JP3049241B1 - How to remove short circuit part of solar cell - Google Patents

How to remove short circuit part of solar cell

Info

Publication number
JP3049241B1
JP3049241B1 JP11079078A JP7907899A JP3049241B1 JP 3049241 B1 JP3049241 B1 JP 3049241B1 JP 11079078 A JP11079078 A JP 11079078A JP 7907899 A JP7907899 A JP 7907899A JP 3049241 B1 JP3049241 B1 JP 3049241B1
Authority
JP
Japan
Prior art keywords
voltage
solar cell
reverse
short
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11079078A
Other languages
Japanese (ja)
Other versions
JP2000277765A (en
Inventor
正隆 近藤
克彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP11079078A priority Critical patent/JP3049241B1/en
Priority to US09/329,526 priority patent/US6228662B1/en
Priority to AU36842/99A priority patent/AU763332B2/en
Priority to ES99305189T priority patent/ES2232083T3/en
Priority to DE69921607T priority patent/DE69921607T2/en
Priority to EP04077491A priority patent/EP1494294B1/en
Priority to AT04077491T priority patent/ATE426250T1/en
Priority to DE69940618T priority patent/DE69940618D1/en
Priority to ES04077491T priority patent/ES2324100T3/en
Priority to EP99305189A priority patent/EP1039553B1/en
Priority to AT99305189T priority patent/ATE281699T1/en
Application granted granted Critical
Publication of JP3049241B1 publication Critical patent/JP3049241B1/en
Publication of JP2000277765A publication Critical patent/JP2000277765A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【要約】 【課題】 電極間に印加した逆方向電圧によって、薄膜
太陽電池に生じた短絡部以外の部分を破壊することなく
確実に短絡部分を除去する方法を提供する。 【解決手段】 基板上に第1の電極層、半導体層、第2
の電極層が順次形成された1又は複数の太陽電池セルか
らなる太陽電池における該太陽電池セルの正負の両極に
対し、逆方向に耐電圧以下の逆方向電圧を印加し、短絡
部を除去する太陽電池の短絡部除去方法において、前記
逆方向印加電圧を図1(A)〜(D)に示す逆方向を主
とし一部順方向成分を含む値が時間とともに周期的に変
化する略交流(正弦波、正弦波の半波、ノコギリ波)の
電圧とした。
An object of the present invention is to provide a method for reliably removing a short-circuited portion without destroying a portion other than a short-circuited portion generated in a thin-film solar cell by a reverse voltage applied between electrodes. A first electrode layer, a semiconductor layer, and a second electrode layer are formed on a substrate.
In a solar cell including one or a plurality of solar cells in which the electrode layers are sequentially formed, a reverse voltage less than a withstand voltage is applied in a reverse direction to both positive and negative electrodes of the solar cell to remove a short circuit portion. In the method of removing a short-circuited portion of a solar cell, the reverse applied voltage is substantially alternating current whose value mainly includes the reverse direction shown in FIGS. 1A to 1D and partially includes a forward component changes periodically with time. (Sine wave, half sine wave, sawtooth wave).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非晶質半導体など
を用いた薄膜太陽電池に生じた短絡部を除去する方法に
関する。さらに詳しくは、本発明は、上記薄膜太陽電池
において、発電に寄与する光電変換半導体層を挾む基板
側電極と裏面側電極の電極間に短絡部が発生した場合
に、耐電圧以下の逆方向電圧を印加して、その際に発生
したジュール熱により短絡部を除去あるいは酸化して絶
縁する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing a short-circuit portion generated in a thin-film solar cell using an amorphous semiconductor or the like. More specifically, the present invention relates to the above-described thin-film solar cell, wherein a short-circuit portion occurs between the substrate-side electrode and the back-side electrode sandwiching the photoelectric conversion semiconductor layer contributing to power generation, and the reverse direction below the withstand voltage. The present invention relates to a method of applying a voltage and removing or oxidizing a short-circuited portion by Joule heat generated at that time to perform insulation.

【0002】[0002]

【従来の技術】図2に示すように、薄膜太陽電池10
は、絶縁性基板1の一つの面に所定のパターンで形成し
た、第1の電極2と、該第1の電極2の表面に設けた非
晶質半導体からなる光電変換半導体層3と、該光電変換
半導体層3の表面に設けた第2の電極4とから構成され
た太陽電池セル5a,5b,5cを、一つの基板1上に
複数個設け、太陽電池セル5aの第1の電極2aと隣接
する太陽電池セル5bの第2の電極4bを直列に接続し
て構成されている。
2. Description of the Related Art As shown in FIG.
A first electrode 2 formed on one surface of an insulating substrate 1 in a predetermined pattern, a photoelectric conversion semiconductor layer 3 made of an amorphous semiconductor provided on a surface of the first electrode 2, A plurality of solar cells 5a, 5b, and 5c each including a second electrode 4 provided on the surface of the photoelectric conversion semiconductor layer 3 are provided on one substrate 1, and the first electrode 2a of the solar cell 5a is provided. And the second electrode 4b of the adjacent solar cell 5b is connected in series.

【0003】このような太陽電池の絶縁性基板1とし
て、硝子基板や透明性樹脂基板などを用いた場合、第1
の電極2としてITO(Indium Tin Oxide:酸化錫を混
入した酸化インジウム)などの透明電極材料が、第2の
電極4として金属電極材料が用いられる。また、絶縁性
基板1として、透光性を有しない基板材料を用いた場
合、第1の電極2として金属電極材料が、第2の電極4
として透明電極材料が用いられる。
When a glass substrate or a transparent resin substrate is used as the insulating substrate 1 of such a solar cell, the first
A transparent electrode material such as ITO (Indium Tin Oxide: indium oxide mixed with tin oxide) is used as the electrode 2, and a metal electrode material is used as the second electrode 4. When a non-translucent substrate material is used as the insulating substrate 1, a metal electrode material is used as the first electrode 2 and the second electrode 4 is used.
Is used as a transparent electrode material.

【0004】半導体層3として、非晶質シリコン系半導
体の場合、非晶質シリコン、水素化非晶質シリコン、水
素化非晶質シリコンカーバイド、非晶質シリコンナイト
ライドなどのほか、シリコンと炭素、ゲルマニウム、錫
等の他の金属との合金からなる非晶質シリコンなどが用
いられ、さらに、これら非晶質または微結晶をpin
型、nip型、ni型、pn型、MIS型、ヘテロ接合
型、ホモ接合型、ショットキーバリアー型あるいはこれ
らを組み合わせた形などに構成した半導体材料が用いら
れる。また、半導体層は、シリコン系に限られず、Cd
S系、GaAs系、InP系などで構成しても良い。
When the semiconductor layer 3 is made of an amorphous silicon-based semiconductor, amorphous silicon, hydrogenated amorphous silicon, hydrogenated amorphous silicon carbide, amorphous silicon nitride, etc., as well as silicon and carbon , Germanium, tin, etc., and amorphous silicon made of an alloy with another metal are used.
Semiconductor materials configured in a type, nip type, ni type, pn type, MIS type, heterojunction type, homojunction type, Schottky barrier type or a combination thereof are used. Further, the semiconductor layer is not limited to the silicon type,
It may be composed of an S type, a GaAs type, an InP type, or the like.

【0005】このような太陽電池において、例えば、製
造時に光電変換半導体層3bに生起したピンホールに起
因して、太陽電池セル5bの第1の電極2bと第2の電
極4bの間に短絡を生じた場合には、短絡部を除去した
り短絡部を酸化させて絶縁することが行われている。
In such a solar cell, for example, a short circuit occurs between the first electrode 2b and the second electrode 4b of the solar cell 5b due to a pinhole generated in the photoelectric conversion semiconductor layer 3b at the time of manufacturing. When this occurs, the short circuit is removed or the short circuit is oxidized for insulation.

【0006】このような太陽電池セル5bの基板側に設
けた第1の電極2bと光電変換半導体層3bの裏面側に
設けた第2の電極4b間に生じた短絡部を除去する場合
には、電極4b,4cにプローブ電極6a,6bを接触
させ、発電に寄与する光電変換半導体層3bを挾む第1
の電極2bと第2の電極4b間に、図1(E)に示すよ
うな逆耐圧(逆バイアス電圧)以下(0V側)の直流逆
方向電圧あるいはパルス状の矩形波の逆方向電圧を印加
して、短絡部に電流を集中させ、発生したジュール熱に
よって短絡部の金属を酸化させて絶縁体としたり、金属
を飛散させて短絡部を除去している。
In order to remove a short-circuit portion generated between the first electrode 2b provided on the substrate side of the solar cell 5b and the second electrode 4b provided on the back side of the photoelectric conversion semiconductor layer 3b, , Electrodes 4b and 4c are brought into contact with the probe electrodes 6a and 6b to sandwich the photoelectric conversion semiconductor layer 3b contributing to power generation.
Between the second electrode 4b and the second electrode 4b, a DC reverse voltage of a reverse breakdown voltage (reverse bias voltage) or less (0 V side) or a reverse voltage of a pulse-like rectangular wave as shown in FIG. Then, the current is concentrated on the short-circuited portion, and the metal of the short-circuited portion is oxidized by the generated Joule heat to form an insulator, or the metal is scattered to remove the short-circuited portion.

【0007】しかしながら、太陽電池はダイオードと等
価であり、電極2と電極4間に逆方向の電圧を印加した
場合には、第1の電極2と光電変換半導体層3と第2の
電極4からなる太陽電池セル5は、コンデンサーとして
働き、両電極2,4間に電荷を蓄積する。
However, a solar cell is equivalent to a diode. When a reverse voltage is applied between the electrode 2 and the electrode 4, the first electrode 2, the photoelectric conversion semiconductor layer 3, and the second electrode 4 The solar cell 5 functions as a capacitor and accumulates electric charges between the two electrodes 2 and 4.

【0008】このように、電極2,4間に直流の電圧を
印加した場合は、印加した電圧を急激に除いた後でも、
電極2,4間に電荷が残留し、この電荷による電圧に起
因して、光電変換半導体層3の短絡部以外の弱い部分に
破壊を生起させるという問題がある。
As described above, when a DC voltage is applied between the electrodes 2 and 4, even after the applied voltage is suddenly removed,
Electric charges remain between the electrodes 2 and 4, and there is a problem that the voltage caused by the electric charges causes destruction to occur in a weak portion other than the short-circuit portion of the photoelectric conversion semiconductor layer 3.

【0009】このような蓄積電荷による問題を避けるた
めに、電極2,4間にパルス状の矩形波電圧を印加する
手法では、太陽電池セルに高い電圧が蓄積されることを
防ぐために耐電圧に近い充分な電圧を印加することがで
きず4V程度の逆方向の電圧パルスを印加している。し
かしながら、このような低い電圧では、短絡部分にエネ
ルギーを十分に与えることができなくなり、発生したジ
ュール熱で短絡部を除去したり酸化することができない
部分を生じるという問題があるとともに、蓄積された電
荷が半導体の耐圧の低い部分を介して放電することによ
って短絡部以外の正常部分が破壊する現象が発生してい
た。
In order to avoid such a problem due to the accumulated charge, a method of applying a pulse-like rectangular wave voltage between the electrodes 2 and 4 is to reduce the withstand voltage in order to prevent a high voltage from being accumulated in the solar cell. A near enough voltage cannot be applied, and a reverse voltage pulse of about 4 V is applied. However, at such a low voltage, sufficient energy cannot be applied to the short-circuited portion, and there is a problem that the generated short-circuited portion cannot be removed or oxidized due to the generated Joule heat, and the short-circuited portion is accumulated. A phenomenon has occurred in which a normal portion other than a short-circuit portion is destroyed by discharging electric charges through a portion of the semiconductor having a low withstand voltage.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記問題に
鑑み、薄膜太陽電池に生じた短絡部を除去する場合に、
電極間に印加した逆方向電圧によって、短絡部以外の部
分を破壊することなく、確実に短絡部分を除去すること
ができる方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is intended to eliminate a short-circuit portion generated in a thin-film solar cell.
It is an object of the present invention to provide a method capable of reliably removing a short-circuited portion without breaking portions other than the short-circuited portion by a reverse voltage applied between electrodes.

【0011】[0011]

【課題を解決するための手段】本発明は、値が時間とと
もに周期的に変化する略交流の電圧を電極2,4間に印
加するとともに、上記印加電圧波形を逆方向電圧成分を
主とし、一部順方向成分を含む電圧波形とすることによ
って、太陽電池セルに蓄積された電荷を放電して太陽電
池セルを保護するようにした。
According to the present invention, a substantially alternating voltage whose value periodically changes with time is applied between the electrodes 2 and 4, and the applied voltage waveform mainly includes a reverse voltage component. By making the voltage waveform partially include a forward component, the electric charge accumulated in the solar cell is discharged to protect the solar cell.

【0012】請求項1の発明は、基板上に第1の電極
層、半導体層、第2の電極層が順次形成された1又は複
数の太陽電池セルを含む太陽電池における該太陽電池セ
ルの正負の両極に対し、逆方向に耐電圧以下の逆方向電
圧を印加し、短絡部を除去する太陽電池の短絡部除去方
法であって、上記逆方向印加電圧が逆方向成分を主と
し、一部順方向成分を含んでいる、値が時間とともに周
期的に変化する電圧であり、0.5V以下の順方向電圧
と1V以上の逆方向電圧の間を行き来する正弦波とし
た。
According to the first aspect of the present invention, there is provided a solar cell including one or a plurality of solar cells in which a first electrode layer, a semiconductor layer, and a second electrode layer are sequentially formed on a substrate. A method for removing a short-circuit portion of a solar cell, in which a reverse voltage less than the withstand voltage is applied in the opposite direction to the two poles, and the short-circuit portion is removed. A voltage that includes a forward component and whose value changes periodically with time, and is a forward voltage of 0.5 V or less.
And a sine wave that alternates between a reverse voltage of 1 V or more .

【0013】請求項2の発明は、基板上に第1の電極
層、半導体層、第2の電極層が順次形成された1又は複
数の太陽電池セルを含む太陽電池における該太陽電池セ
ルの正負の両極に対し、逆方向に耐電圧以下の逆方向電
圧を印加して短絡部を除去する太陽電池の短絡部除去方
法であって、前記逆方向印加電圧が逆方向成分を主と
し、一部順方向成分を含んでいる値が時間とともに周期
的に変化する電圧であり、0.2V以下の順方向電圧と
1V以上の逆方向電圧の間を行き来する正弦波の半波
した。
According to a second aspect of the present invention, a first electrode is provided on a substrate.
One or more layers in which a layer, a semiconductor layer, and a second electrode layer are sequentially formed.
Solar cell in a solar cell including a number of solar cells.
Reverse voltage below the withstand voltage in the opposite direction to both the positive and negative
How to remove short-circuit part of solar cell by applying pressure to remove short-circuit part
The reverse applied voltage mainly includes a reverse component.
And the value that partially includes the forward component
The forward voltage of 0.2 V or less
A half-wave of a sine wave that alternates between reverse voltages of 1 V or more was used.

【0014】請求項3の発明は、基板上に第1の電極
層、半導体層、第2の電極層が順次形成された1又は複
数の太陽電池セルを含む太陽電池における該太陽電池セ
ルの正負の両極に対し、逆方向に耐電圧以下の逆方向電
圧を印加して短絡部を除去する太陽電池の短絡部除去方
法であって、前記逆方向印加電圧が逆方向成分を主と
し、一部順方向成分を含んでいる値が時間とともに周期
的に変化する電圧であり、0.5V以下の順方向電圧と
1V以上の逆方向電圧を行き来するノコギリ波とした。
According to a third aspect of the present invention, a first electrode is provided on a substrate.
One or more layers in which a layer, a semiconductor layer, and a second electrode layer are sequentially formed.
Solar cell in a solar cell including a number of solar cells.
Reverse voltage below the withstand voltage in the opposite direction to both the positive and negative
How to remove short-circuit part of solar cell by applying pressure to remove short-circuit part
The reverse applied voltage mainly includes a reverse component.
And the value that partially includes the forward component
And a forward voltage of 0.5 V or less.
A reverse voltage of 1 V or more was set as a back and forth sawtooth wave .

【0015】請求項4の発明は、請求項1ないし請求項
3のいずれか1項の太陽電池の短絡部除去方法におい
て、太陽電池素子の逆方向電圧印加時の容量と抵抗で規
定される時定数の周波数の電圧を逆方向に印加するよう
にした。
The invention according to claim 4 is the invention according to claims 1 to
In the method for removing a short-circuited portion of a solar cell according to any one of the above items 3, the capacity and resistance of the solar cell element when a reverse voltage is applied are defined.
Apply a voltage with a frequency of a fixed time constant in the opposite direction.
I made it.

【0016】請求項5の発明は、請求項の太陽電池の
短絡部除去方法において、前記時間とともに周期的に変
化する逆方向印加電圧の繰返しの周波数を20〜100
0Hzとした。
According to a fifth aspect of the present invention, in the method for removing a short-circuit portion of a solar cell according to the fourth aspect, the periodic change with time is provided.
The repetition frequency of the reverse applied voltage is
It was set to 0 Hz .

【0017】請求項6の発明は、請求項4の太陽電池の
短絡部除去方法において、前記時間とともに周期的に変
化する逆方向印加電圧の繰返しの周波数が50〜120
Hzとした。
According to a sixth aspect of the present invention, in the method for removing a short-circuit portion of a solar cell according to the fourth aspect, the periodic change with time is provided.
The repetition frequency of the reverse applied voltage is 50 to 120
Hz .

【0018】本発明の方法によれば、電極間に印加する
逆方向電圧を瞬間的に10V程度まで高めることができ
るようになり、短絡部分のみを発熱させて確実に除去す
ることができる。
According to the method of the present invention, the voltage is applied between the electrodes.
Reverse voltage can be instantaneously increased to about 10V
And generate heat only in the short-circuited part to remove it reliably.
Can be

【0019】さらに、本発明によれば、電極2,4間に
蓄積された電荷は順方向電圧が印加されている期間に放
電され、蓄積された電荷によって短絡部分以外の個所に
破壊を生起するおそれがなくなる。
Further, according to the present invention, between the electrodes 2 and 4
The accumulated charge is released during the period when the forward voltage is applied.
Is charged and accumulated by the accumulated charge,
There is no risk of destruction.

【0020】[0020]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION 本発明にかかる太陽電池の短絡部Short-circuit part of solar cell according to the present invention
除去方法について説明する。The removal method will be described. 短絡部を有する太陽電池にFor solar cells with short circuits
電流を流す方法は、図2に示した方法と同じである。本The method of flowing a current is the same as the method shown in FIG. Book
発明においては、プローブ電極6aとプローブ電極6bIn the present invention, the probe electrode 6a and the probe electrode 6b
間に印加する電圧を、直流ではなく逆方向成分を主としThe voltage to be applied is mainly for the reverse component, not DC.
一部順方向成分を含む値が時間とともに周期的に変化すValues including some forward components change periodically with time
る略交流電圧とした点に特徴を有している。It is characterized in that it is substantially an AC voltage. すなわち、That is,
プローブ電極6aとプローブ電極6bに印加する電圧Voltage applied to probe electrode 6a and probe electrode 6b
は、図1(A)に示すように、逆方向成分を主とすると, As shown in FIG.
ともに一部順方向成分を含む正弦波形の電圧とし、順方Both have a sinusoidal waveform voltage that partially includes the forward component.
向成分のピーク値を0.5Vとし逆方向のピーク値を1The peak value of the directional component is set to 0.5 V, and the peak value in the reverse direction is set to 1.
V以上とした。V or more.

【0021】このような波形の逆方向電圧を印加するこ
とによって、順方向成分の印加時に、電極2,4間に蓄
積された電荷は放電され、正常な部分に破壊を起こすこ
とがなくなる。さらに、電荷の蓄積による影響を考えな
くてよいので、逆方向印加電圧も瞬間的に10Vまで印
加することができるようになり、短絡部分を確実に除去
することができる。
Applying a reverse voltage having such a waveform
Thus, when the forward component is applied, the voltage is stored between the electrodes 2 and 4.
The accumulated charge is discharged and can damage normal parts.
Disappears. Furthermore, consider the effects of charge accumulation.
The reverse applied voltage can be instantaneously marked up to 10V.
Can be added, and the short-circuit part is reliably removed.
can do.

【0022】図1(B)は逆方向印加電圧の他の形態を
示す図で、値が時間とともに周期的に変化する逆方向印
加電圧の逆方向成分を正弦波の半波とするとともに順方
向成分を0.2V以下の矩形波とした。この場合も正弦
波のピーク値は太陽電池の逆バイアス電圧に略近い値の
逆方向電圧とした。 このような波形の逆方向電圧を印加
することによって、電極2,4間に蓄積された電荷は順
方向成分印加期間に放電され、正常な部分に破壊を起こ
すことがなくなる。さらに、電荷の蓄積による影響を考
えなくてよいので、逆方向印加電圧も瞬間的に10Vま
で印加することができるようになり、短絡部分を確実に
除去することができる。
FIG . 1B shows another form of the reverse applied voltage.
In the diagram shown, a backward sign whose value changes periodically with time
Make the reverse component of the applied voltage a half sine wave and
The direction component was a rectangular wave of 0.2 V or less. Again, the sine
The peak value of the wave is almost the same as the reverse bias voltage of the solar cell.
Reverse voltage was used. Apply a reverse voltage with such a waveform
As a result, the charge accumulated between the electrodes 2 and 4 is
Discharge occurs during the directional component application period, causing damage to normal parts.
No more. In addition, consider the effects of charge accumulation.
The reverse applied voltage can be increased to 10 V instantaneously.
Can be applied in the
Can be removed.

【0023】図1(C)は逆方向印加電圧の他の形態を
示す図で、値が時間とともに周期的に変化する逆方向印
加電圧を矩形波とした。この場合も逆方向成分を主と
し、順方向成分は0.2V以下とした。 このような波形
の逆方向電圧を印加することよって、電極2,4間に蓄
積された電荷は順方向成分印加期間に放電され、正常な
部分に破壊を起こすことがなくなる。さらに、電荷の蓄
積による影響を考えなくてよいので、逆方向印加電圧も
瞬間的に10Vまで印加することができるようになり、
短絡部分を確実に除去することができる。
FIG . 1C shows another form of the reverse applied voltage.
In the diagram shown, a backward sign whose value changes periodically with time
The applied voltage was a rectangular wave. In this case, too,
The forward component was set to 0.2 V or less. Such a waveform
Is applied between the electrodes 2 and 4 by applying the reverse voltage of
The accumulated charge is discharged during the forward component application period,
No destruction of parts. In addition, charge storage
Since the influence of the product does not need to be considered,
It is possible to apply up to 10V instantaneously,
The short-circuit portion can be reliably removed.

【0024】図1(D)は逆方向印加電圧の他の形態を
示す図で、逆方向印加電圧の逆方向成分を主とするノコ
ギリ波とするとともに順方向成分を0.2V以下とし
た。 この場合も、電極2,4間に蓄積された電荷は順方
向成分印加期間に放電され、正常な部分に破壊を起こす
ことがなくなる。さらに、逆方向印加電圧も電荷の蓄積
による影響を考えなくてよいので、瞬間的に10Vまで
印加することができるようになり、短絡部分を確実に除
去することができる。
FIG . 1D shows another form of the reverse applied voltage.
In the diagram, the saw mainly includes the reverse component of the reverse applied voltage.
A Gili wave and a forward component of 0.2 V or less
Was. Also in this case, the electric charge accumulated between the electrodes 2 and 4 is normal.
Discharged during the application of the directional component, causing destruction in normal parts
Disappears. In addition, the reverse applied voltage also accumulates charge
Instantaneously up to 10V
Voltage can be applied, and
You can leave.

【0025】直列に集積した60個の短絡を生じたセル
に、図1(A)に示した逆方向電圧を電極2,4間に印
加した場合、58個のセルの短絡が取り除かれて回復し
たが、4Vの矩形波パルスを印加する従来法では、50
個回復が回復したにすぎず、 本発明による短絡部除去方
法が極めて有効であることがわかる。
Sixty short-circuited cells integrated in series
Then, the reverse voltage shown in FIG.
Added, the short circuit in 58 cells was removed and recovered.
However, in the conventional method of applying a rectangular wave pulse of 4 V, 50
Only the individual recovery has been recovered, and the method of removing the short-circuit portion according to the present invention
It turns out that the method is extremely effective.

【0026】また、本発明においては、略交流の逆方向
印加電圧の電源として、60hz程度の交番電源を用い
ることができるが、値が時間とともに周期的に変化する
略交流の繰返し周波数を、太陽電池の容量Cと逆方向の
抵抗Rで定義される時定数にマッチングする周波数とす
ると蓄積電荷が十分に放電され、目的を確実に達成する
ことができる。 さらに、本発明においては、値が時間と
ともに周期的に変化する略交流の繰返し周波数を、20
〜1000Hz、好ましくは50〜120Hzとするこ
とによって蓄積電荷を確実に放電することができる。
In the present invention, the reverse direction of the substantially alternating current is used.
As an applied voltage power supply, use an alternating power supply of about 60hz
But the value changes periodically over time
The repetition frequency of the substantially alternating current is changed in the opposite direction to the capacity C of the solar cell.
Let the frequency match the time constant defined by the resistor R.
In this way, the accumulated charge is sufficiently discharged to achieve the purpose
be able to. Furthermore, in the present invention, the value is time and
The repetition frequency of the substantially alternating current, which changes periodically, is set to 20
To 1000 Hz, preferably 50 to 120 Hz
Thus, the accumulated charges can be reliably discharged.

【0027】[0027]

【発明の効果】【The invention's effect】 本発明によれば、高い逆方向電圧を印加According to the present invention, a high reverse voltage is applied
することができるので、逆方向電圧を印加して除去できCan be removed by applying a reverse voltage.
る電圧に所定の分布がある短絡部において、従来の技術In short-circuited areas where the voltage
では除去できなかった高い逆方向電圧でしか除去できなCan only be removed with a high reverse voltage that could not be removed
い短絡部を除去できるようになった。The short circuit part can be removed.

【0028】さらに、本発明によれば、逆方向印加電圧
を交流にし、太陽電池の容量Cと逆方向の抵抗Rで定義
される時定数にマッチングする周波数とすることで、印
加電圧の波形を電源電圧の波形に追随指せることが可能
となった。
Further, according to the present invention, the reverse applied voltage
Is defined as AC, defined by the capacity C of the solar cell and the resistance R in the opposite direction.
By setting the frequency to match the time constant
Applied voltage waveform can follow power supply voltage waveform
It became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明と従来の技術による逆方向印加電圧波形
を示す図。
FIG. 1 is a diagram showing a reverse applied voltage waveform according to the present invention and a conventional technique.

【図2】太陽電池の構成と短絡部除去方法を説明する
図。
FIG. 2 is a diagram illustrating a configuration of a solar cell and a method for removing a short-circuit portion.

【符号の説明】[Explanation of symbols]

1 絶縁性基板 2 第1の電極 3 光電変換半導体層 4 第2の電極 5 太陽電池セル 6 プローブ電極 10 太陽電池 REFERENCE SIGNS LIST 1 insulating substrate 2 first electrode 3 photoelectric conversion semiconductor layer 4 second electrode 5 solar cell 6 probe electrode 10 solar cell

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に第1の電極層、半導体層、第2
の電極層が順次形成された1又は複数の太陽電池セルを
含む太陽電池における該太陽電池セルの正負の両極に対
し、逆方向に耐電圧以下の逆方向電圧を印加して短絡部
を除去する太陽電池の短絡部除去方法であって、 前記逆方向印加電圧が逆方向成分を主とし一部順方向
成分を含んでいる値が時間とともに周期的に変化する電
圧であり、0.5V以下の順方向電圧と1V以上の逆方
向電圧の間を行き来する正弦波であることを特徴とする
太陽電池の短絡部除去方法。
A first electrode layer, a semiconductor layer, and a second electrode layer on a substrate;
In a solar cell including one or a plurality of solar cells in which an electrode layer is sequentially formed, a short-circuit portion is removed by applying a reverse voltage of a withstand voltage or less in a reverse direction to both positive and negative electrodes of the solar cell. a short-circuit portion removing method of the solar cell, the reverse applied voltage is a voltage value that contains the part forward component as the main reverse direction component is changed periodically with time, 0.5V The following forward voltage and reverse more than 1V
A method of removing a short-circuited portion of a solar cell, wherein the method is a sine wave that moves between direction voltages .
【請求項2】 基板上に第1の電極層、半導体層、第2
の電極層が順次形成された1又は複数の太陽電池セルを
含む太陽電池における該太陽電池セルの正負の両極に対
し、逆方向に耐電圧以下の逆方向電圧を印加して短絡部
を除去する太陽電池の短絡部除去方法であって、 前記逆方向印加電圧が、逆方向成分を主とし一部順方向
成分を含んでいる値が時間とともに周期的に変化する電
圧であり、0.2V以下の順方向電圧と1V以上の逆方
向電圧の間を行き来する正弦波の半波であることを特徴
とする 太陽電池の短絡部除去方法。
A first electrode layer, a semiconductor layer, and a second electrode layer on the substrate;
One or more solar cells in which the electrode layers of
The positive and negative poles of the solar cell
And apply a reverse voltage less than the withstand voltage in the reverse direction to
A method for removing a short-circuited portion of a solar cell, comprising:
That the value containing the component changes periodically with time.
Forward voltage of 0.2 V or less and reverse voltage of 1 V or more
It is a half wave of a sine wave that moves between the counter voltages.
Short circuit portion removing method of the solar cell to be.
【請求項3】 基板上に第1の電極層、半導体層、第2
の電極層が順次形成された1又は複数の太陽電池セルを
含む太陽電池における該太陽電池セルの正負の両極に対
し、逆方向に耐電圧以下の逆方向電圧を印加して短絡部
を除去する太陽電池の短絡部除去方法であって、 前記逆方向印加電圧が、逆方向成分を主とし一部順方向
成分を含んでいる値が時間とともに周期的に変化する電
圧であり、0.5V以下の順方向電圧と1V以上の逆方
向電圧を行き来するノコギリ波であることを特徴とする
太陽電池の短絡部除去方法。
A first electrode layer, a semiconductor layer, and a second electrode layer on the substrate;
One or more solar cells in which the electrode layers of
The positive and negative poles of the solar cell
And apply a reverse voltage less than the withstand voltage in the reverse direction to
A method for removing a short-circuit portion of a solar cell, wherein the reverse applied voltage is mainly a backward component and partially forward.
That the value containing the component changes periodically with time.
Forward voltage of 0.5 V or less and reverse voltage of 1 V or more
A method for removing a short-circuited portion of a solar cell, comprising a sawtooth wave that moves back and forth in a counter voltage .
【請求項4】 太陽電池素子の逆方向電圧印加時の容量
と抵抗で規定される時定数の周波数の電圧を逆方向に印
加することを特徴とする請求項1ないし請求 項3のいず
れか1項に記載の太陽電池の短絡部除去方法。
4. The capacity of a solar cell element when a reverse voltage is applied.
And a voltage at the frequency of the time constant specified by the resistor in the opposite direction.
The method according to any one of claims 1 to 3, wherein
2. The method for removing a short-circuited portion of a solar cell according to claim 1 .
【請求項5】 前記時間とともに周期的に変化する逆方
向印加電圧の繰返しの周波数が20〜1000Hzであ
る請求項4に記載の太陽電池の短絡部除去方法。
5. An inverse direction which changes periodically with time.
The repetition frequency of the applied voltage is 20 to 1000 Hz.
The method for removing a short circuit portion of a solar cell according to claim 4 .
【請求項6】 前記時間とともに周期的に変化する逆方
向印加電圧の繰返しの周波数が50〜120Hzである
請求項4に記載の太陽電池の短絡部除去方法。
6. An inverse direction which changes periodically with time.
The repetition frequency of the applied voltage is 50 to 120 Hz
The method for removing a short circuit portion of a solar cell according to claim 4 .
JP11079078A 1999-03-24 1999-03-24 How to remove short circuit part of solar cell Expired - Fee Related JP3049241B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP11079078A JP3049241B1 (en) 1999-03-24 1999-03-24 How to remove short circuit part of solar cell
US09/329,526 US6228662B1 (en) 1999-03-24 1999-06-10 Method for removing short-circuited sections of a solar cell
AU36842/99A AU763332B2 (en) 1999-03-24 1999-06-28 Method for removing short-circuited sections of a solar cell
DE69921607T DE69921607T2 (en) 1999-03-24 1999-07-01 Method for removing short-circuit sections of a solar cell
EP04077491A EP1494294B1 (en) 1999-03-24 1999-07-01 Method for removing short-circuited sections of a solar cell
AT04077491T ATE426250T1 (en) 1999-03-24 1999-07-01 METHOD FOR REMOVING SHORT-CIRCUIT SECTIONS OF A SOLAR CELL
ES99305189T ES2232083T3 (en) 1999-03-24 1999-07-01 METHOD FOR ELIMINATING SHORT-SECTIONED SECTIONS OF A SOLAR CELL.
DE69940618T DE69940618D1 (en) 1999-03-24 1999-07-01 Method for removing short-circuit sections of a solar cell
ES04077491T ES2324100T3 (en) 1999-03-24 1999-07-01 METHOD TO ELIMINATE SECTIONS IN SHORT CIRCUIT OF A SOLAR CELL.
EP99305189A EP1039553B1 (en) 1999-03-24 1999-07-01 Method for removing short-circuited sections of a solar cell
AT99305189T ATE281699T1 (en) 1999-03-24 1999-07-01 METHOD FOR REMOVING SHORT-CIRCUIT SECTIONS OF A SOLAR CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11079078A JP3049241B1 (en) 1999-03-24 1999-03-24 How to remove short circuit part of solar cell

Publications (2)

Publication Number Publication Date
JP3049241B1 true JP3049241B1 (en) 2000-06-05
JP2000277765A JP2000277765A (en) 2000-10-06

Family

ID=13679870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11079078A Expired - Fee Related JP3049241B1 (en) 1999-03-24 1999-03-24 How to remove short circuit part of solar cell

Country Status (1)

Country Link
JP (1) JP3049241B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013403A (en) 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Solar cell, solar cell module, its manufacturing method, and its reparing method
JP5379586B2 (en) * 2009-07-16 2013-12-25 株式会社日本マイクロニクス Battery short-circuit removing device and method

Also Published As

Publication number Publication date
JP2000277765A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
EP1494294B1 (en) Method for removing short-circuited sections of a solar cell
US5789311A (en) Manufacturing method of SiC Schottky diode
EP1052704A3 (en) Reverse blasing apparatus for solar battery module
JP3050546B1 (en) How to remove short circuit part of solar cell
US9595673B2 (en) Method for removing electro-static discharge (EDS) noise signal in electronic system including the metal-insulator transition (MIT) 3-terminal device
JP3049241B1 (en) How to remove short circuit part of solar cell
TW407371B (en) Equipment to limited alternative current, especially in short-circuit case
US3962715A (en) High-speed, high-current spike suppressor and method for fabricating same
JP3284491B2 (en) SR flip flop
JP3143616B2 (en) How to remove short circuit part of solar cell
JP4881499B2 (en) Method for removing short circuit part of solar cell
JP4627575B2 (en) Method for removing short circuit part of solar cell
FR2579024A1 (en) PROTECTION THYRISTOR WITHOUT GAPETTE
JP2002541681A (en) Thin film capacitor element
JPH0238436Y2 (en)
EP0088179A2 (en) Transient absorption semiconductor device
JPS62176173A (en) Manufacture of photoelectric conversion device
CN111048567B (en) Organic photoelectric device
Akimov et al. A Novel Structure of the Silicon Transient Voltage Suppressor with Negative Differential Resistance
JP3412283B2 (en) Semiconductor device
JPS59129478A (en) Series connected type thin-film solar cell
JP2000058870A (en) Semiconductor device
FR2663474A1 (en) Circuit breaker with a varistor for a high-voltage line
KANETO et al. Contact resistances at nano interfaces of conducting polymers, poly (3-alkylthiophene) and metals of Al and Au
JPH05159670A (en) Dc breaker

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees