structural defect.

【0049】従って、焼成工程においてバインダの分解
温度以上、誘電体層1の焼結開始温度未満の温度範囲で
昇温を一時停止して、この温度での保持過程を設けて積
層体中の残留有機物を分解することが望ましい。特に、
焼成時の最高温度付近では、Niの平衡酸素分圧から1
/20〜1/10000の低い酸素分圧の時に十分な比
誘電率、絶縁抵抗が得られる。しかしながら、平衡酸素
分圧の1/10000より低い酸素分圧で焼成すると誘
電体層1が還元され絶縁抵抗が低下する場合がある。こ
の時には、焼成の降温工程あるいは焼成後にNiの平衡
酸素分圧以上の雰囲気で熱処理することで絶縁抵抗を回
復することができる。焼成時の最高温度については、1
250℃〜1350℃の範囲の温度で十分な比誘電率が
得られる。
Therefore, in the firing step, the temperature increase is temporarily stopped in a temperature range not lower than the binder decomposition temperature and lower than the sintering start temperature of the dielectric layer 1, and a holding process at this temperature is provided, so that the residual It is desirable to decompose organic matter. In particular,
In the vicinity of the maximum temperature during firing, the equilibrium oxygen partial pressure of Ni is 1
When the oxygen partial pressure is as low as / 20 to 1/10000, sufficient relative dielectric constant and insulation resistance can be obtained. However, firing at an oxygen partial pressure lower than 1 / 10,000 of the equilibrium oxygen partial pressure may reduce the dielectric layer 1 and lower the insulation resistance. At this time, the insulation resistance can be recovered by performing a heat treatment in an atmosphere at or above the equilibrium oxygen partial pressure of Ni after the firing temperature lowering step or after the firing. The maximum temperature during firing is 1
A sufficient relative dielectric constant can be obtained at a temperature in the range of 250C to 1350C.

【0050】(4)従来焼結性を高めるためにLiを含
有したガラスを用いて誘電体磁器組成物を形成すること
が多かった。しかしながら、Liは仮焼あるいは焼成中
に飛散して焼成炉内に蓄積し、焼成炉内を汚染する可能
性がある。また、焼成炉内に付着したLiが焼成中に焼
結体に再付着する可能性もあるので、Liを含むガラス
を用いることは好ましくない。更に大量に焼成する場
合、その表面部分と、内部とではLiの飛散状態も異な
り特性にバラツキが生じるおそれがある。また、Liが
飛散した部分にはボイドなどの構造欠陥も誘発すると特
性上不具合が生じる。本発明においては、このように問
題の原因となりうるLiを含有していないので、上記問
題の発生する可能性はなく非常に優れた特性の誘電体磁
器組成物を得ることができる。
(4) Conventionally, a dielectric ceramic composition has often been formed using a glass containing Li in order to enhance sinterability. However, Li may be scattered during calcination or firing and accumulate in the firing furnace, and may contaminate the firing furnace. In addition, it is not preferable to use a glass containing Li, since Li attached in the firing furnace may be re-adhered to the sintered body during firing. Further, when firing in a large amount, the scattering state of Li is different between the surface portion and the inside, and there is a possibility that the characteristics may vary. In addition, if structural defects such as voids are induced in the portion where Li is scattered, a defect occurs in characteristics. In the present invention, since Li which may cause a problem is not contained, the dielectric ceramic composition having very excellent characteristics without the possibility of the above problem can be obtained.

【0051】(5)本実施の形態においては、BaCO
3、CaCO3、TiO2、ZrO2、Y23、Mn34
Dy23の混合時にBaO−Al23−SiO2の三成
分系ガラスを一緒に混合したが、BaCO3、CaC
3、TiO2、ZrO2、Y23、Mn34、Dy23
を仮焼した後の粉砕時にBaO−Al23−SiO2
三成分系ガラスを添加混合しても上記と同様の効果を得
ることができる。
(5) In the present embodiment, BaCO
3 , CaCO 3 , TiO 2 , ZrO 2 , Y 2 O 3 , Mn 3 O 4 ,
When mixing Dy 2 O 3 , BaO—Al 2 O 3 —SiO 2 ternary glass was mixed together, but BaCO 3 , CaC
O 3 , TiO 2 , ZrO 2 , Y 2 O 3 , Mn 3 O 4 , Dy 2 O 3
It can be added and mixed three-component glass BaO-Al 2 O 3 -SiO 2 to during pulverization after calcination to obtain the same effect as described above.

【0052】(6)誘電率の低下を招くMnの添加量が
従来と比較すると少量で済むため及び本発明の誘電体磁
器組成物の有する元々の誘電率が高いため、キュリー点
を低温側にシフトさせても静電容量の経時劣化による減
少が少ない。従って誘電体層1を薄層化して高積層化し
たとしても、静電容量の経時劣化の少ない積層セラミッ
クコンデンサとなる。
(6) Since the amount of Mn that causes a decrease in the dielectric constant is small as compared with the prior art and the original dielectric constant of the dielectric ceramic composition of the present invention is high, the Curie point is lowered to the low temperature side. Even if it is shifted, the decrease due to the deterioration of the capacitance over time is small. Therefore, even if the dielectric layer 1 is made thinner and more highly laminated, a multilayer ceramic capacitor with less deterioration of the capacitance with time is obtained.

【0053】(7)本実施の形態においては、積層セラ
ミックコンデンサを作製し誘電体磁器組成物の特性を評
価したが、本発明の誘電体磁器組成物は、単板型のセラ
ミックコンデンサに使用できることは言うまでもない。
(7) In this embodiment, a multilayer ceramic capacitor was manufactured and the characteristics of the dielectric ceramic composition were evaluated. The dielectric ceramic composition of the present invention can be used for a single-plate type ceramic capacitor. Needless to say.

【0054】[0054]

【発明の効果】以上本発明の誘電体磁器組成物は、高い
比誘電率を有し、誘電損失及び静電容量の経時変化が小
さく、還元雰囲気においても優れた絶縁抵抗を示すもの
でNiを主成分とする内部電極の積層セラミックコンデ
ンサの作製にあたって非常に有効である。また、比誘電
率が高いため積層セラミックコンデンサの小型化、大容
量化が極めて容易になる。さらに積層セラミックコンデ
ンサを作製するために大量の積層体を重ねて焼成したと
しても、積層体同士がガラスを介して接着するのを抑制
することができる。
As described above, the dielectric porcelain composition of the present invention has a high relative dielectric constant, a small change with time in dielectric loss and capacitance, and exhibits excellent insulation resistance even in a reducing atmosphere. It is very effective in producing a multilayer ceramic capacitor having internal electrodes as a main component. Further, since the relative dielectric constant is high, it is very easy to reduce the size and increase the capacity of the multilayer ceramic capacitor. Furthermore, multilayer ceramic conditioner
Large amounts of laminates were stacked and fired to produce sensors
Even if the laminated body adheres to each other via glass
can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における積層セラミック
コンデンサの一部断面斜視図
FIG. 1 is a partial cross-sectional perspective view of a multilayer ceramic capacitor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 誘電体層 2 内部電極層 3 外部電極 Reference Signs List 1 dielectric layer 2 internal electrode layer 3 external electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 克之 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 倉光 秀紀 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平10−36170(JP,A) 特開 平8−59344(JP,A) 特開 昭63−134559(JP,A) 特開 平11−130531(JP,A) 特開 平10−50549(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/49 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Katsuyuki Miura 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-10-36170 (JP, A) JP-A-8-59344 (JP, A) JP-A-63-134559 (JP, A) JP-A-11-130331 (JP, A) JP-A-10-50549 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/42-35/49 CA (STN) REGISTRY (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(化1)で表わされる誘電体磁器組成物。 【化1】 1. A dielectric ceramic composition represented by the following chemical formula (1) . Embedded image 【請求項2】 誘電体層と内部電極層とを交互に積層し
た積層体と、この積層体の前記内部電極層の露出した端
面に設けた外部電極とを備え、前記誘電体層は(化1)
で表される誘電体磁器組成物を用いて形成された積層セ
ラミックコンデンサ。
2. A laminate comprising alternately laminated dielectric layers and internal electrode layers, and an external electrode provided on an exposed end face of the internal electrode layer of the laminate, wherein the dielectric layer comprises 1)
A multilayer ceramic capacitor formed using the dielectric ceramic composition represented by
【請求項3】 内部電極層としてNiを主成分とする金
属を用いた請求項2に記載の積層セラミックコンデン
サ。
3. The multilayer ceramic capacitor according to claim 2, wherein a metal mainly composed of Ni is used for the internal electrode layer.
【請求項4】 誘電体材料を用いて形成したグリーンシ
ートと、Niを主成分とする内部電極ペーストを交互に
積層して積層体を形成する第1の工程と、次にこの積層
体を前記グリーンシートが焼結し始める温度より低温で
加熱処理する第2の工程と、次いでこの積層体をNiの
融点より低温の還元雰囲気中で焼成する第3の工程とを
有する積層セラミックコンデンサの製造方法において、
前記誘電体材料は(化1)で表される組成となるように
した積層セラミックコンデンサの製造方法。
4. A first step of alternately laminating a green sheet formed by using a dielectric material and an internal electrode paste containing Ni as a main component to form a laminate, and then, laminating the laminate. A method for manufacturing a multilayer ceramic capacitor, comprising: a second step of performing a heat treatment at a temperature lower than a temperature at which a green sheet starts to be sintered; and a third step of firing the laminate in a reducing atmosphere at a temperature lower than the melting point of Ni. At
A method for manufacturing a multilayer ceramic capacitor, wherein the dielectric material has a composition represented by (Chemical Formula 1).
JP11046243A 1998-09-28 1999-02-24 Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same Expired - Lifetime JP3050225B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11046243A JP3050225B1 (en) 1998-09-28 1999-02-24 Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27339798 1998-09-28
JP10-273397 1998-09-28
JP11046243A JP3050225B1 (en) 1998-09-28 1999-02-24 Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP3050225B1 true JP3050225B1 (en) 2000-06-12
JP2000169227A JP2000169227A (en) 2000-06-20

Family

ID=26386355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11046243A Expired - Lifetime JP3050225B1 (en) 1998-09-28 1999-02-24 Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3050225B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041060A (en) * 2023-02-08 2023-05-02 福建火炬电子科技股份有限公司 Base metal pulse energy storage ceramic dielectric material, ceramic capacitor and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141241A (en) * 2000-11-06 2002-05-17 Murata Mfg Co Ltd Ceramic capacitor and its manufacturing method
JP4446324B2 (en) * 2001-09-27 2010-04-07 株式会社村田製作所 Dielectric porcelain composition and capacitor using the same
KR101973414B1 (en) * 2014-02-04 2019-04-29 삼성전기주식회사 Dielectric composition for low temperature sintering, multilayer ceramic electronic device including the same and method for fabricating the multilayer ceramic electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041060A (en) * 2023-02-08 2023-05-02 福建火炬电子科技股份有限公司 Base metal pulse energy storage ceramic dielectric material, ceramic capacitor and preparation method thereof
CN116041060B (en) * 2023-02-08 2023-09-22 福建火炬电子科技股份有限公司 Base metal pulse energy storage ceramic dielectric material, ceramic capacitor and preparation method thereof

Also Published As

Publication number Publication date
JP2000169227A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
EP1327616B9 (en) Dielectric ceramic composition and electronic device
JP4809152B2 (en) Multilayer ceramic capacitor
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
EP1736456B1 (en) Laminated ceramic capacitor
JP4635928B2 (en) Multilayer electronic component and manufacturing method thereof
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
JP2003277139A (en) Dielectric ceramic composition and electronic parts
KR100859058B1 (en) Laminated electronic component and method for manufacturing the same
JP2008247657A (en) Dielectric porcelain composition and electronic component
JP4661203B2 (en) Ceramic electronic component and manufacturing method thereof
JP2007261913A (en) Dielectric porcelain composition, electronic part and multilayer ceramic capacitor
JP3019854B1 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JP3050225B1 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JP4729847B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitors
JP5488118B2 (en) Dielectric porcelain composition and electronic component
JP3139444B2 (en) Method for producing dielectric ceramic composition and method for producing multilayer ceramic capacitor
JP3602361B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4770210B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP4487476B2 (en) Dielectric porcelain composition and electronic component
JP5167591B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2870511B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JP2870512B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JP2008109019A (en) Multilayer ceramic capacitor
JP2006179772A (en) Laminated ceramic capacitor and its manufacturing method
JP2005272263A (en) Dielectric ceramic composition, multilayer ceramic capacitor and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 14

EXPY Cancellation because of completion of term