JP3047106B2 - Cathode electrode for ashing process - Google Patents

Cathode electrode for ashing process

Info

Publication number
JP3047106B2
JP3047106B2 JP2089464A JP8946490A JP3047106B2 JP 3047106 B2 JP3047106 B2 JP 3047106B2 JP 2089464 A JP2089464 A JP 2089464A JP 8946490 A JP8946490 A JP 8946490A JP 3047106 B2 JP3047106 B2 JP 3047106B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
center
hole
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2089464A
Other languages
Japanese (ja)
Other versions
JPH03288423A (en
Inventor
正志 菊池
リチャード.エル.バーシン
正紀 植松
Original Assignee
日本真空技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本真空技術株式会社 filed Critical 日本真空技術株式会社
Priority to JP2089464A priority Critical patent/JP3047106B2/en
Publication of JPH03288423A publication Critical patent/JPH03288423A/en
Application granted granted Critical
Publication of JP3047106B2 publication Critical patent/JP3047106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体の基板に塗布されたレジスト膜をプ
ラズマを利用してアッシング(灰化)することにより除
去するプラズマアッシングプロセスに使用されるカソー
ド電極に関する。
The present invention is used in a plasma ashing process for removing a resist film applied to a semiconductor substrate by ashing (ashing) using plasma. It relates to a cathode electrode.

(従来の技術) 微細なIC回路を加工するために、半導体基板の表面に
回路パターンを形成したレジスト膜を設け、該レジスト
膜を介してその下層の絶縁膜、半導体膜或いは金属膜を
エッチングすることが行われている。
(Prior Art) In order to process a fine IC circuit, a resist film having a circuit pattern is provided on a surface of a semiconductor substrate, and an insulating film, a semiconductor film or a metal film thereunder is etched through the resist film. That is being done.

該レジスト膜は、エッチング処理が終了したのち基板
から除去されるが、その除去方法には、過酸化水素、有
機溶剤などの化学薬品を使用する湿式処理方法と、酸素
プラズマを用いてレジスト膜をアッシングする乾式除去
方法とがある。
The resist film is removed from the substrate after the etching process is completed. The removing method includes a wet processing method using a chemical such as hydrogen peroxide and an organic solvent, and a resist film using an oxygen plasma. There is a dry removal method that performs ashing.

湿式除去方法は、安全性に注意を払う必要があり、不
純物が基板に付着するので超LSI等の微細な加工には不
適当である。
The wet removal method needs to pay attention to safety, and is unsuitable for fine processing such as VLSI because impurities adhere to the substrate.

乾式処理方法は、基板に塗布されたCXHYNZのレジスト
膜に、酸素プラズマ中に生じた酸素ラジカルを反応さ
せ、該レジスト膜をCO2、NO2、及びH2Oへ分解・気化す
ることによって除去するので、湿式処理方法のような安
全性や不純物の付着の問題がなく、基板の微細加工に適
している。この場合、基板及びレジスト膜は、ラジカル
と反応させるために加熱される。
In the dry treatment method, a C X H Y N Z resist film applied to a substrate is reacted with oxygen radicals generated in oxygen plasma, and the resist film is decomposed into CO 2 , NO 2 , and H 2 O. Since it is removed by vaporization, there is no problem of safety and adhesion of impurities as in a wet processing method, and thus it is suitable for fine processing of a substrate. In this case, the substrate and the resist film are heated to react with the radical.

しかし、レジスト膜を塗布した基板がイオンビームの
照射を受けると、第1図示のように基板(1)に塗布さ
れたレジスト膜(2)の表層(2a)が硬化変質し、その
ため、レジスト膜(2)の内部にストレスを保有するよ
うになり、アッシングのために該基板(1)を急激に加
熱すると、熱応力でレジスト膜(2)が爆発することが
ある。この爆発で発生したレジスト膜(2)のフレイク
は、基板(1)上や真空処理室内にダスト、残留物とし
て残り、基板(1)に微細な加工を施す上で障害にな
る。実験によれば、該レジスト膜(2)の爆発下限温度
は、イオン注入条件、レジストの種類によって異なる
が、約70〜160℃の範囲にあり、該レジスト膜(2)の
幅が太い程爆発し易いことが分かった。
However, when the substrate coated with the resist film is irradiated with the ion beam, the surface layer (2a) of the resist film (2) coated on the substrate (1) is hardened and deteriorated as shown in FIG. When the substrate (1) is rapidly heated for ashing because stress is held inside (2), the resist film (2) may explode due to thermal stress. The flakes of the resist film (2) generated by the explosion remain as dust and residue on the substrate (1) and in the vacuum processing chamber, and become obstacles in performing fine processing on the substrate (1). According to experiments, the lower limit of the explosion temperature of the resist film (2) varies depending on the ion implantation conditions and the type of the resist, but is in the range of about 70 to 160 ° C., and the explosion occurs as the width of the resist film (2) increases. It turned out to be easy.

乾式のアッシングに伴うこうした障害を解消するため
に、本願の発明者は、先に第2図に示すような改良され
たプラズマアッシング装置を提案した。このプラズマア
ッシング装置は、側方に酸素ガス等の反応性ガスの導入
管(3)が接続されると共に下方に排気ポンプ(4a)に
連通した真空排気管(4)が接続された真空処理室
(5)を備え、反応性ガスのガス源(6)に接続される
導入管(3)の途中にはマイクロ波電源(7)とマイク
ロ波放電部(8)とで構成されたプラズマ発生装置
(9)が設けられ、更に該真空処理室(5)内には、基
板(1)を加熱する電気ヒータの加熱手段(10)と、板
状の互いに平行した基板電極(11)及び対向電極(12)
の2枚の電極を配置し、該基板電極(11)を挿通して昇
降するピン(13)により、該基板電極(11)の表面に接
触した位置と表面から浮上した位置とにレジスト膜を塗
布した基板(1)が昇降自在に設けられる。該基板電極
(11)はRF電源(14)に接続され、対向電極(12)はア
ース(15)に接続される。(16)は、ピン(13)を昇降
させる昇降装置である。
In order to eliminate such obstacles associated with dry ashing, the present inventor has previously proposed an improved plasma ashing apparatus as shown in FIG. This plasma ashing apparatus has a vacuum processing chamber in which an introduction pipe (3) for a reactive gas such as oxygen gas is connected to the side and a vacuum exhaust pipe (4) connected to an exhaust pump (4a) is connected below. (5) A plasma generator comprising a microwave power supply (7) and a microwave discharge unit (8) in the middle of an introduction pipe (3) connected to a reactive gas source (6). The vacuum processing chamber (5) is further provided with a heating means (10) of an electric heater for heating the substrate (1), a plate-shaped parallel substrate electrode (11) and a counter electrode. (12)
The two electrodes are arranged, and a pin (13) is inserted through the substrate electrode (11) and moved up and down. The resist film is formed between a position in contact with the surface of the substrate electrode (11) and a position floating above the surface. The coated substrate (1) is provided to be able to move up and down. The substrate electrode (11) is connected to an RF power supply (14), and the counter electrode (12) is connected to ground (15). (16) is a lifting device for raising and lowering the pin (13).

このアッシング装置により、第1図示のような、表層
(2a)が硬化したレジスト膜(2)をアッシングで除去
する場合、ガス導入管(3)から例えば酸素ガスの反応
性ガスを導入し、基板(1)を載せた基板電極(11)に
RF電源(14)から通電して該基板電極(11)と対向電極
(12)との間にRFプラズマを発生させ、ここで発生した
例えば酸素イオンで基板(1)上のレジスト膜(2)を
衝撃し、その表層(2a)の硬化変質した部分を剥がす。
次いで、基板(1)を加熱手段(10)で加熱し乍ら導入
管(3)に設けたプラズマ発生装置(9)を作動させて
真空処理室(5)に酸素ラジカルを導入し、基板(1)
上のレジスト膜(2)の残りの部分と反応させてこれを
CO2、NO2、及びH2Oへ分解・気化し、真空排気口(4)
から真空処理室(5)の外部へ排除する。尚、対向電極
(12)には、反応ガスが流通する小さい透孔(17)が形
成される。
When the resist film (2) having the hardened surface layer (2a) as shown in FIG. 1 is removed by ashing by this ashing device, a reactive gas such as oxygen gas is introduced from a gas inlet pipe (3) to the substrate. (1) on the substrate electrode (11)
An electric current is supplied from an RF power source (14) to generate RF plasma between the substrate electrode (11) and the counter electrode (12), and the generated resist plasma film (2) on the substrate (1) is generated by, for example, oxygen ions. To peel off the hardened and deteriorated portion of the surface layer (2a).
Next, while the substrate (1) is heated by the heating means (10), the plasma generator (9) provided in the introduction pipe (3) is operated to introduce oxygen radicals into the vacuum processing chamber (5). 1)
React with the rest of the resist film (2)
Decomposes and vaporizes into CO 2 , NO 2 , and H 2 O, and evacuates (4)
From the vacuum processing chamber (5). In addition, a small through hole (17) through which the reaction gas flows is formed in the counter electrode (12).

(発明が解決しようとする課題) 上記第2図示のアッシング装置でアッシングする場
合、対向電極(12)はアース電位であり、基板電極(1
1)は負電位になるが、該基板電極(11)側には、プラ
ズマ中のイオンが集りにくく、該基板電極(11)はセル
フバイアス電圧を生じて高いエネルギーのイオンが基板
(1)に入射するようになり、基板(1)自体或いは基
板(1)に形成した回路にダメージを生ずるようになる
欠点が見られた。
(Problem to be Solved by the Invention) When ashing is performed by the ashing device shown in the second illustration, the counter electrode (12) is at the ground potential and the substrate electrode (1
Although 1) is at a negative potential, ions in the plasma are less likely to collect on the substrate electrode (11) side, and the substrate electrode (11) generates a self-bias voltage and ions of high energy are applied to the substrate (1). There is a defect that the light is incident and the substrate (1) itself or a circuit formed on the substrate (1) is damaged.

本発明は、レジスト膜の爆発のない乾式のプラズマア
ッシング装置を提供することを目的とし、本発明の第2
の目的は、基板に損傷を与えることなくレジスト膜をア
ッシングする装置を提供することにある。
An object of the present invention is to provide a dry-type plasma ashing apparatus without explosion of a resist film.
An object of the present invention is to provide an apparatus for ashing a resist film without damaging a substrate.

(課題を解決するための手段) 本発明では、プラズマ発生装置を備えた反応性ガスの
導入管と真空排気管とが接続された真空処理室内に、基
板を加熱する加熱手段と、板状の互いに平行した基板電
極と対向電極の2枚の電極を配置し、該基板電極の表面
に接触した位置と表面から浮上した位置とに移動自在に
レジスト膜が塗布された基板を設け、該基板のレジスト
膜を該導入管から導入した反応性ガスのイオンによる衝
撃とラジカルによるアッシングで除去する装置に於い
て、該基板電極及び対向電極をRF電源に接続して共に同
電位のカソード電極に構成し、該対向電極を円板状に形
成し、その中心に円形の中心透孔を形成し、その中心か
ら該中心透孔の直径の距離を離れる毎に、該中心透孔の
半径に相当する幅の環状の電極面及びリブ部を残して多
重の同心円状の透孔を形成することにより、上記の目的
を達成するようにした。
(Means for Solving the Problems) According to the present invention, a heating means for heating a substrate is provided in a vacuum processing chamber in which a reactive gas introduction pipe provided with a plasma generator and a vacuum exhaust pipe are connected. Two electrodes, a substrate electrode and a counter electrode, are arranged in parallel with each other, and a substrate on which a resist film is movably provided between a position in contact with the surface of the substrate electrode and a position floating above the surface is provided. In a device for removing a resist film by ion bombardment of a reactive gas introduced from the introduction tube and ashing by radicals, the substrate electrode and the counter electrode are connected to an RF power source and both are configured as cathode electrodes having the same potential. The counter electrode is formed in a disc shape, a circular center through hole is formed at the center thereof, and each time the distance of the diameter of the center through hole from the center is increased, a width corresponding to the radius of the center through hole is obtained. Of the annular electrode surface and rib And by forming a concentric hole of the multiplexing, and so as to achieve the above object.

本発明の好ましい構成では、該中心透孔にアース電位
のダミー電極が設けられ、これに加えて該対向電極の周
縁に基板電極方向に向けて突出する環状の壁部が形成さ
れる。
In a preferred configuration of the present invention, a dummy electrode having a ground potential is provided in the center through-hole, and in addition to this, an annular wall protruding toward the substrate electrode is formed on the periphery of the counter electrode.

(作 用) 本発明のアッシングプロセス用カソード電極を備えた
アッシング装置により、第1図示のような、基板上の表
層が硬化したレジスト膜を除去する場合、ガス導入管か
ら例えば酸素ガスの反応性ガスを導入し、カソード電極
を構成する基板電極及び対向電極にRF電源から通電して
適当なアノードとの間にRFプラズマを発生させる。基板
電極及び対向電極は同一のRF電位であるために、プラズ
マ中の電子はこれらの電極の電位により反射され、これ
らの電極に到達することができず、プラズマに戻ってく
る。この電子の往復運動によって真空処理室内の反応性
ガスのイオン化が促進される。そして、反応性ガスの電
離効率が上昇すると、放電電流を上げる効果があり、RF
電源から同一の印加パワーが供給されていればカソード
電極の電圧が下がる。これを換言すれば、カソード電極
のセルフバイアス電圧を下げることができ、反応性ガス
のイオンが基板電極の表面に設けた基板に入射するエネ
ルギーは小さくなり、基板のイオン入射によるダメージ
が小さくなる。また、カソード電極を構成する対向電極
にリブ部を除き多重の同心円状の透孔を形成したことに
より、基板に塗布されたレジスト膜の表層を均一性の高
い分布でアッシングすることができる。このあと、従来
の場合と同様に、基板を加熱手段で加熱し乍ら導入管に
設けたプラズマ発生装置を作動させて真空処理室に酸素
ラジカルを導入し、レジスト膜の残りの部分と反応さ
せ、該レジスト膜をCO2、NO2、及びH2Oへ分解・気化
し、真空排気口から真空処理室の外部へ排除する。
(Operation) When an ashing apparatus having a cathode electrode for an ashing process of the present invention is used to remove a resist film having a hardened surface layer on a substrate as shown in FIG. Gas is introduced, and a substrate electrode and a counter electrode constituting a cathode electrode are energized from an RF power source to generate an RF plasma between the substrate electrode and an appropriate anode. Since the substrate electrode and the counter electrode have the same RF potential, electrons in the plasma are reflected by the potentials of these electrodes, cannot reach these electrodes, and return to the plasma. The reciprocation of the electrons promotes the ionization of the reactive gas in the vacuum processing chamber. And, when the ionization efficiency of the reactive gas increases, there is an effect of increasing the discharge current, and the RF
If the same applied power is supplied from the power supply, the voltage of the cathode electrode decreases. In other words, the self-bias voltage of the cathode electrode can be reduced, the energy of ions of the reactive gas incident on the substrate provided on the surface of the substrate electrode decreases, and the damage due to the ion injection of the substrate decreases. Further, by forming multiple concentric through-holes except for the rib portion in the counter electrode constituting the cathode electrode, the surface layer of the resist film applied to the substrate can be ashed with a highly uniform distribution. Thereafter, in the same manner as in the conventional case, while heating the substrate by the heating means, the plasma generator provided in the introduction pipe is operated to introduce oxygen radicals into the vacuum processing chamber and react with the rest of the resist film. The resist film is decomposed and vaporized into CO 2 , NO 2 , and H 2 O, and is removed from the vacuum exhaust port to the outside of the vacuum processing chamber.

アッシングの均一性を達成するためには、対向電極の
外形を円板状に形成し、その中心に円形の中心透孔を形
成するとともに、その中心から該中心透孔の直径の距離
を離れる毎に、該中心透孔の半径に相当する幅の環状の
電極面を残して前記同心円状の透孔を形成することが最
良であった。
In order to achieve ashing uniformity, the outer shape of the counter electrode is formed in a disk shape, a circular center through hole is formed at the center thereof, and each time the distance of the diameter of the center through hole from the center is increased. In addition, it is best to form the concentric through-hole except for an annular electrode surface having a width corresponding to the radius of the center through-hole.

(実施例) 本発明の実施例を別紙図面の第3図乃至第11図に基づ
き説明する。これらの図面に於いて、第1図及び第2図
に示す部分と共通する部分は同一の符号が付されてい
る。プラズマアッシング装置の真空処理室(5)には、
その側方にプラズマ発生装置(9)を備えた反応性ガス
の導入管(3)が接続されると共に下方に真空排気管
(4)が接続される。該導入管(3)には、例えばO2
ス、N2ガス、H2ガス、N2+H2(3%)のガス、CH4ガス
等の反応性ガスを充填したボンベから成るガス源(6)
が接続され、例えば酸素ガスが該導入管(3)を介して
該真空処理室(5)内に導入される。該真空排気管
(4)には排気ポンプ(4a)が接続され、該真空処理室
(5)内のガスを排気する。該プラズマ発生装置(9)
はマイクロ波電源(7)とマイクロ波放電部(8)とで
構成され、導入管(3)に反応性ガスが流れているとき
に該マイクロ波発生装置(9)を作動させると、該導入
管(3)の途中で発生するプラズマにより反応性ガスが
電離されてラジカルが発生し、そのラジカルがアッシン
グのために真空処理室(5)に導入される。
(Embodiment) An embodiment of the present invention will be described with reference to FIGS. In these drawings, parts common to those shown in FIGS. 1 and 2 are denoted by the same reference numerals. In the vacuum processing chamber (5) of the plasma ashing apparatus,
A reactive gas introduction pipe (3) equipped with a plasma generator (9) is connected to the side, and a vacuum exhaust pipe (4) is connected below. A gas source (eg, a cylinder filled with a reactive gas such as O 2 gas, N 2 gas, H 2 gas, N 2 + H 2 (3%) gas, CH 4 gas, etc.) 6)
Is connected, for example, oxygen gas is introduced into the vacuum processing chamber (5) through the introduction pipe (3). An exhaust pump (4a) is connected to the vacuum exhaust pipe (4) to exhaust gas in the vacuum processing chamber (5). The plasma generator (9)
Is constituted by a microwave power source (7) and a microwave discharge part (8). When the microwave generator (9) is operated while a reactive gas is flowing through the introduction pipe (3), the introduction is performed. The reactive gas is ionized by plasma generated in the middle of the tube (3) to generate radicals, and the radicals are introduced into the vacuum processing chamber (5) for ashing.

該真空処理室(5)の内部には、基板(1)を加熱す
る電気ヒータから成る加熱手段(10)と、円板状の互い
に平行した基板電極(11)及び対向電極(12)の2枚の
電極を適当な絶縁材製の保持部材(図示してない)に取
り付けて配置し、該基板電極(11)の表面側即ち対向電
極(12)に面した側に、第2図示のようなレジスト膜
(2a)を塗布した基板(1)が載せられる。該基板電極
(11)の表裏を貫通する複数本のピン(18)が該真空処
理室(5)の外部に設けた昇降装置(16)により上昇す
ると、該ピン(13)の先端で該基板(1)が支えられ、
第3図示にように基板電極(11)の表面から持ち上げら
れ、該基板(1)の背面に回り込んで付着したレジスト
膜のアッシングを可能にする。
Inside the vacuum processing chamber (5), a heating means (10) composed of an electric heater for heating the substrate (1), a disk-shaped parallel substrate electrode (11) and a counter electrode (12) are provided. The two electrodes are attached to a holding member (not shown) made of an appropriate insulating material, and arranged on the surface side of the substrate electrode (11), that is, the side facing the counter electrode (12), as shown in FIG. A substrate (1) coated with a suitable resist film (2a) is placed. When a plurality of pins (18) penetrating the front and back of the substrate electrode (11) are raised by an elevating device (16) provided outside the vacuum processing chamber (5), the tip of the pin (13) is used to lift the substrate. (1) is supported,
As shown in FIG. 3, the resist film lifted from the surface of the substrate electrode (11) and wrapped around the back surface of the substrate (1) enables ashing of the resist film adhered thereto.

以上のアッシング装置としての構成は、第2図示の従
来のアッシング装置と変わりがないが、本発明に於いて
は、該基板電極(11)と対向電極(12)をRF電源(14)
に接続してカソード電極(18)に構成し、該対向電極
(12)に、第4図示にようなリブ部(19)を除き多重の
同心円状の透孔(20)を形成するようにした。該透孔
(20)は基板(1)のレジスト膜(2)を均一にアッシ
ングするために作用し、発明者の繰り返しての実験によ
れば、第4図示のように、対向電極(12)は、円板状の
外形を有し、その中心(21)に円形の中心透孔(22)を
形成し、その中心(21)から該中心透孔(22)の直径D
の距離を離れる毎に、該中心透孔(22)の半径Rに相当
する幅の環状の電極面(23)を残して前記同心円状の透
孔(20)を2重に形成したものが、アッシングの均一性
に最良の結果をもたらすことが判明した。該対向電極
(12)の外周に残された電極面(23)の外周部には、等
間隔で8箇所に取り付け用の止めねじ穴(24)を設ける
ようにした。具体的な該対向電極(12)の寸法の一例と
しては、板厚2mmのアルミニウム板で全体の直径を150m
m、中心透孔(22)の直径Dを25mmに形成し、2重の同
心円状の透孔(20)の幅を12.5mm、3重に形成される同
心円状の電極面(23)の夫々の幅を12.5mmに形成する。
そして、その表面をAl2O3でコーティングする。また、
基板電極(11)もアルミニウムで形成され、その表面は
Al2O3でコーティングされる。
The configuration of the ashing device described above is the same as that of the conventional ashing device shown in FIG. 2, but in the present invention, the substrate electrode (11) and the counter electrode (12) are connected to the RF power source (14).
To form a cathode electrode (18), and a plurality of concentric through holes (20) are formed in the counter electrode (12) except for a rib (19) as shown in FIG. . The through holes (20) act to uniformly ashing the resist film (2) of the substrate (1). According to repeated experiments by the inventor, as shown in FIG. Has a disk-shaped outer shape, forms a circular center through hole (22) at the center (21), and extends from the center (21) to the diameter D of the center through hole (22).
Each time the distance is increased, the concentric through-hole (20) is formed in a double form while leaving an annular electrode surface (23) having a width corresponding to the radius R of the center through-hole (22). It has been found that the ashing uniformity gives the best results. At the outer periphery of the electrode surface (23) remaining on the outer periphery of the counter electrode (12), set screw holes (24) for attachment are provided at eight locations at equal intervals. As a specific example of the dimensions of the counter electrode (12), an aluminum plate having a thickness of 2 mm and an overall diameter of 150 m
m, the diameter D of the central through hole (22) is 25 mm, the width of the double concentric through hole (20) is 12.5 mm, and each of the three concentric electrode surfaces (23) is formed three times. Is formed to have a width of 12.5 mm.
Then, the surface is coated with Al 2 O 3 . Also,
The substrate electrode (11) is also made of aluminum, and its surface is
Coated with Al 2 O 3 .

以上の構成の本発明のカソード電極(18)を備えたプ
ラズマアッシング装置により第1図示のような硬化した
表層(2a)を有するレジスト膜(2)を基板(1)から
除去する作動の詳細を説明すると次の通りである。
The details of the operation of removing the resist film (2) having the hardened surface layer (2a) as shown in FIG. 1 from the substrate (1) by the plasma ashing apparatus having the cathode electrode (18) of the present invention having the above configuration will be described. The explanation is as follows.

まず、第4図の形状を有する直径150mmの基板電極(1
1)の上に、微細な線幅のレジスト膜(2)を有する直
径150mmの円形の基板(1)を載せ、真空処理室(5)
内を真空排気管(4)から0.3Torrの真空に排気し、ガ
ス導入管(3)から例えば酸素ガスの反応性ガスを200s
ccm導入し、カソード電極(18)を構成する基板電極(1
1)及び対向電極(12)にRF電源(14)から通電して適
当なアノード、例えばアースに接続された真空処理室
(5)の室壁との間にRFプラズマを発生させる。このと
き発生するRFプラズマは、基板電極(11)及び対向電極
(12)は同一のRF電位であるために、プラズマ中の電子
はこれらの電極の電位により反射され、これらの電極に
到達することができず、プラズマに戻ってくる。この電
子の往復運動によって真空処理室(5)内の反応性ガス
のイオン化が促進される。そして、反応性ガスの電離効
率が上昇すると、放電電流が上がり、RF電源(14)から
同一の印加パワーが供給されていればカソード電極(1
8)のセルフバイアス電圧が下がり、反応性ガスのイオ
ンが基板(1)に入射するエネルギーは小さくなるため
基板(1)のイオン入射によるダメージが小さくなる。
このときカソード電極(18)に生じたセルフバイアス電
圧Vdcを測定したところ、第5図の曲線(26)で示すよ
うに低い値になった。比較のために、第5図に同条件で
測定した第2図示の従来の1枚の基板電極(11)から成
るカソード電極のセルフバイアス電圧の値を曲線(27)
で示した。これにより明らかなように、基板電極(11)
と対向電極(12)の2枚の電極で構成されたカソード電
極(18)のセルフバイアス電圧は、従来のカソード電極
よりも約1/7の低い値が得られた。
First, a 150 mm diameter substrate electrode (1
A circular substrate (1) having a diameter of 150 mm and having a resist film (2) having a fine line width is placed on the substrate (1), and a vacuum processing chamber (5) is provided.
The inside is evacuated from the vacuum exhaust pipe (4) to a vacuum of 0.3 Torr, and a reactive gas such as oxygen gas is supplied from the gas inlet pipe (3) for 200 seconds.
ccm, and the substrate electrode (1
1) and the counter electrode (12) is energized from an RF power source (14) to generate RF plasma between a suitable anode, for example, the chamber wall of a vacuum processing chamber (5) connected to ground. In the RF plasma generated at this time, since the substrate electrode (11) and the counter electrode (12) have the same RF potential, electrons in the plasma are reflected by the potentials of these electrodes and reach these electrodes. Not come back to the plasma. The reciprocation of the electrons promotes the ionization of the reactive gas in the vacuum processing chamber (5). When the ionization efficiency of the reactive gas increases, the discharge current increases, and if the same applied power is supplied from the RF power source (14), the cathode electrode (1
8) The self-bias voltage is reduced, and the energy of reactive gas ions incident on the substrate (1) is reduced, so that damage due to ion incidence on the substrate (1) is reduced.
When the self-bias voltage Vdc generated at the cathode electrode (18) at this time was measured, the value was low as indicated by the curve (26) in FIG. For comparison, the value of the self-bias voltage of the cathode electrode composed of one conventional substrate electrode (11) shown in FIG. 2 measured under the same conditions as in FIG.
Indicated by As is clear from this, the substrate electrode (11)
The self-bias voltage of the cathode electrode (18) composed of two electrodes, namely, the counter electrode (12) and the self-bias electrode was about 1/7 lower than that of the conventional cathode electrode.

該対向電極(12)には、リブ部(19)を除き多重の同
心円状の透孔(20)が形成されているので、基板(1)
に塗布されたレジスト膜(2)の表層(2a)を均一性の
高い分布でプラズマによりアッシングすることができ、
カソード電極(18)のみを作動させてアッシングの均一
性を測定したところ、第6図の曲線(28)で示すような
約±10%以下の均一性の高い分布が得られた。比較のた
めに、同条件で第2図の従来の装置により基板の硬化し
た表層(2a)をアッシングしたときの均一性の分布を曲
線(29)で示した。第2図示の従来の装置では、真空処
理室(5)の室壁がアース電位になるため、対向電極
(12)が平板状の電極であると、プラズマが該室壁の方
に偏り、該曲線(29)で示すようにアッシングの速度が
基板(1)の外周で速くなって均一性は±30%と悪くな
る。
The counter electrode (12) is formed with multiple concentric through holes (20) except for the rib portion (19).
Ashing can be performed on the surface layer (2a) of the resist film (2) applied on the plasma with a highly uniform distribution,
When the ashing uniformity was measured by operating only the cathode electrode (18), a highly uniform distribution of about ± 10% or less as shown by a curve (28) in FIG. 6 was obtained. For comparison, the curve (29) shows the uniformity distribution when the cured surface layer (2a) of the substrate was ashed by the conventional apparatus shown in FIG. 2 under the same conditions. In the conventional apparatus shown in FIG. 2, since the chamber wall of the vacuum processing chamber (5) is at the ground potential, if the counter electrode (12) is a flat electrode, the plasma is biased toward the chamber wall, and As shown by the curve (29), the ashing speed is increased on the outer periphery of the substrate (1), and the uniformity is reduced to ± 30%.

基板(1)のレジスト膜(2)の硬化した表層(2a)
が、イオンにより略均一にアッシングされ終わると、従
来の場合と同様に、基板(1)を加熱手段(10)で加熱
し乍ら導入管(3)に設けたプラズマ発生装置(9)を
作動させ、真空処理室(5)に導入される酸素ガス中に
酸素ラジカルを発生させ、該酸素ラジカルとレジスト膜
(2)の残りの部分とを反応させて該レジスト膜(2)
をCO2、NO2、及びH2Oへ分解・気化し、真空排気管
(4)から真空処理室(5)の外部へ排除する。
Hardened surface layer (2a) of resist film (2) on substrate (1)
When the ashing is completed substantially uniformly by the ions, the plasma generator (9) provided in the introduction pipe (3) is operated while the substrate (1) is heated by the heating means (10) as in the conventional case. Then, oxygen radicals are generated in the oxygen gas introduced into the vacuum processing chamber (5), and the oxygen radicals react with the remaining portion of the resist film (2) to form the resist film (2).
Is decomposed and vaporized into CO 2 , NO 2 , and H 2 O, and removed from the vacuum exhaust pipe (4) to the outside of the vacuum processing chamber (5).

以上のプロセスにより、硬化した表層(2a)を有する
レジスト膜(2)を爆発させずにアッシングすることが
出来る。
By the above process, ashing can be performed without exploding the resist film (2) having the cured surface layer (2a).

カソード電極(18)を放電させたときのアッシングの
均一性は、対向電極(12)の外形を円板状に形成し、そ
の中心に円形の中心透孔(22)を形成するとともに、そ
の中心から該中心透孔(22)の直径の距離を離れる毎
に、該中心透孔(22)の半径に相当する幅の環状の電極
面(23)を残して前記同心円状の透孔(20)を形成し、
電極面(23)の幅と同心円状の透孔(20)の幅を等しく
した場合が良好であった。
The uniformity of ashing when the cathode electrode (18) is discharged is determined by forming the outer shape of the counter electrode (12) into a disk shape, forming a circular center through hole (22) at the center thereof, and Each time the distance of the diameter of the central through hole (22) is increased from the distance, the concentric through hole (20) is left, leaving an annular electrode surface (23) having a width corresponding to the radius of the central through hole (22). To form
The case where the width of the electrode surface (23) was equal to the width of the concentric through-hole (20) was good.

しかし、該対向電極(12)の中心透孔(22)に対向す
る部分のレジスト膜(2)のアッシング速度は、第7図
の曲線(30)のピーク部分(31)のように、他の部分の
アッシング速度よりも速くなる傾向が見られた。そこ
で、該中心透孔(22)に第8図に示すようなアース電位
の円筒形のダミー電極(32)を設けたところ、アッシン
グ速度の分布を、第7図の曲線(33)に示すように、中
心透孔(22)に対向する部分のレジスト膜(2)のアッ
シング速度が抑制された略均一の分布にすることができ
た。該中心透孔(22)の直径が25mmの場合、ダミー電極
(32)には直径10mmの円形の電極が使用される。
However, the ashing speed of the resist film (2) in the portion facing the center through hole (22) of the counter electrode (12) is different from that of the peak (31) of the curve (30) in FIG. There was a tendency to be faster than the ashing speed of the part. Therefore, when a cylindrical dummy electrode (32) having a ground potential as shown in FIG. 8 is provided in the central through-hole (22), the distribution of the ashing speed is shown by a curve (33) in FIG. In addition, it was possible to obtain a substantially uniform distribution in which the ashing speed of the resist film (2) in the portion facing the central through hole (22) was suppressed. When the diameter of the central through hole (22) is 25 mm, a circular electrode having a diameter of 10 mm is used as the dummy electrode (32).

更に、対向電極(12)の周辺部に対向する部分のレジ
スト膜(2)のアッシング速度は、第9図の曲線(34)
の両端部(35)に示すように、遅くなる傾向があり、ア
ッシング速度の最も速い部分との間で±5%のアッシン
グ速度差があった。そこで、第10図のように、該対向電
極(12)の周縁に、基板電極(11)の方向に向けて突出
する環状の壁部(36)を形成したところ、第9図の曲線
(37)のように対向電極(12)の周辺部に対向する部分
のレジスト膜(2)のアッシング速度が上昇し、アッシ
ング速度差が均一化され±3%の範囲に収めることがで
きた。該対向電極(12)の直径が150mmの場合、該壁部
(36)の高さは、4mmに形成される。
Further, the ashing speed of the resist film (2) in the portion facing the peripheral portion of the counter electrode (12) is shown by the curve (34) in FIG.
As shown in the both ends (35), there was a tendency to be slow, and there was a ± 5% difference in the ashing speed between the portion with the highest ashing speed. Therefore, as shown in FIG. 10, an annular wall portion (36) projecting toward the substrate electrode (11) is formed on the periphery of the counter electrode (12). The ashing speed of the resist film (2) in the portion opposed to the peripheral portion of the counter electrode (12) was increased as shown in (2), and the difference in the ashing speed was made uniform and could be kept within the range of ± 3%. When the diameter of the counter electrode (12) is 150 mm, the height of the wall (36) is formed to be 4 mm.

いずれの実施例でも、該対向電極(12)の表面は、ア
ルミナでコーテイングされる。
In either embodiment, the surface of the counter electrode (12) is coated with alumina.

(発明の効果) 以上のように、本発明によれば、プラズマアッシング
装置の真空処理室内に互いに平行して設けられた基板電
極と対向電極をRF電源に接続して同電位のカソード電極
に構成し、該対向電極を円板状に形成し、その中心に円
形の中心透孔を形成すると共にその中心から該中心透孔
の直径の距離を離れる毎に、該中心透孔の半径に相当す
る幅の環状の電極面及びリブ部を残して多重の同心円状
の透孔を形成したので、基板に塗布された表層の硬化し
たレジスト膜のプラズマアッシングを、均一性良く該基
板にダメージを与えずしかもレジスト膜を爆発させずに
行える等の効果が得られる。
(Effects of the Invention) As described above, according to the present invention, a substrate electrode and a counter electrode provided in parallel in a vacuum processing chamber of a plasma ashing apparatus are connected to an RF power source to form cathode electrodes having the same potential. The counter electrode is formed in a disk shape, and a circular center through hole is formed at the center thereof, and each time the distance from the center to the diameter of the center through hole is increased, it corresponds to the radius of the center through hole. Since multiple concentric through-holes are formed leaving a ring-shaped electrode surface and a rib portion having a width, plasma ashing of a hardened resist film on a surface layer applied to a substrate can be uniformly performed without damaging the substrate. In addition, effects can be obtained such that the resist film can be formed without exploding.

【図面の簡単な説明】[Brief description of the drawings]

第1図は基板に塗布されたレジスト膜の拡大断面図、第
2図は従来のプラズマアッシング装置の截断側面図、第
3図は本発明の実施例の截断側面図、第4図は第3図の
IV−IV線部分の拡大図、第5図は対向電極のセルフバイ
アス電圧の線図、第6図、第7図及び第9図は基板各部
のアッシング速度の変化を示す線図、第8図及び第10図
は本発明の他の実施例の説明図である。 (1)……基板、(2)……レジスト膜 (3)……反応ガス導入管、(4)……真空排気管 (5)……真空処理室、(9)……プラズマ発生装置 (10)……加熱手段、(11)……基板電極 (12)……対向電極、(14)……RF電源 (18)……カソード電極、(19)……リブ部 (20)……同心円状の透孔、(21)……中心 (22)……中心透孔、(23)……電極面 (32)……ダミー電極、(36)……壁部
FIG. 1 is an enlarged sectional view of a resist film applied to a substrate, FIG. 2 is a sectional side view of a conventional plasma ashing apparatus, FIG. 3 is a sectional side view of an embodiment of the present invention, and FIG. In the figure
FIG. 5 is an enlarged view of a line IV-IV, FIG. 5 is a diagram of a self-bias voltage of a counter electrode, FIGS. 6, 7, and 9 are diagrams showing changes in ashing speed of various parts of a substrate, and FIG. FIG. 10 is an explanatory view of another embodiment of the present invention. (1) ... substrate, (2) ... resist film (3) ... reaction gas introduction pipe, (4) ... vacuum exhaust pipe (5) ... vacuum processing chamber, (9) ... plasma generator ( 10) Heating means (11) Substrate electrode (12) Counter electrode (14) RF power supply (18) Cathode electrode (19) Rib (20) Concentric circle Shaped through hole, (21) ... Center (22) ... Center through hole, (23) ... Electrode surface (32) ... Dummy electrode, (36) ... Wall

フロントページの続き (56)参考文献 特開 昭61−245530(JP,A) 特開 昭63−175427(JP,A) 特開 昭63−107025(JP,A) 特開 平1−258426(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/3065 Continuation of the front page (56) References JP-A-61-245530 (JP, A) JP-A-63-175427 (JP, A) JP-A-63-107025 (JP, A) JP-A-1-258426 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/3065

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】プラズマ発生装置を備えた反応性ガスの導
入管と真空排気管とが接続された真空処理室内に、基板
を加熱する加熱手段と、板状の互いに平行した基板電極
と対向電極の2枚の電極を配置し、該基板電極の表面に
接触した位置と表面から浮上した位置とに移動自在にレ
ジスト膜が塗布された基板を設け、該基板のレジスト膜
を該導入管から導入した反応性ガスのイオンによる衝撃
とラジカルによるアッシングで除去する装置に於いて、
該基板電極及び対向電極をRF電源に接続して共に同電位
のカソード電極に構成し、該対向電極を円板状に形成
し、その中心に円形の中心透孔を形成し、その中心から
該中心透孔の直径の距離を離れる毎に、該中心透孔の半
径に相当する幅の環状の電極面及びリブ部を残して多重
の同心円状の透孔を形成したことを特徴とするアッシン
グプロセス用カソード電極。
1. A heating means for heating a substrate, a plate-shaped parallel substrate electrode and a counter electrode are provided in a vacuum processing chamber in which a reactive gas introduction pipe provided with a plasma generator and a vacuum exhaust pipe are connected. A substrate coated with a resist film is provided movably between a position in contact with the surface of the substrate electrode and a position floating above the surface, and the resist film of the substrate is introduced from the introduction tube. In a device that removes by ion bombardment and radical ashing of reactive gas,
The substrate electrode and the counter electrode are connected to an RF power source to constitute a cathode electrode having the same potential, the counter electrode is formed in a disk shape, a circular center through hole is formed at the center, and the center electrode is formed from the center. An ashing process characterized by forming a plurality of concentric through-holes except for a ring-shaped electrode surface and a rib portion having a width corresponding to the radius of the center through-hole each time the center through-hole diameter is increased. For cathode electrode.
【請求項2】上記対向電極は円板状の外形を有し、その
中心に円形の中心透孔が形成され、その中心から該中心
透孔の直径の距離を離れる毎に、該中心透孔の半径に相
当する幅の環状の電極面を残して前記同心円状の透孔を
形成し、該中心透孔にアース電位のダミー電極を設けた
ことを特徴とする請求項1に記載のアッシングプロセス
用カソード電極。
2. The counter electrode has a disk-shaped outer shape, and has a circular center through-hole formed at the center thereof. 2. The ashing process according to claim 1, wherein the concentric through-hole is formed while leaving an annular electrode surface having a width corresponding to the radius of the ashing, and a dummy electrode having a ground potential is provided in the center through-hole. For cathode electrode.
【請求項3】上記対向電極は円板状の外形を有し、その
中心に円形の中心透孔が形成され、その中心から該中心
透孔の直径の距離を離れる毎に、該中心透孔の半径に相
当する幅の環状の電極面を残して前記同心円状の透孔を
形成し、該対向電極の周縁に基板電極方向に向けて突出
する環状の壁部を形成したことを特徴とする請求項1に
記載のアッシングプロセス用カソード電極。
3. The counter electrode has a disk-like outer shape, and has a circular center through hole formed at the center thereof. The concentric through-hole is formed while leaving an annular electrode surface having a width corresponding to the radius of the counter electrode, and an annular wall protruding toward the substrate electrode is formed on the periphery of the counter electrode. The cathode electrode for an ashing process according to claim 1.
【請求項4】上記対向電極は円板状の外形を有し、その
中心に円形の中心透孔が形成され、その中心から該中心
透孔の直径の距離を離れる毎に、該中心透孔の半径に相
当する幅の環状の電極面を残して前記同心円状の透孔を
形成し、該対向電極の周縁に基板電極方向に向けて突出
する環状の壁部を形成し、該対向電極の表面をアルミナ
でコーテイングしたことを特徴とする請求項1に記載の
アッシングプロセス用カソード電極。
4. The counter electrode has a disk-like outer shape, and has a circular center through-hole formed at the center thereof. The concentric through-hole is formed leaving an annular electrode surface having a width corresponding to the radius of the counter electrode, and an annular wall protruding toward the substrate electrode is formed on the periphery of the counter electrode. The cathode electrode for an ashing process according to claim 1, wherein the surface is coated with alumina.
JP2089464A 1990-04-04 1990-04-04 Cathode electrode for ashing process Expired - Fee Related JP3047106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2089464A JP3047106B2 (en) 1990-04-04 1990-04-04 Cathode electrode for ashing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2089464A JP3047106B2 (en) 1990-04-04 1990-04-04 Cathode electrode for ashing process

Publications (2)

Publication Number Publication Date
JPH03288423A JPH03288423A (en) 1991-12-18
JP3047106B2 true JP3047106B2 (en) 2000-05-29

Family

ID=13971433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2089464A Expired - Fee Related JP3047106B2 (en) 1990-04-04 1990-04-04 Cathode electrode for ashing process

Country Status (1)

Country Link
JP (1) JP3047106B2 (en)

Also Published As

Publication number Publication date
JPH03288423A (en) 1991-12-18

Similar Documents

Publication Publication Date Title
US5228052A (en) Plasma ashing apparatus
US5707485A (en) Method and apparatus for facilitating removal of material from the backside of wafers via a plasma etch
TW466618B (en) Plasma processing method and apparatus for eliminating damages in a plasma process of a substrate
JP3912993B2 (en) Neutral particle beam processing equipment
US4340461A (en) Modified RIE chamber for uniform silicon etching
JP4042817B2 (en) Neutral particle beam processing equipment
US5543688A (en) Plasma generation apparatus with interleaved electrodes and corresponding method
JPS6136589B2 (en)
JP2869384B2 (en) Plasma processing method
US7109122B2 (en) Method and apparatus for reducing substrate charging damage
JP3520577B2 (en) Plasma processing equipment
JP3047106B2 (en) Cathode electrode for ashing process
JP2886878B2 (en) Vacuum processing equipment
JP3173691B2 (en) Plasma processing equipment
JPS5936257B2 (en) How to remove resist material
JPH08319588A (en) Plasma etching device
JPH09186088A (en) Method and apparatus for manufacturing semiconductor
JP4410885B2 (en) Parallel plate type reactive ion etching system
JPH07207471A (en) Plasma etching device
JPS6276627A (en) Dry etching device
JP2001351880A (en) Method of dry etching and dry etching apparatus used therein
JP2838528B2 (en) Plasma ashing device
JPH06104224A (en) Resist removal apparatus and its application method
JPH08241886A (en) Plasma processing method
JPH10177993A (en) Plasma processing device of parallel plate narrow electrode-type

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees