JPH0238436Y2 - - Google Patents

Info

Publication number
JPH0238436Y2
JPH0238436Y2 JP1981032452U JP3245281U JPH0238436Y2 JP H0238436 Y2 JPH0238436 Y2 JP H0238436Y2 JP 1981032452 U JP1981032452 U JP 1981032452U JP 3245281 U JP3245281 U JP 3245281U JP H0238436 Y2 JPH0238436 Y2 JP H0238436Y2
Authority
JP
Japan
Prior art keywords
constant current
current
electrolytic capacitor
aging
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981032452U
Other languages
Japanese (ja)
Other versions
JPS57146328U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981032452U priority Critical patent/JPH0238436Y2/ja
Publication of JPS57146328U publication Critical patent/JPS57146328U/ja
Application granted granted Critical
Publication of JPH0238436Y2 publication Critical patent/JPH0238436Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、電解コンデンサのエージング装置
に係り、特に、製造上生じた誘電体の損傷を回復
するために用いるエージング装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to an aging device for electrolytic capacitors, and particularly to an aging device used to recover damage to a dielectric material caused during manufacturing.

〔従来の技術〕[Conventional technology]

電解コンデンサの陽極側電極の表面には、化成
酸化皮膜からなる誘電体が形成されており、この
誘電体は電解コンデンサ素子の形成前に陽極素材
に形成され、しかも、その機械的強度は低く、陽
極素材の加工等によつて機械的反応が作用する
と、機械的歪や亀裂を生じるおそれがある。特
に、エツチング処理されたアルミニウム箔に化成
により酸化皮膜を形成したものを陽極側電極とし
たアルミニウム電解コンデンサの場合、巻回加工
等によつて皮膜に損傷が生じ、この損傷を放置し
た場合、使用上漏洩電流が大となり、安定した電
気的特性を長期に亘つて維持することが困難にな
る。そこで、この化成酸化皮膜からなる誘電体を
修復することが必要になるが、この誘電体は化成
によつて形成されたものであり、端子間に電流を
通流させることによつて修復するいわゆる自己回
復機能を有するので、再化成処理、すなわち、エ
ージング処理が施される。エージング処理は、端
子間に皮膜形成のための化成電圧と耐電圧値の中
間値程度までの直流電圧を印加して流れる電流を
制御し、前記直流電圧の印加状態で電流が十分小
さくなるまで行うものである。
A dielectric made of a chemical oxide film is formed on the surface of the anode side electrode of an electrolytic capacitor, and this dielectric is formed on the anode material before forming the electrolytic capacitor element, and its mechanical strength is low. If a mechanical reaction occurs due to processing of the anode material, mechanical strain or cracks may occur. In particular, in the case of aluminum electrolytic capacitors whose anode electrode is made of etched aluminum foil with an oxide film formed by chemical conversion, damage to the film may occur during winding, etc., and if this damage is left untreated, the The upper leakage current becomes large, making it difficult to maintain stable electrical characteristics over a long period of time. Therefore, it is necessary to repair the dielectric material made of this chemical conversion oxide film, but this dielectric material is formed by chemical conversion, and it is repaired by passing a current between the terminals. Since it has a self-healing function, it is subjected to reconstitution treatment, that is, aging treatment. The aging treatment is performed by applying a DC voltage between the terminals to an intermediate value between the chemical formation voltage for film formation and the withstand voltage value to control the flowing current, and performing the aging process until the current becomes sufficiently small while the DC voltage is applied. It is something.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

このようなエージング処理において、多数の電
解コンデンサ素子を並列接続した状態で各素子に
直流電圧を同時に印加した場合、誘電体の損傷状
態が各素子毎に異なり内部抵抗の値が相違するた
め、各素子の通流電流は大きく変化する。すなわ
ち、1の素子の内部抵抗が極めて小さい場合、素
子自体の電流が大きいことに加えて他の素子から
放電電流が流れ込むため、大電流の通流で誘電体
の損傷状態を却つて悪化させるおそれがある。こ
のため、従来、各素子に保護抵抗を直列に接続し
て電流を抑制することが行われているが、この場
合、抵抗による不必要な電力消費が生じ、また、
エージング用の直流電源の出力は、この消費電力
分を考慮したものとしなければならない不都合が
ある。従来、他の素子から流入する放電電流を阻
止するために各素子にダイオードを直列に挿入す
る方法が提案されているが、この方法によつても
ダイオードの順方向の内部抵抗では各素子に流れ
る電流を抑制することができず、前記の保護抵抗
を併用することが必要になるため、前記と同様に
電力消費が大となり、直流電源の出力を増大させ
る欠点がある。
In such an aging process, if a large number of electrolytic capacitor elements are connected in parallel and a DC voltage is applied to each element at the same time, the damage state of the dielectric material differs for each element and the value of internal resistance differs. The current flowing through the element varies greatly. In other words, when the internal resistance of one element is extremely small, in addition to the large current in the element itself, discharge current flows from other elements, so there is a risk that the damage to the dielectric material will worsen due to the passage of a large current. There is. For this reason, conventionally, a protective resistor is connected in series with each element to suppress the current, but in this case, unnecessary power consumption occurs due to the resistor, and
There is a disadvantage that the output of the aging DC power supply must take this power consumption into consideration. Conventionally, a method has been proposed in which a diode is inserted in series with each element in order to block the discharge current flowing in from other elements, but even with this method, the forward internal resistance of the diode prevents the discharge current from flowing into each element. Since the current cannot be suppressed and it is necessary to use the above-mentioned protective resistor in combination, there is a drawback that the power consumption becomes large similarly to the above, and the output of the DC power supply increases.

また、従来のエージング処理の場合、印加電圧
を変化させて通流電流を制御し、しかも、電流値
は素子のばらつきを考慮に入れて設定するため、
エージング処理時間が極めて長くかかり、非能率
的であつた。
In addition, in the case of conventional aging processing, the applied voltage is changed to control the conduction current, and the current value is set taking into account variations in the elements.
The aging process took an extremely long time and was inefficient.

そこで、この考案は、エージング電流を定電流
化してエージング処理をスピード化するととも
に、不必要な電力消費をなくし、他の素子からの
放電電流の流入を阻止してエージング処理を実現
した電解コンデンサのエージング装置の提供を目
的とする。
Therefore, this idea is an electrolytic capacitor that speeds up the aging process by making the aging current a constant current, eliminates unnecessary power consumption, and realizes the aging process by blocking the inflow of discharge current from other elements. The purpose is to provide aging equipment.

〔問題点を解決するための手段〕[Means for solving problems]

この考案の電解コンデンサのエージング装置
は、第1図に示すように、複数の電解コンデンサ
素子21,22,23……2Nのそれぞれに定電
流素子(定電流ダイオード41,42,43……
4N)を直列に接続し、これら電解コンデンサ素
子21,22,23……2Nおよび定電流素子
(定電流ダイオード41,42,43……4N)
からなる直列回路に対して直流電源6を接続して
直流電圧を印加したものである。
As shown in FIG. 1, the aging device for electrolytic capacitors of this invention includes constant current elements (constant current diodes 41, 42, 43...
4N) are connected in series, and these electrolytic capacitor elements 21, 22, 23...2N and constant current elements (constant current diodes 41, 42, 43...4N)
A DC voltage is applied by connecting a DC power supply 6 to a series circuit consisting of the following.

〔作用〕[Effect]

直流電源6からの直流電圧の印加によつて、定
電流素子(定電流ダイオード41,42,43…
…4N)からの定電流で各電解コンデンサ素子2
1,22,23……2Nに個別にエージング処理
を施す。
By applying a DC voltage from the DC power supply 6, constant current elements (constant current diodes 41, 42, 43...
...4N) for each electrolytic capacitor element 2 with a constant current from
1, 22, 23...2N are individually subjected to aging processing.

〔実施例〕〔Example〕

以下、この考案を図面に示した実施例に基づき
詳細に説明する。
This invention will be described in detail below based on embodiments shown in the drawings.

第1図は、この考案の電解コンデンサのエージ
ング装置の実施例を示す。
FIG. 1 shows an embodiment of the electrolytic capacitor aging device of this invention.

第1図において、エージング処理をするための
複数の電解コンデンサ素子21,22,23……
2Nのそれぞれの陽極側には定電流素子として設
置された定電流ダイオード41,42,43……
4Nが直列に接続され、これら電解コンデンサ素
子21,22,23……2Nと定電流ダイオード
41,42,43……4Nの各直列回路には直流
電源6から直流電圧が印加されている。
In FIG. 1, a plurality of electrolytic capacitor elements 21, 22, 23... for aging treatment are shown.
Constant current diodes 41, 42, 43 installed as constant current elements are installed on each anode side of 2N.
4N are connected in series, and a DC voltage is applied from the DC power supply 6 to each series circuit of the electrolytic capacitor elements 21, 22, 23...2N and the constant current diodes 41, 42, 43...4N.

このエージング装置において、各定電流ダイオ
ード41,42,43……4Nは、第2図に示す
ような電流−電圧特性を有するものである。すな
わち、順方向のアノード・カソード間印加電圧V
の変化(VP〜VB)に対して通流電流Iは一定の
電流値IPを維持し、各定電流ダイオード41,4
2,43……4Nは一定の電圧範囲で各電解コン
デンサ素子21,22,23……2Nに定電流を
供給するものである。なお、第2図に示す特性に
おいて、VPは定電流出力IPを得るための最低電
圧、VBは最大定電流領域電圧(ブレークダウン
電圧)である。
In this aging device, each of the constant current diodes 41, 42, 43...4N has current-voltage characteristics as shown in FIG. That is, the applied voltage V between the anode and cathode in the forward direction
The conduction current I maintains a constant current value I P with respect to changes in (V P to V B ), and each constant current diode 41, 4
2, 43...4N supplies a constant current to each electrolytic capacitor element 21, 22, 23...2N within a fixed voltage range. In the characteristics shown in FIG. 2, V P is the minimum voltage for obtaining constant current output I P , and V B is the maximum constant current region voltage (breakdown voltage).

以上説明したように、各電解コンデンサ素子2
1,22,23……2Nに各定電流ダイオード4
1,42,43……4Nから定電流のエージング
電流を流すことができる。すなわち、各定電流ダ
イオード41,42,43……4Nの定電流電圧
範囲はVP〜VBの幅例えば100V程度と広く、この
ため、各電解コンデンサ素子21,22,23…
…2Nの内部抵抗が誘電体の損傷状態で相違して
もその値に無関係に定電流出力が各素子21,2
2,23……2Nに与えられる。このような定電
流によるエージング処理は、従来の内部抵抗の値
を考慮しての電圧調整に基づくエージング電流の
設定とは異なり、迅速な処理が可能になり、しか
も、信頼性の高い安定化した処理が実現できる。
この場合、従来装置のようにエージング電流を抑
制するための保護抵抗が各電解コンデンサ素子2
1,22,23……2Nに直列に挿入する必要が
無いので、その抵抗による不必要な電力消費が削
減でき、この電力消費を考慮しての直流電源6の
出力増加をも防止できる。
As explained above, each electrolytic capacitor element 2
1, 22, 23...2N each constant current diode 4
1, 42, 43... A constant aging current from 4N can be applied. That is, the constant current voltage range of each constant current diode 41, 42, 43...4N is wide, for example, about 100V from V P to V B , and therefore, each electrolytic capacitor element 21, 22, 23...
...Even if the internal resistance of 2N differs depending on the damage state of the dielectric, the constant current output is constant for each element 21 and 2 regardless of the value.
2, 23...Given to 2N. This aging process using a constant current is different from the conventional aging current setting based on voltage adjustment that takes into account the value of internal resistance. processing can be realized.
In this case, a protective resistor for suppressing aging current is provided for each electrolytic capacitor element 2 as in the conventional device.
1, 22, 23, . . . 2N in series, unnecessary power consumption due to the resistance can be reduced, and an increase in the output of the DC power supply 6 due to this power consumption can also be prevented.

したがつて、従来の装置と同出力の直流電源6
で多量の電解コンデンサ素子21,22,23…
…2Nのエージング処理が可能になり、省エネル
ギー化が実現できる。しかも、第2図に示す特性
から明らかなように、各定電流ダイオード41,
42,43……4Nは逆方向に相当大きな内部抵
抗を有するので、例えば誘電体の損傷が大きく内
部抵抗が極めて小さい電解コンデンサ素子が含ま
れている場合においても他の素子からの放電電流
の流入は効果的に防止でき、各素子21,22,
23……2Nを誘電体の損傷状態に応じて個別的
にエージング処理できるものである。
Therefore, a DC power supply 6 with the same output as the conventional device
A large number of electrolytic capacitor elements 21, 22, 23...
...2N aging processing becomes possible and energy saving can be realized. Moreover, as is clear from the characteristics shown in FIG.
42, 43...4N has a fairly large internal resistance in the opposite direction, so even if it includes an electrolytic capacitor element with a severely damaged dielectric and extremely low internal resistance, discharge current from other elements will not flow in. can be effectively prevented, and each element 21, 22,
23...2N can be individually aged depending on the damage state of the dielectric.

なお、各定電流ダイオード41,42,43…
…4Nに印加される電圧がブレークダウン電圧
VB以上となり定電流を超える大電流が流れるお
それがある場合には、第3図のAに示すように、
定電流ダイオード4に保護抵抗8を並列に接続し
て電流の一部を保護抵抗8に分流させてもよく、
保護抵抗8とともに1又は2以上の定電流ダイオ
ードを並列に接続してもよい。
In addition, each constant current diode 41, 42, 43...
…The voltage applied to 4N is the breakdown voltage
If the current exceeds V B and there is a risk that a large current exceeding the constant current will flow, as shown in A in Figure 3,
A protective resistor 8 may be connected in parallel to the constant current diode 4 to shunt a portion of the current to the protective resistor 8.
One or more constant current diodes may be connected in parallel with the protective resistor 8.

また、エージング処理後、各電解コンデンサ素
子21,22,23……2Nの残留電荷は、第3
図のBに示すように、電解コンデンサ素子2にス
イツチ10を介して並列接続された抵抗12から
なる放電回路14をスイツチ10のオンによつて
活性状態に置くことにより消失させることができ
る。
In addition, after the aging treatment, the residual charge of each electrolytic capacitor element 21, 22, 23...2N is
As shown in FIG. B, the discharging circuit 14 consisting of a resistor 12 connected in parallel to the electrolytic capacitor element 2 via a switch 10 can be turned on by turning on the switch 10 to activate the discharge circuit 14, thereby dissipating the discharge.

また、定電流ダイオード41,42,43……
4Nは定電流特性を有する電界効果トランジスタ
等、他の定電流素子に置換することができ、同様
の効果が得られる。さらに、前記実施例の定電流
ダイオード41,42,43……4Nの部分に定
電流特性を持たないダイオードを挿入するととも
に、直流電源6の出力側に各電解コンデンサ素子
21,22,23……2Nに総合的に定電流を供
給するように並列接続された複数の定電流ダイオ
ードを挿入しても同様の効果が得られる。
In addition, constant current diodes 41, 42, 43...
4N can be replaced with another constant current element such as a field effect transistor having constant current characteristics, and the same effect can be obtained. Furthermore, diodes that do not have constant current characteristics are inserted in the constant current diodes 41, 42, 43, . A similar effect can be obtained by inserting a plurality of constant current diodes connected in parallel so as to collectively supply a constant current to 2N.

〔考案の効果〕[Effect of idea]

以上説明したように、この考案によれば、エー
ジング電流を定電流化したので、エージング処理
が迅速化できるとともに、不必要な電力消費が防
止でき、さらに、一度に多数の電解コンデンサ素
子にエージング処理を施す場合でも内部抵抗の小
さい素子に他の素子からの放電電流の流入を阻止
することができるので、信頼性の高い安定したエ
ージング処理が実現できる。
As explained above, according to this invention, since the aging current is made constant, the aging process can be speeded up and unnecessary power consumption can be prevented.Furthermore, the aging process can be applied to a large number of electrolytic capacitor elements at once. Even when the aging process is performed, it is possible to prevent discharge current from flowing into an element having a small internal resistance from other elements, so a highly reliable and stable aging process can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の電解コンデンサのエージン
グ装置の実施例を示す回路図、第2図は定電流ダ
イオードの電流−電圧特性を示す説明図、第3図
は第1図に示した電解コンデンサのエージング装
置に対する付加回路を示す回路図である。 2,21,22,23……2N……電解コンデ
ンサ素子、4,41,42,43……4N……定
電流素子としての定電流ダイオード、6……直流
電源。
Figure 1 is a circuit diagram showing an embodiment of the electrolytic capacitor aging device of this invention, Figure 2 is an explanatory diagram showing the current-voltage characteristics of a constant current diode, and Figure 3 is an illustration of the electrolytic capacitor shown in Figure 1. FIG. 3 is a circuit diagram showing an additional circuit for the aging device. 2, 21, 22, 23... 2N... Electrolytic capacitor element, 4, 41, 42, 43... 4N... Constant current diode as a constant current element, 6... DC power supply.

Claims (1)

【実用新案登録請求の範囲】 (1) 複数の電解コンデンサ素子のそれぞれに定電
流素子を直列に接続し、これら電解コンデンサ
素子および定電流素子からなる直列回路に対し
て直流電源を接続して直流電圧を印加したこと
を特徴とする電解コンデンサのエージング装
置。 (2) 前記定電流素子は、定電流ダイオードを用い
たことを特徴とする実用新案登録請求の範囲第
1項に記載の電解コンデンサのエージング装
置。
[Scope of Claim for Utility Model Registration] (1) A constant current element is connected in series to each of a plurality of electrolytic capacitor elements, and a DC power source is connected to the series circuit consisting of these electrolytic capacitor elements and constant current elements to generate DC current. An aging device for electrolytic capacitors characterized by applying voltage. (2) The electrolytic capacitor aging device according to claim 1, wherein the constant current element uses a constant current diode.
JP1981032452U 1981-03-09 1981-03-09 Expired JPH0238436Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981032452U JPH0238436Y2 (en) 1981-03-09 1981-03-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981032452U JPH0238436Y2 (en) 1981-03-09 1981-03-09

Publications (2)

Publication Number Publication Date
JPS57146328U JPS57146328U (en) 1982-09-14
JPH0238436Y2 true JPH0238436Y2 (en) 1990-10-17

Family

ID=29829852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981032452U Expired JPH0238436Y2 (en) 1981-03-09 1981-03-09

Country Status (1)

Country Link
JP (1) JPH0238436Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074610A (en) * 1983-09-30 1985-04-26 富士通株式会社 Method of screening condenser
JPH0793068B2 (en) * 1984-09-06 1995-10-09 鐘淵化学工業株式会社 Highly insulating substrate manufacturing method
JP2836098B2 (en) * 1989-05-12 1998-12-14 松下電器産業株式会社 Method for manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JPS57146328U (en) 1982-09-14

Similar Documents

Publication Publication Date Title
EP1039553B1 (en) Method for removing short-circuited sections of a solar cell
DE102017126871A1 (en) Rectifier means
JPH0238436Y2 (en)
CN108134381B (en) Overvoltage protection circuit, method and electronic equipment
US6219221B1 (en) Electrical double layer capacitor having short-circuit function
JPS5855749B2 (en) Gate turn-off thyristor protection device
CN108962606A (en) A kind of high-voltage solid-state aluminum capacitor is anodizing to electrolyte and its chemical synthesizing method
US2497649A (en) Process of electroforming selenium rectifiers
JP7087352B2 (en) Electrolytic capacitor modules, filter circuits and power converters
JPH05206748A (en) Protective circuit for field-effect transistor
US11018575B2 (en) Semiconductor assembly and control method thereof
DE3020071A1 (en) INVERTER
JP3408125B2 (en) Method and apparatus for manufacturing organic solid electrolytic capacitor
US1772508A (en) Voltage-limiting device
CN208820681U (en) A kind of capacitor discharge circuit
CN218633730U (en) High-power rectifier bridge power-taking circuit
JPH0521286A (en) Method of aging electrolytic capacitor
USRE21088E (en) Electrolytic device
DE102012210261A1 (en) Power semiconductor module for controlling electromotor, has set of coils directly arranged beside conductor path or current conductor, and another set of coils directly arranged beside another conductor path or another current conductor
JP2811640B2 (en) Aging method for solid electrolytic capacitors
CN112152458B (en) DC isolation converter and control method and device thereof
JPH118168A (en) Device for aging electrolytic capacitor
Efford et al. Development of aluminum electrolytic capacitors for EV inverter applications
JPH034127Y2 (en)
JP3250310B2 (en) Method of forming anode foil for aluminum electrolytic capacitor