JP3050095B2 - Control method of oxygen concentration in crystal - Google Patents

Control method of oxygen concentration in crystal

Info

Publication number
JP3050095B2
JP3050095B2 JP7214939A JP21493995A JP3050095B2 JP 3050095 B2 JP3050095 B2 JP 3050095B2 JP 7214939 A JP7214939 A JP 7214939A JP 21493995 A JP21493995 A JP 21493995A JP 3050095 B2 JP3050095 B2 JP 3050095B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
crystal
pulling
crucible
pulled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7214939A
Other languages
Japanese (ja)
Other versions
JPH0959084A (en
Inventor
正裕 小川
義之 柏原
勝則 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7214939A priority Critical patent/JP3050095B2/en
Publication of JPH0959084A publication Critical patent/JPH0959084A/en
Application granted granted Critical
Publication of JP3050095B2 publication Critical patent/JP3050095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は結晶中酸素濃度の制
御方法に関し、より詳細には、チョクラルスキー法(以
下、CZ法と記す)等によりSi(シリコン)溶融液か
らSi単結晶を引き上げる際に適用される結晶中酸素濃
度の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the oxygen concentration in a crystal, and more particularly, to pulling a Si single crystal from a Si (silicon) melt by the Czochralski method (hereinafter referred to as CZ method) or the like. The present invention relates to a method for controlling the oxygen concentration in a crystal, which is applied at the time.

【0002】[0002]

【従来の技術】半導体の材料となる単結晶を引き上げる
には種々の方法があるが、その一つにCZ法がある。図
1はこのCZ法により単結晶を引き上げる際に用いられ
る結晶成長装置を模式的に示した断面図であり、図中1
2は容器を示している。容器12によりチャンバ11が
形成されており、チャンバ11の上部は円柱状の上部チ
ャンバ11aとなっている。チャンバ11の略中央部に
は略有底円筒形状の石英ルツボ13aが配設され、石英
ルツボ13a内にはSiの溶融液15が充填されるよう
になっている。また石英ルツボ13aの外周には略有底
円筒形状の黒鉛ルツボ13bが配設されており、これら
石英ルツボ13aと黒鉛ルツボ13bとによりルツボ1
3が構成されている。またルツボ13下部には回転軸1
8を介して駆動装置(図示せず)が接続されており、こ
の駆動装置を駆動させるとルツボ13が所定速度で回転
・上下動するようになっている。またルツボ13の外側
にはこれと同心円状にヒータ14が配設されており、ヒ
ータ14により石英ルツボ13a内に装入したSi原料
が溶融して溶融液15が形成されるようになっている。
またルツボ13の中心軸上には引上軸16が吊設され、
引上軸16の先端には種結晶16aが取り付けられてお
り、引上軸16は上方に引き上げられるようになってい
る。また容器12下部は開口部19を介して真空ポンプ
(図示せず)に接続されており、この真空ポンプを駆動
させてチャンバ11内の圧力(以下、炉内圧と記す)を
所定圧力に設定するようになっている。また上部チャン
バ11aにはガス供給装置(図示せず)が接続されてお
り、このガス供給装置を駆動させてAr等の不活性ガス
を所定流量、上部チャンバ11aを通ってチャンバ11
内に供給するようになっている。これらチャンバ11、
ルツボ13、ヒータ14、引上軸16、駆動装置、真空
ポンプ、ガス供給装置等を含んで結晶成長装置20が構
成されている。
2. Description of the Related Art There are various methods for pulling a single crystal serving as a semiconductor material. One of them is a CZ method. FIG. 1 is a cross-sectional view schematically showing a crystal growth apparatus used when pulling a single crystal by the CZ method.
Reference numeral 2 denotes a container. A chamber 11 is formed by the container 12, and an upper portion of the chamber 11 is a column-shaped upper chamber 11a. A substantially cylindrical quartz crucible 13a with a bottom is disposed substantially in the center of the chamber 11, and the quartz crucible 13a is filled with a molten liquid 15 of Si. A substantially cylindrical graphite crucible 13b with a bottom is provided on the outer periphery of the quartz crucible 13a, and the crucible 13a and the graphite crucible 13b serve as a crucible.
3 are configured. The rotating shaft 1 is located below the crucible 13.
A driving device (not shown) is connected via a cable 8, and when the driving device is driven, the crucible 13 rotates and moves up and down at a predetermined speed. A heater 14 is arranged concentrically with the outside of the crucible 13, and the Si material charged into the quartz crucible 13 a is melted by the heater 14 to form a molten liquid 15. .
A pulling shaft 16 is hung on the central axis of the crucible 13,
A seed crystal 16a is attached to the tip of the pulling shaft 16, so that the pulling shaft 16 can be pulled upward. The lower portion of the container 12 is connected to a vacuum pump (not shown) through an opening 19, and the vacuum pump is driven to set the pressure in the chamber 11 (hereinafter, referred to as furnace pressure) to a predetermined pressure. It has become. A gas supply device (not shown) is connected to the upper chamber 11a. The gas supply device is driven to flow an inert gas such as Ar at a predetermined flow rate through the upper chamber 11a.
It is designed to be supplied inside. These chambers 11,
A crystal growth apparatus 20 includes a crucible 13, a heater 14, a pulling shaft 16, a driving device, a vacuum pump, a gas supply device, and the like.

【0003】このように構成された結晶成長装置20を
用い、CZ法によりSi単結晶を引き上げる場合、まず
石英ルツボ13a内にSi原料を装入し、真空ポンプを
駆動させてチャンバ11内を所定圧力に設定すると共
に、ガス供給装置を駆動させてチャンバ11内に所定流
量の不活性ガスを導入する。次にヒータ14に電流を印
加してルツボ13を加熱し、溶融液15を形成する。次
に引上軸16先端の種結晶16aを溶融液15表面に接
触させた後、ルツボ13を所定速度で回転させながら引
上軸16を引き上げ、溶融液15を凝固させてSi単結
晶17を成長させる。
When pulling a Si single crystal by the CZ method using the crystal growth apparatus 20 configured as described above, first, an Si raw material is charged into a quartz crucible 13a, and a vacuum pump is driven to evacuate the chamber 11 to a predetermined temperature. At the same time as setting the pressure, the gas supply device is driven to introduce a predetermined flow rate of the inert gas into the chamber 11. Next, a current is applied to the heater 14 to heat the crucible 13 to form a melt 15. Next, after the seed crystal 16 a at the tip of the pulling shaft 16 is brought into contact with the surface of the melt 15, the pulling shaft 16 is pulled up while rotating the crucible 13 at a predetermined speed, and the melt 15 is solidified to form the Si single crystal 17. Let it grow.

【0004】ところで、引き上げられたSi単結晶17
に関する品質評価項目の一つとして結晶中酸素濃度が挙
げられる。結晶中酸素はSiウエハ内の不純物を捕獲す
る作用(イントリンシックゲッタリング作用)を有し、
Si単結晶17内に所定濃度の酸素が固溶していると半
導体素子の性能を向上させ得るため、結晶中酸素濃度を
所定の範囲内に納めることは重要な管理項目となってい
る。しかし従来のCZ法においては、Si単結晶17が
引き上げられて溶融液15面の高さが低くなるにつれ、
石英ルツボ13aから溶融液15への酸素溶け込み量が
減少して結晶中酸素濃度が減少し易く、その結果、Si
単結晶17の引き上げ方向における酸素濃度が不均一に
なり易いという問題があった。この問題に対処するた
め、引き上げの際にルツボ13の回転速度、炉内圧、不
活性ガス流量の操作量を調整することにより結晶中酸素
濃度を制御する方法が開発されている(特公平2−44
799号公報、特開平1−160893号公報、特開平
3−159986号公報)。また結晶中酸素濃度と前記
操作量との関係を定式化した後、パラメータフィッティ
ングを行って前記各操作量を設定し、この設定した操作
量に基づいて結晶中酸素濃度を制御する方法が開示され
ている(特開平6−172081号公報)。
Incidentally, the pulled Si single crystal 17
One of the quality evaluation items related to the above is the oxygen concentration in the crystal. Oxygen in the crystal has a function of capturing impurities in the Si wafer (intrinsic gettering function),
Since the performance of a semiconductor element can be improved when a predetermined concentration of oxygen is dissolved in the Si single crystal 17, it is an important management item to keep the oxygen concentration in the crystal within a predetermined range. However, in the conventional CZ method, as the Si single crystal 17 is pulled up and the height of the melt 15 is reduced,
The amount of oxygen dissolved from the quartz crucible 13a into the melt 15 decreases, and the oxygen concentration in the crystal tends to decrease.
There is a problem that the oxygen concentration in the pulling direction of the single crystal 17 tends to be non-uniform. To cope with this problem, a method has been developed to control the oxygen concentration in the crystal by adjusting the rotational speed of the crucible 13, the furnace pressure, and the manipulated variable of the inert gas flow rate during the lifting (Japanese Patent Publication No. Hei 2 (1994)). 44
799, JP-A-1-160893, and JP-A-3-15986). Further, after formulating the relationship between the oxygen concentration in the crystal and the manipulated variable, a parameter fitting is performed to set the manipulated variables, and a method of controlling the oxygen concentration in the crystal based on the set manipulated variable is disclosed. (JP-A-6-172081).

【0005】[0005]

【発明が解決しようとする課題】上記した結晶中酸素濃
度の制御方法においては、いずれも結晶中酸素濃度に及
ぼす部品劣化等の経時変化に対して考慮が払われておら
ず、何本も引き上げるうちに結晶中酸素濃度の値が目標
からずれてくるという問題点があった。このように実際
の引き上げでは経時的な変化による外乱が入るため、引
き上げ後の酸素濃度の測定値をフィードバックして操作
量を設定することが必要となる。しかしフィードバック
をするに当たり、外乱にはさまざまな要因が混じってい
るので、単純な方法では操作量を正確に設定することが
難しいという課題があった。一方、これを人間が行なう
と、種々のノウハウを必要とし、検討に時間が掛かり易
いという課題があった。
In any of the above-described methods for controlling the oxygen concentration in the crystal, no consideration is given to changes over time such as deterioration of the components that affect the oxygen concentration in the crystal, and the number of wires is increased. There was a problem in that the value of the oxygen concentration in the crystal deviated from the target. As described above, since disturbance due to a change over time occurs in the actual lifting, it is necessary to set a manipulated variable by feeding back the measured value of the oxygen concentration after the lifting. However, in providing feedback, there is a problem that it is difficult to accurately set the operation amount by a simple method because various factors are mixed in the disturbance. On the other hand, if this is done by a human, there is a problem that various know-hows are required, and it takes time to study.

【0006】本発明はこのような課題に鑑みなされたも
のであり、各種の外乱要因を層別し、この層別した外乱
要因毎に操作量を正確、かつ自動的に補正・設定するこ
とができ、繰り返し引き上げることによる経時的な変化
による結晶中酸素濃度のずれの発生を抑制すると共に、
結晶中酸素濃度を規格範囲内に容易、かつ確実に収める
ことができ、この結果、引き上げられた単結晶の品質及
び歩留りを向上させることができる結晶中酸素濃度の制
御方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is possible to stratify various disturbance factors, and to accurately and automatically correct and set an operation amount for each stratified disturbance factor. It is possible to suppress the occurrence of the shift of the oxygen concentration in the crystal due to the change over time due to repeated pulling,
An object of the present invention is to provide a method for controlling the oxygen concentration in a crystal, which can easily and surely keep the oxygen concentration in the crystal within a specified range, and as a result, can improve the quality and yield of the pulled single crystal. And

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る結晶中酸素濃度の制御方法は、石英ルツ
ボ内の溶融液より結晶を引き上げる際の結晶中酸素濃度
の制御方法において、あらかじめ酸素濃度とルツボ回転
数等の制御因子に関する関係式とを求めておき、前記制
御因子の操作量を決定し、該操作量に基づいて結晶を引
き上げ、該引き上げた結晶中の酸素濃度を測定した後、
該測定した酸素濃度と前記関係式による酸素濃度推定値
との差に基づいて部品劣化要因、品種変更要因、これら
以外の要因ごとに前記関係式を補正し、この補正した関
係式に基づいて酸素濃度が所定の目標値となるように前
記ルツボ回転数等の制御因子の操作量を決定し、この操
作量に基づいて次の結晶を引き上げることを特徴として
いる。
According to the present invention, there is provided a method for controlling the oxygen concentration in a crystal according to the present invention, comprising the steps of: A relational expression relating to a control factor such as an oxygen concentration and a crucible rotation speed is obtained in advance, an operation amount of the control factor is determined, a crystal is pulled up based on the operation amount, and an oxygen concentration in the pulled crystal is measured. After doing
Based on the difference between the measured oxygen concentration and the oxygen concentration estimated value according to the above-mentioned relational expression, the above-mentioned relational expression is corrected for each component deterioration factor, type change factor, and other factors. The operation amount of the control factor such as the crucible rotation number is determined so that the concentration becomes a predetermined target value, and the next crystal is pulled up based on the operation amount.

【0008】以下の説明に使用する記号は、下記の表1
に示したように定義することとする
The symbols used in the following description are shown in Table 1 below.
Defined as shown in

【0009】[0009]

【表1の1】 [Table 1-1]

【0010】[0010]

【表1の2】 [Table 1-2]

【0011】[0011]

【表1の3】 [Table 1, 3]

【0012】酸素濃度推定値[Oi0 は、引き上げ率
L、ルツボ回転数R、炉内圧P、不活性ガス流量Qの関
数である下記の数1式により求められることとなる。
The oxygen concentration estimated value [O i ] 0 is obtained by the following equation 1 which is a function of the pulling rate L, the crucible rotation speed R, the furnace pressure P, and the inert gas flow rate Q.

【0013】[0013]

【数1】 (Equation 1)

【0014】しかし、この結晶中酸素濃度はルツボ回転
数R等の制御因子以外に多くの外乱要因の影響を受けて
おり、酸素濃度推定値[Oi0 と引き上げられた酸素
濃度測定値[Oi ]との間に誤差が生じ易い。本発明者
等が調査を行ない、これら外乱要因によって生じる誤差
は、(1)チャンバ内に配設された部品iの劣化が外乱
要因となって発生する誤差と、(2)酸素濃度値の差異
(品種変更要因)により目標酸素濃度ごとに保有してい
る誤差にずれが生じ、このずれにより発生する誤差と、
(3)異なる結晶成長装置間の誤差等のように層別が不
可能な外乱要因も含めた前記(1)、(2)以外の未知
外乱要因により発生する誤差とに分類し得ることとな
る。
However, the oxygen concentration in the crystal is affected by many disturbance factors in addition to the control factors such as the crucible rotation speed R and the like, and the estimated oxygen concentration [O i ] 0 and the measured oxygen concentration [ O i ]. The present inventors have conducted investigations and found that errors caused by these disturbance factors include (1) an error caused by deterioration of the component i disposed in the chamber as a disturbance factor, and (2) a difference between oxygen concentration values. (Variation change factor) causes an error in the error held for each target oxygen concentration.
(3) It can be classified into errors caused by unknown disturbance factors other than the above (1) and (2), including disturbance factors that cannot be classified, such as errors between different crystal growth apparatuses. .

【0015】すると、次回(n+1)結晶引き上げ時の
酸素濃度予想値[Oi ]’は、酸素濃度推定値[Oi
0 を前記部品iの劣化要因(1)に対する補正量δ1
前記品種変更要因(2)に対する補正量δ2 、及び前記
未知要因(3)に対する補正量δ3 により補正した下記
の数2式により求められることとなる。
Then, the expected oxygen concentration [O i ] 'at the time of the next (n + 1) crystal pull-up is the estimated oxygen concentration [O i ].
0 is the correction amount δ 1 for the deterioration factor (1) of the component i,
And thus obtained by the number 2 the following formula corrected by the correction amount [delta] 3 relative to the correction amount [delta] 2, and the unknown factor (3) with respect to the varieties change factor (2).

【0016】[0016]

【数2】 (Equation 2)

【0017】なおここで、補正量δ2 は品種ごとに固有
の値であり、また数1の関係を有する同一の品種におい
て、補正量δ3 は共通する値を使用することとする。
Here, the correction amount δ 2 is a value unique to each product type, and a common value is used for the correction amount δ 3 in the same product type having the relationship of the equation (1).

【0018】また前記部品の劣化要因(1)に対する補
正量δ1 は下記の数3式により求められることとなる。
The correction amount δ 1 for the factor (1) of deterioration of the component is obtained by the following equation (3).

【0019】[0019]

【数3】 (Equation 3)

【0020】なおここで、部品iの劣化補正係数αi
部品iの劣化外乱係数di は各炉固有の値を使用するこ
ととする。
Here, the deterioration correction coefficient α i of the component i ,
Deterioration disturbance coefficient d i of the component i is decided to use the furnace-specific values.

【0021】上記した結晶中酸素濃度の制御方法によれ
ば、多くの外乱要因を部品劣化要因と品種変更要因とこ
れら以外の要因とに層別し、これら要因ごとに補正量を
見直している。このため、前記関係式が常時正確に補正
され得ると共に、この補正した関係式に基づき制御因子
の操作量が自動的に設定され得ることとなる。この結
果、引き上げられた単結晶全体の結晶中酸素濃度を規格
範囲内に確実、かつ容易に収め得ると共に、繰り返し引
き上げることによる経時的な変化による結晶中酸素濃度
のずれの発生を抑制し得ることとなり、引き上げられた
単結晶の品質及び歩留りを向上させ得ることとなる。
According to the above-described method of controlling the oxygen concentration in the crystal, many disturbance factors are classified into component deterioration factors, product change factors, and other factors, and the correction amount is reviewed for each of these factors. Therefore, the relational expression can always be accurately corrected, and the operation amount of the control factor can be automatically set based on the corrected relational expression. As a result, it is possible to reliably and easily keep the oxygen concentration in the crystal of the whole single crystal within the specified range, and to suppress the occurrence of a shift in the oxygen concentration in the crystal due to the temporal change due to repeated pulling. Thus, the quality and yield of the pulled single crystal can be improved.

【0022】[0022]

【発明の実施の形態】以下、本発明に係る結晶中酸素濃
度の制御方法の実施の形態を図面に基づいて説明する。
なお、従来例と同一機能を有する構成部品には同一の符
号を付すこととする。図1は実施の形態に係る結晶中酸
素濃度の制御方法を実施しながら、単結晶を引き上げる
際に用いられる結晶成長装置を模式的に示した断面図で
ある。ルツボ13の駆動装置、開口部19に接続された
真空ポンプ、ガス供給装置には、図2に示したアダプテ
ィブフィードバック部(以下、単にフィードバック部と
記す)111、操作量設定部112、記憶部113等を
含んで構成された制御手段110が接続されている。記
憶部113には上記数3式及び下記の数4式〜数14式
や、前記数1、2式の代わりとなる酸素濃度マップデー
タ等が記憶されている。なお、この酸素濃度マップデー
タには縦軸にルツボ回転速度、横軸に引き上げ率をとっ
たときの等酸素線データ、または図3に示した等酸素・
等炉内圧線データ、または等酸素・等炉内圧・等不活性
ガス流量線データ等が記録されている。またフィードバ
ック部111では、酸素濃度マップデータの酸素濃度推
定値[Oi]o(map)と引き上げた結晶中酸素濃度測定値
[Oi ]との誤差を計算した後、この誤差と数3式〜数
8式とに基づき、酸素濃度マップデータの補正量を計算
するようになっている。また操作量設定部112では、
数9式により部品iの劣化要因に対する補正量δ1 を計
算して次回引き上げるときの酸素濃度マップデータを求
めると共に、この酸素濃度マップデータと数10式〜数
14式とに基づき、次回引き上げるときのルツボ回転数
n+1(map)、炉内圧Pn+1(map)、不活性ガス流量Q
n+1(map)等の制御因子に関する操作量を計算するように
なっている。その他の構成は従来の結晶成長装置20と
同様であるので、ここではその構成の詳細な説明は省略
することとする。これら制御手段110等を含んで実施
の形態に係る結晶成長装置10が構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for controlling oxygen concentration in a crystal according to the present invention will be described below with reference to the drawings.
Note that components having the same functions as those of the conventional example are denoted by the same reference numerals. FIG. 1 is a cross-sectional view schematically showing a crystal growth apparatus used for pulling a single crystal while performing the method for controlling the oxygen concentration in a crystal according to the embodiment. The driving device for the crucible 13, the vacuum pump connected to the opening 19, and the gas supply device include an adaptive feedback unit (hereinafter, simply referred to as a feedback unit) 111, an operation amount setting unit 112, and a storage unit 113 shown in FIG. Is connected to the control means 110 including the above. The storage unit 113 stores the above equation (3), the following equations (4) to (14), and oxygen concentration map data that substitutes for the equations (1) and (2). The oxygen concentration map data includes iso-oxygen line data when the crucible rotation speed is plotted on the vertical axis and the pulling rate is plotted on the horizontal axis, or the iso-oxygen data shown in FIG.
Iso-furnace pressure line data, iso-oxygen / iso-furnace internal pressure / iso-inert gas flow rate line data, etc. are recorded. The feedback unit 111 calculates an error between the oxygen concentration estimated value [O i ] o (map) of the oxygen concentration map data and the pulled oxygen concentration measurement value [O i ] in the crystal, and calculates the error and the equation (3). The correction amount of the oxygen concentration map data is calculated based on Expressions (8) to (8). In the operation amount setting unit 112,
The number 9 expression with determining the oxygen concentration map data when pulling next calculates the correction amount [delta] 1 to degradation factors of the component i, based on the oxygen concentration map data and the number 10 formula to several 14 formula, when pulled next Crucible rotation speed R n + 1 (map) , furnace pressure P n + 1 (map) , inert gas flow rate Q
An operation amount relating to a control factor such as n + 1 (map) is calculated. The other configuration is the same as that of the conventional crystal growth apparatus 20, and the detailed description of the configuration is omitted here. The crystal growth apparatus 10 according to the embodiment includes the control means 110 and the like.

【0023】以下に、このように構成された結晶成長装
置10を用い、結晶中酸素濃度の制御を行ないながらS
i単結晶を引き上げる場合について図2に基づき説明す
る。まずバッチ引き上げ前に、以下に示した方法と同様
の方法により設定したルツボ回転数Rn(map)、炉内圧P
n(map)、不活性ガス流量Qn(map)の操作量パターンに基
づいて結晶を引き上げ、この結晶の測定点mにおける酸
素濃度[Oi](Lm)をそれぞれ測定する。次にこの各
測定値[Oi](Lm )と各サンプルの引き上げ率Lm
を制御手段110にキー入力すると、フィードバック部
111においてルツボ回転数Rn(map)、炉内圧
n(map)、不活性ガス流量Qn(map)のときにおける酸素
濃度推定値[Oi]o(map)と酸素濃度測定値[Oi ]との
誤差が計算され(ステップ1)、次に前回(n−1)の
バッチから狙い(目標)酸素濃度に変更があった場合に
は、ステップ2において下記の数4式及び数5式により
品種変更要因(2)に対する補正量δ2 が計算される。
In the following, using the crystal growth apparatus 10 configured as described above, while controlling the oxygen concentration in the crystal,
The case where the i-single crystal is pulled will be described with reference to FIG. First, before raising the batch, the crucible rotation speed R n (map) and the furnace pressure P set in the same manner as described below are set.
The crystal is pulled up based on the manipulated variable pattern of n (map) and the inert gas flow rate Qn (map) , and the oxygen concentration [O i ] (L m ) at the measurement point m of the crystal is measured. Next, when the measured values [O i ] (L m ) and the pulling rate L m of each sample are input to the control means 110 by a key, the crucible rotation speed R n (map) and the furnace pressure P n ( map) , the error between the oxygen concentration estimation value [O i ] o (map) and the oxygen concentration measurement value [O i ] at the time of the inert gas flow rate Q n (map) is calculated (step 1). If there is a change in the target (target) oxygen concentration from the batch (n-1), the correction amount δ 2 for the type change factor (2) is calculated in step 2 by the following equations (4) and (5). You.

【0024】[0024]

【数4】δ2(L)=δ2b’( L) +Ge2( L) ×(e
2(L) −δ2b’( L) )
Δ 2 (L) = δ 2b ′ (L) + Ge 2 (L) × (e
2 (L) -δ 2b '( L))

【0025】[0025]

【数5】 (Equation 5)

【0026】ただし、数5式における引き上げ率Lが酸
素濃度測定点と異なる場合、測定値のある引き上げ率か
ら内挿法または外挿法により求めるか、測定値を通る関
数系を与えてこの関数系に基づき求めたものを、該当す
る引き上げ率における酸素濃度測定値とする。
However, when the pulling rate L in the equation (5) is different from the oxygen concentration measuring point, this function is obtained by interpolation or extrapolation from the pulling rate at which the measured value is present, or by giving a function system passing the measured value. The value obtained based on the system is used as the measured oxygen concentration at the corresponding pulling rate.

【0027】次に目標酸素濃度に変更がなく、かつ前回
のバッチから部品iを交換している場合、ステップ3に
おいて下記の数6式により部品iの劣化補正係数αi
見直し計算が行われる。
Next, if there is no change in the target oxygen concentration and the part i has been replaced from the previous batch, a review calculation of the deterioration correction coefficient α i of the part i is performed in step 3 by the following equation (6). .

【0028】[0028]

【数6】 (Equation 6)

【0029】ただし、数6式における引き上げ率Lが酸
素濃度測定点と異なる場合、測定値のある引き上げ率か
ら内挿法または外挿法により求めるか、測定値を通る関
数系を与えてこの関数系に基づき求めたものを、該当す
る引き上げ率における酸素濃度測定値とする。
However, if the pulling rate L in equation (6) is different from the oxygen concentration measurement point, this function is obtained from the pulling rate with the measured value by interpolation or extrapolation, or by giving a function system passing the measured value. The value obtained based on the system is used as the measured oxygen concentration at the corresponding pulling rate.

【0030】次に、目標酸素濃度の変更や部品iの交換
がなかった場合、ステップ4において数7式及び数8式
により未知要因(3)に対する補正量δ3 が計算され
る。
Next, if the target oxygen concentration has not been changed or the part i has not been replaced, the correction amount δ 3 for the unknown factor (3) is calculated in step 4 using equations (7) and (8).

【0031】[0031]

【数7】δ3(n)(L)=δ3(n-1)( L) +Ge3( L) ×
(e3(n)(L)−δ3(n-1)(L))
## EQU7 ## δ 3 (n) (L) = δ 3 (n-1) (L) + Ge 3 (L) ×
(E 3 (n) (L) −δ 3 (n-1) (L))

【0032】[0032]

【数8】 (Equation 8)

【0033】ただし、数8式における引き上げ率Lが酸
素濃度測定点と異なる場合、測定値のある引き上げ率か
ら内挿法または外挿法により求めるか、測定値を通る関
数系を与えてこの関数系に基づき求めたものを、該当す
る引き上げ率における酸素濃度測定値とする。
However, when the pulling rate L in the equation (8) is different from the oxygen concentration measuring point, this function is obtained by interpolation or extrapolation from the pulling rate at which the measured value is present, or by providing a function system passing the measured value. The value obtained based on the system is used as the measured oxygen concentration at the corresponding pulling rate.

【0034】上記のように補正量の計算を行なうと、フ
ィードバック部111の動作が終了する。
When the correction amount is calculated as described above, the operation of the feedback unit 111 ends.

【0035】次に操作量設定部112において、次回バ
ッチの引き上げ前に部品の劣化要因(1)に対する補正
量δ1 が数3式により計算された後、下記の数9式によ
り次回(n+1)の予想酸素濃度マップが決定される
(ステップ5)。
[0035] Next the operation amount setting section 112, after the correction amount [delta] 1 to degradation factors of the parts before pulling the next batch (1) is calculated by the number 3 expression, next the number 9 the following formula (n + 1) Is determined (step 5).

【0036】[0036]

【数9】 (Equation 9)

【0037】次にステップ6において、下記の数10式
により次回(n+1)のルツボ回転数R(n+1)(L)が計
算され、操作量が決定される。
Next, in step 6, the next (n + 1) crucible rotation speed R (n + 1) (L) is calculated by the following equation (10), and the manipulated variable is determined.

【0038】[0038]

【数10】 R(n+1)(L)=Rb(L)+ΔR(n+1)(L) ただし、ΔR(n+1)(L)=R(map)(L)−Rb(L) なお、R(n+1) 、ΔR(n+1) 及び引き上げ率方向におけ
るR(n+1) の変化量∂R(n+1)/∂Lには、それぞれ上下
限値をあらかじめ設定しておき、これら上下限値がある
ためにルツボ回転数で補償しきれない場合は次のステッ
プ7の炉内圧により補償する。
R (n + 1) (L) = R b (L) + ΔR (n + 1) (L) where ΔR (n + 1) (L) = R (map) (L) −R b (L) It should be noted that R (n + 1) , ΔR (n + 1) and the amount of change RR (n + 1) / ∂L of R (n + 1) in the pulling rate direction have upper and lower limits, respectively. If these values are set in advance and cannot be compensated for by the crucible rotation speed because of these upper and lower limits, compensation is made by the furnace pressure in the next step 7.

【0039】次にステップ7において、次回(n+1)
の炉内圧P(n+1)(L)が計算され、この操作量が決定さ
れる。なお炉内圧の決定には酸素濃度マップによる方法
と影響係数による方法の2種類があり、酸素濃度マップ
による場合は下記の数11式を使用する。
Next, in step 7, the next (n + 1)
The furnace pressure P (n + 1) (L ) is calculated, the operation amount is determined. There are two methods for determining the furnace pressure, a method using an oxygen concentration map and a method using an influence coefficient. In the case of using an oxygen concentration map, the following equation 11 is used.

【0040】[0040]

【数11】 P(n+1)(L)=Pb(L)+ΔP(n+1)(L) ただし、ΔP(n+1)(L)=P(map)(L)−Pb(L) 一方、影響係数により決定する場合は下記の数12式を
使用する。
P (n + 1) (L) = P b (L) + ΔP (n + 1) (L) where ΔP (n + 1) (L) = P (map) (L) −P b (L) On the other hand, when it is determined by the influence coefficient, the following equation 12 is used.

【0041】[0041]

【数12】 P(n+1)(L)=Pb(L)+GP(L)×ΔP(n+1)(L) ただし、ΔP(n+1)(L)=∂P( L)/∂[ 0i]×
([Oi]ref(L)−[0i]R(L)) なお、P(n+1) 、ΔP(n+1) 及び引き上げ率方向におけ
るP(n+1) の変化量∂P(n+1)/∂Lには、それぞれ上下
限値をあらかじめ設定しておき、これら上下限値がある
ために炉内圧で補償しきれない場合は次のステップ8の
不活性ガス流量により補償する。
P (n + 1) (L) = P b (L) + GP (L) × ΔP (n + 1) (L) where ΔP (n + 1) (L) = ∂P (L ) / ∂ [0i] ×
([O i ] ref (L) − [0i] R (L)) The amount of change ∂P ( P (n + 1) , ΔP (n + 1) and P (n + 1) in the pulling rate direction ) In (n + 1) / ∂L, upper and lower limits are set in advance, respectively. If these upper and lower limits exist and cannot be compensated by the furnace internal pressure, compensation is performed by the inert gas flow rate in the next step 8. .

【0042】次にステップ8において、次回(n+1)
の不活性ガス流量Q(n+1)(L)が計算され、この操作量
が決定される。なお不活性ガス流量の決定には酸素マッ
プによる方法と影響係数による方法の2種類があり、酸
素濃度マップによる場合は下記の数13式を使用する。
Next, in step 8, the next (n + 1)
Inert gas flow rate Q (n + 1) (L ) is calculated, this manipulated variable is determined. Note that there are two types of determination of the flow rate of the inert gas, a method using an oxygen map and a method using an influence coefficient. In the case of using an oxygen concentration map, the following equation (13) is used.

【0043】[0043]

【数13】 Q(n+1)(L)=Q( L)+ΔQ(n+1)(L) ただし、ΔQ(n+1)(L)=Q(map)(L)−Q(L) 一方、影響係数により決定する場合は下記の数14式を
使用する。
(13) Q (n + 1) (L) = Q (L) + ΔQ (n + 1) (L) where ΔQ (n + 1) (L) = Q (map) (L) −Q (L On the other hand, when it is determined by the influence coefficient, the following Expression 14 is used.

【0044】[0044]

【数14】 Q(n+1)(L)=Q( L)+GQ(L)×ΔQ(n+1)(L) ただし、ΔQ(n+1)(L)=∂Q( L)/∂[ 0i]×
([Oi]ref(L)−[0i]PR(L)) 次にこれらの操作量に基づいて前記駆動装置、真空ポン
プ、ガス供給装置を駆動させると共に、ルツボ13内の
溶融液15表面に引上軸16先端の種結晶16aを接触
させて引上軸16を引き上げ、Si単結晶17を成長さ
せつつ引き上げる。
Equation 14] Q (n + 1) (L ) = Q (L) + G Q (L) × ΔQ (n + 1) (L) However, ΔQ (n + 1) ( L) = ∂Q (L) / ∂ [0i] ×
([O i ] ref (L) − [0i] PR (L)) Next, based on these manipulated variables, the driving device, the vacuum pump, and the gas supply device are driven, and the surface of the melt 15 in the crucible 13 is moved. Then, the seed crystal 16a at the tip of the pulling shaft 16 is brought into contact with the pulling shaft 16, and the pulling shaft 16 is pulled up.

【0045】上記説明から明らかなように、実施の形態
に係る結晶中酸素濃度の制御方法では、多くの外乱要因
を部品劣化要因と品種変更要因とこれら以外の要因とに
層別し、これら要因ごとに補正量δ1 、δ2 、δ3 を見
直しているため、酸素濃度マップデータが常時正確に補
正されると共に、この補正した酸素濃度マップデータに
基づきルツボ回転数R、炉内圧P、不活性ガス流量Qの
操作量が自動的に設定される。この結果、引き上げられ
た単結晶17全体の結晶中酸素濃度を規格範囲内に確
実、かつ容易に収めると共に、繰り返し引き上げること
による経時的な変化による結晶中酸素濃度のずれの発生
を抑制することができ、引き上げられた単結晶17の品
質及び歩留りを向上させることができる。なお、上記実
施の形態に係る結晶中酸素濃度の制御方法では操作量に
ルツボ回転数R、炉内圧P及び不活性ガス流量Qを用い
た場合について説明したが、この中のいずれか一つ、あ
るいはいずれか二つを用いてもよいし、あるいはこれら
以外の操作量を加えて用いてもよい。
As is clear from the above description, in the method of controlling the oxygen concentration in the crystal according to the embodiment, many disturbance factors are classified into component deterioration factors, product change factors, and other factors. Since the correction amounts δ 1 , δ 2 , δ 3 are reviewed every time, the oxygen concentration map data is always accurately corrected, and based on the corrected oxygen concentration map data, the crucible rotation speed R, the furnace pressure P, the The manipulated variable of the active gas flow rate Q is automatically set. As a result, it is possible to reliably and easily bring the oxygen concentration in the crystal of the whole single crystal 17 within the specified range, and to suppress the occurrence of a shift in the oxygen concentration in the crystal due to the change over time due to repeated pulling. As a result, the quality and yield of the pulled single crystal 17 can be improved. In the method for controlling the oxygen concentration in the crystal according to the above-described embodiment, the case where the crucible rotation speed R, the furnace pressure P, and the inert gas flow rate Q are used as the manipulated variables has been described. Alternatively, any two may be used, or an operation amount other than these may be added and used.

【0046】[0046]

【実施例及び比較例】以下に、実施の形態に係る結晶中
酸素濃度の制御方法を実施してSi単結晶17を引き上
げた結果について説明する。酸素濃度マップとして、図
3に示したものを用いた。また実験に用いたパラメータ
を表2に示した。なお部品iの劣化要因(1)として
は、ヒータのみを考慮した。
EXAMPLES and COMPARATIVE EXAMPLES The results of pulling up a Si single crystal 17 by performing the method for controlling the oxygen concentration in a crystal according to the embodiment will be described below. The oxygen concentration map shown in FIG. 3 was used. Table 2 shows the parameters used in the experiment. Note that only the heater was considered as the factor (1) of deterioration of the component i.

【0047】[0047]

【表2】 [Table 2]

【0048】図4は酸素制御テストのシミュレーション
結果を示したプロット図であり、ルツボ回転数、炉内
圧、不活性ガス流量の操作量の推移と、引き上げ率20
%における各引き上げバッチごとの結晶中酸素濃度の推
移とを示している。この図から明らかなように、バッチ
間の結晶中酸素濃度のばらつきが少なく、いずれも酸素
濃度規格値に入っており、またヒータ部品を交換した場
合(バッチ数10回目)においても酸素濃度の変動は極
めて小さかった。また、品種変更を行った際や別の炉で
のシミュレーションにおいても、同様な精度が得られる
ことが確認された。
FIG. 4 is a plot diagram showing the simulation results of the oxygen control test. The graph shows the changes in the operation amounts of the crucible rotation speed, the furnace internal pressure, the inert gas flow rate, and the pulling rate 20%.
% Shows the transition of the oxygen concentration in the crystal for each pulling batch in%. As is clear from this figure, there is little variation in the oxygen concentration in the crystal between batches, all of which fall within the oxygen concentration specification values, and even when the heater parts are replaced (the number of batches is 10 times), the fluctuation of the oxygen concentration is also observed. Was extremely small. It was also confirmed that the same accuracy was obtained when the type was changed or in a simulation using another furnace.

【0049】[0049]

【発明の効果】以上詳述したように本発明に係る結晶中
酸素濃度の制御方法にあっては、多くの外乱要因を部品
劣化要因と品種変更要因とこれら以外の要因とに層別
し、これら要因ごとに補正量を見直している。このた
め、前記関係式が常時正確に補正されると共に、この補
正した関係式に基づき制御因子の操作量が自動的に設定
される。この結果、引き上げられた単結晶全体の結晶中
酸素濃度を規格範囲内に確実、かつ容易に収めると共
に、繰り返し引き上げることによる経時的な変化による
結晶中酸素濃度のずれの発生を抑制することができ、引
き上げられた単結晶の品質及び歩留りを向上させること
ができる。
As described above in detail, in the method for controlling the oxygen concentration in a crystal according to the present invention, many disturbance factors are classified into component deterioration factors, product change factors, and other factors. The correction amount is reviewed for each of these factors. Therefore, the relational expression is always accurately corrected, and the manipulated variable of the control factor is automatically set based on the corrected relational expression. As a result, it is possible to reliably and easily keep the oxygen concentration in the crystal of the entire single crystal within the specified range, and to suppress the occurrence of a shift in the oxygen concentration in the crystal due to a temporal change due to repeated pulling. In addition, the quality and yield of the pulled single crystal can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のCZ法及び本発明の実施の形態に係る結
晶中酸素濃度の制御方法を実施しながら、単結晶を引き
上げる際に用いられる結晶成長装置を模式的に示した断
面図である。
FIG. 1 is a cross-sectional view schematically showing a crystal growth apparatus used for pulling a single crystal while performing a conventional CZ method and a method for controlling oxygen concentration in a crystal according to an embodiment of the present invention. .

【図2】本発明に係る結晶中酸素濃度の制御方法の実施
の形態を概略的に示したフロー図である。
FIG. 2 is a flowchart schematically showing an embodiment of a method for controlling the oxygen concentration in a crystal according to the present invention.

【図3】実施例に係る結晶中酸素濃度の制御方法に用い
る酸素濃度マップの一例を概略的に示した曲線図であ
る。
FIG. 3 is a curve diagram schematically illustrating an example of an oxygen concentration map used for a method of controlling oxygen concentration in a crystal according to an example.

【図4】実施例に係る結晶中酸素濃度の制御方法により
シリコン単結晶を引き上げた結果を示したプロット図で
あり、ルツボ回転数、炉内圧、不活性ガス流量の操作量
の変化と、引き上げ率20%における各引き上げバッチ
ごとの結晶中酸素濃度の推移とを示している。
FIG. 4 is a plot showing a result of pulling a silicon single crystal by a method of controlling oxygen concentration in a crystal according to an example, showing changes in manipulated variables of a crucible rotation speed, a furnace internal pressure, and a flow rate of an inert gas; It shows changes in the oxygen concentration in the crystal for each pulling batch at a rate of 20%.

【符号の説明】[Explanation of symbols]

10 結晶成長装置 13 ルツボ 13a 石英ルツボ 15 溶融液 17 単結晶 DESCRIPTION OF SYMBOLS 10 Crystal growth apparatus 13 Crucible 13a Quartz crucible 15 Melt 17 Single crystal

フロントページの続き (56)参考文献 特開 平8−259380(JP,A) 特開 平5−262593(JP,A) 特開 平5−279174(JP,A) 特開 平6−172081(JP,A) 特開 平1−160893(JP,A) 特開 平3−159986(JP,A) 特開 平4−209792(JP,A) 特公 平2−44799(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 27/02 Continuation of the front page (56) References JP 8-259380 (JP, A) JP 5-262593 (JP, A) JP 5-279174 (JP, A) JP 6-172081 (JP) JP-A-1-160893 (JP, A) JP-A-3-15986 (JP, A) JP-A-4-209792 (JP, A) JP-B-2-44799 (JP, B2) (58) Field surveyed (Int. Cl. 7 , DB name) C30B 1/00-27/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石英ルツボ内の溶融液より結晶を引き上
げる際の結晶中酸素濃度の制御方法において、あらかじ
め酸素濃度とルツボ回転数等の制御因子に関する関係式
とを求めておき、前記制御因子の操作量を決定し、該操
作量に基づいて結晶を引き上げ、該引き上げた結晶中の
酸素濃度を測定した後、該測定した酸素濃度と前記関係
式による酸素濃度推定値との差に基づいて部品劣化要
因、品種変更要因、これら以外の要因ごとに前記関係式
を補正し、この補正した関係式に基づいて酸素濃度が所
定の目標値となるように前記ルツボ回転数等の制御因子
の操作量を決定し、この操作量に基づいて次の結晶を引
き上げることを特徴とする結晶中酸素濃度の制御方法。
In a method for controlling the oxygen concentration in a crystal when a crystal is pulled up from a melt in a quartz crucible, a relational expression relating to a control factor such as an oxygen concentration and a crucible rotation speed is obtained in advance. Determine the manipulated variable, pull up the crystal based on the manipulated variable, measure the oxygen concentration in the pulled crystal, and based on the difference between the measured oxygen concentration and the oxygen concentration estimated value by the above relational expression, The above relational expression is corrected for each of the deterioration factor, the type change factor, and other factors, and the manipulated variable of the control factor such as the crucible rotation speed is adjusted based on the corrected relational expression so that the oxygen concentration becomes a predetermined target value. Is determined, and the next crystal is pulled up based on the manipulated variable.
JP7214939A 1995-08-23 1995-08-23 Control method of oxygen concentration in crystal Expired - Fee Related JP3050095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7214939A JP3050095B2 (en) 1995-08-23 1995-08-23 Control method of oxygen concentration in crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7214939A JP3050095B2 (en) 1995-08-23 1995-08-23 Control method of oxygen concentration in crystal

Publications (2)

Publication Number Publication Date
JPH0959084A JPH0959084A (en) 1997-03-04
JP3050095B2 true JP3050095B2 (en) 2000-06-05

Family

ID=16664082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7214939A Expired - Fee Related JP3050095B2 (en) 1995-08-23 1995-08-23 Control method of oxygen concentration in crystal

Country Status (1)

Country Link
JP (1) JP3050095B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444178B2 (en) * 1998-02-13 2003-09-08 信越半導体株式会社 Single crystal manufacturing method
JP5077299B2 (en) * 2009-06-22 2012-11-21 信越半導体株式会社 Single crystal manufacturing apparatus and single crystal manufacturing method
JP6428574B2 (en) * 2015-11-13 2018-11-28 株式会社Sumco Method for producing silicon single crystal
CN117127252A (en) * 2022-05-20 2023-11-28 隆基绿能科技股份有限公司 Oxygen content control method, device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPH0959084A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
JP3528758B2 (en) Single crystal pulling device
US6776840B1 (en) Method and apparatus for controlling diameter of a silicon crystal in a locked seed lift growth process
EP2128310B1 (en) Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
JP5657219B2 (en) Single crystal silicon ingot growth method and growth apparatus
JP5333146B2 (en) Pulling method of silicon single crystal
KR101105588B1 (en) Method and Apparatus for manufacturing high quality silicon single crystal
JPH0438719B2 (en)
KR101623644B1 (en) Temperature control module of the ingot growth apparatus and a control method for it
TW446766B (en) Method and apparatus for accurately pulling a crystal
US20060283378A1 (en) Silicone single crystal production process
JP3050095B2 (en) Control method of oxygen concentration in crystal
JP2006225194A (en) Single crystal pulling method
US20030051658A1 (en) Method and apparatus for controlling the oxygen concentration of a silicon single crystal, and method and apparatus for providing guidance for controlling the oxygen concentration
US5725660A (en) Semiconductor single crystal growing apparatus
JP4039055B2 (en) Single crystal growth method and growth apparatus
JP2979462B2 (en) Single crystal pulling method
JPH1129391A (en) Control of oxygen concentration in crystal
JP3760816B2 (en) Method and apparatus for controlling oxygen concentration in silicon single crystal
JPH11322485A (en) Control of oxygen concentration in crystal
JP2001146496A (en) Single crystal pulling method
JP2579761B2 (en) Control method of single crystal diameter
KR102137336B1 (en) Apparatus of growing a single crystal ingot and method thereof
JP7318738B2 (en) Single crystal manufacturing system and single crystal manufacturing method
JP3733881B2 (en) Method and apparatus for controlling oxygen concentration in silicon single crystal
CN110273178A (en) The method of pulling up of monocrystalline silicon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees