JP3046581B2 - Method for using photolysis catalyst and method for producing hydrogen - Google Patents
Method for using photolysis catalyst and method for producing hydrogenInfo
- Publication number
- JP3046581B2 JP3046581B2 JP10273802A JP27380298A JP3046581B2 JP 3046581 B2 JP3046581 B2 JP 3046581B2 JP 10273802 A JP10273802 A JP 10273802A JP 27380298 A JP27380298 A JP 27380298A JP 3046581 B2 JP3046581 B2 JP 3046581B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- photolysis
- visible light
- layered
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 68
- 238000006303 photolysis reaction Methods 0.000 title claims description 68
- 239000001257 hydrogen Substances 0.000 title claims description 35
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 34
- 230000015843 photosynthesis, light reaction Effects 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 title claims description 12
- -1 titanate compound Chemical class 0.000 claims description 43
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 27
- 239000010936 titanium Substances 0.000 claims description 27
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 27
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 18
- 229910021645 metal ion Inorganic materials 0.000 claims description 18
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 229910052697 platinum Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 229910052707 ruthenium Inorganic materials 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims description 8
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 239000010948 rhodium Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 238000001782 photodegradation Methods 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 30
- 239000000243 solution Substances 0.000 description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 8
- 229910001431 copper ion Inorganic materials 0.000 description 8
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 8
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 8
- 229910052753 mercury Inorganic materials 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 230000001699 photocatalysis Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 239000003426 co-catalyst Substances 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 229910001453 nickel ion Inorganic materials 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 125000005210 alkyl ammonium group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- 150000002896 organic halogen compounds Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000023369 Carales Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical group 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002704 solution binder Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Catalysts (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光分解触媒の使用
方法及び水素製造方法に関し、特に太陽光によって効率
良く作用する光分解触媒の使用方法及び水素製造方法に
関するものである。[0001] The present invention relates to the use of a photolysis catalyst .
A method及beauty Hydrogen production method, to a method及beauty Hydrogen production method using photolysis catalyst which acts efficiently in particular by sunlight.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
半導体を光分解触媒として用い、水を光分解することに
より水素を製造する方法が見出され、光エネルギーを化
学エネルギーに変換する方法が提案されている。このよ
うに、水を水素と酸素に光分解することのできる半導体
の代表的なものとして白金担持酸化チタンが知られてい
る。しかし、この触媒を水中に懸濁して使用すると水の
分解反応がすぐ停止してしまう。これは、触媒表面の白
金上で逆反応である水素と酸素の再結合が進行するため
と報告されている(K. Sayama, H. Arakawa, J. Chem.
Soc. Chem. Commun., 150(1992).)。この逆反応を抑制
する方法として、白金担持酸化チタンを層状化合物の層
間に包接することが有効であり、中でも層状チタン酸化
合物の層間に酸化チタン及び白金を包接した触媒は、水
中懸濁状態でも長時間安定に水を光分解することができ
ると報告されている(S. Uchida, Y. Yamamoto, Y. Hij
ishiro, A. Watanabe, O. Ito, T. Sato, J. Chem. So
c. Faraday Trans., 93, 3229(1997). )。2. Description of the Related Art In recent years,
A method for producing hydrogen by photodecomposing water using a semiconductor as a photodecomposition catalyst has been found, and a method for converting light energy into chemical energy has been proposed. As described above, platinum-supported titanium oxide is known as a typical semiconductor capable of photodecomposing water into hydrogen and oxygen. However, when this catalyst is used by suspending it in water, the decomposition reaction of water is immediately stopped. This is reported to be due to the reverse reaction of hydrogen and oxygen recombination progressing on the platinum on the catalyst surface (K. Sayama, H. Arakawa, J. Chem.
Soc. Chem. Commun., 150 (1992).). As a method of suppressing this reverse reaction, it is effective to include platinum-supported titanium oxide between layers of the layered compound, and in particular, a catalyst in which titanium oxide and platinum are included between layers of the layered titanate compound is in a suspended state in water. However, it has been reported that water can be stably photodegraded for a long time (S. Uchida, Y. Yamamoto, Y. Hij
ishiro, A. Watanabe, O. Ito, T. Sato, J. Chem. So
c. Faraday Trans., 93, 3229 (1997).
【0003】しかしながら、水を安定に光分解可能なこ
れまでの光触媒は、3eV以上の大きなバンドギャップ
エネルギーを有しており、波長400nm以上の長波長
の光(可視光)で励起することができなかった。周知の
ごとく太陽光に含まれる波長400nm以下の光(紫外
光)は5%程度であり、大部分は波長400nm以上の
可視光である。従って、可視光で励起可能で太陽光の利
用効率の高い半導体光触媒の開発が従来より望まれてい
る。However, conventional photocatalysts capable of stably photodecomposing water have a large band gap energy of 3 eV or more, and can be excited by long-wavelength light (visible light) having a wavelength of 400 nm or more. Did not. As is well known, the light (ultraviolet light) having a wavelength of 400 nm or less contained in sunlight is about 5%, and most is visible light having a wavelength of 400 nm or more. Therefore, development of a semiconductor photocatalyst which can be excited by visible light and has high utilization efficiency of sunlight has been conventionally desired.
【0004】本発明の目的は、太陽光で効率の良い触媒
活性を示す光分解触媒の使用方法及び水素製造方法を提
供することにある。An object of the present invention is to provide a method及beauty Hydrogen production method using photolysis catalysts having good catalyst activity and efficient in sunlight.
【0005】[0005]
【課題を解決するための手段】本発明の光分解触媒の使
用方法は、バナジウム、クロム、マンガン、鉄、コバル
ト、ニッケル、銅、モリブデン、ルテニウム、銀、カド
ミウム、及びセリウムから選ばれる少なくとも1種の金
属イオンを層状チタン酸の結晶構造中に含む陽イオン交
換性の層状チタン酸化合物からなる光分解触媒に、波長
400nm以上の可視光を照射して励起させることを特
徴としている。Means for Solving the Problems The use of the photolysis catalyst of the present invention.
The method of use is a cation exchange containing at least one metal ion selected from vanadium, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, ruthenium, silver, cadmium, and cerium in the layered titanate crystal structure. Photodecomposition catalyst composed of a layered titanate compound
It is characterized by being excited by irradiating visible light of 400 nm or more .
【0006】本発明の光分解触媒においては、上記金属
イオンが層状チタン酸の結晶構造中に含まれることによ
り、チタン原子の一部がこれらの金属原子で置換され、
この結果バンドギャップエネルギーが低下し、可視光で
励起可能となる。従って、太陽光で効率良く作用する光
分解触媒とすることができる。また、このような光分解
触媒を用いて水を分解することにより、太陽光によって
効率良く水を分解し、水素を製造することができる。In the photodecomposition catalyst of the present invention, a part of the titanium atoms is replaced by these metal atoms by including the metal ions in the crystal structure of the layered titanic acid.
As a result, the band gap energy decreases, and excitation with visible light becomes possible. Therefore, a photodecomposition catalyst that works efficiently with sunlight can be obtained. In addition, by decomposing water using such a photodecomposition catalyst, water can be decomposed efficiently by sunlight and hydrogen can be produced.
【0007】本発明においては、触媒活性をさらに高め
るため、層状チタン酸化合物の層間に、酸化チタン、白
金、ルテニウム、ロジウム、銅、及びニッケルから選ば
れる少なくとも1種の金属または金属酸化物を助触媒と
して包接させてもよい。このような助触媒の含有量は、
助触媒の種類や層状チタン酸化合物の種類等により適宜
選択されるが、一般には0.01〜10重量%が好まし
い。In the present invention, in order to further enhance the catalytic activity, at least one metal or metal oxide selected from titanium oxide, platinum, ruthenium, rhodium, copper and nickel is assisted between the layered titanate compounds. It may be included as a catalyst. The content of such a co-catalyst is
It is appropriately selected depending on the type of the co-catalyst, the type of the layered titanate compound, and the like, but is generally preferably 0.01 to 10% by weight.
【0008】また、これらの助触媒は、複数の種類を混
合して包接させてもよい。例えば、白金、ルテニウム、
ロジウム、銅、及びニッケルから選ばれる少なくとも1
種の金属または金属酸化物を包接させた後、さらに酸化
チタンを層間に包接させてもよい。これにより、白金等
の助触媒を担持した酸化チタンを、層状チタン酸化合物
の層間に包接した光分解触媒を得ることができる。[0008] These cocatalysts may be included by mixing a plurality of types. For example, platinum, ruthenium,
At least one selected from rhodium, copper, and nickel
After the seed metal or metal oxide is included, titanium oxide may be further included between the layers. This makes it possible to obtain a photolysis catalyst in which titanium oxide supporting a promoter such as platinum is included between layers of the layered titanate compound.
【0009】本発明の水素製造方法は、上記本発明の光
分解触媒を用い、波長400nm以上の可視光を照射し
て水を分解し水素を製造することを特徴としている。The method for producing hydrogen of the present invention is characterized in that hydrogen is produced by decomposing water by irradiating visible light having a wavelength of 400 nm or more using the photodecomposition catalyst of the present invention.
【0010】[0010]
【発明の実施の形態】以下、本発明をさらに詳細に説明
する。 (1)光分解触媒の構成 本発明の光分解触媒は、上記の金属イオンを層状チタン
酸の結晶構造中に含む陽イオン交換性の層状チタン酸化
合物(a)単独、または層状チタン酸化合物(a)の層
間に上記助触媒(b)を包接した層状チタン酸化合物で
ある。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. (1) Configuration of Photodecomposition Catalyst The photodecomposition catalyst of the present invention comprises a cation-exchangeable layered titanate compound (a) containing the above-mentioned metal ion in the crystal structure of layered titanate alone or a layered titanate compound ( It is a layered titanate compound in which the above cocatalyst (b) is included between the layers of a).
【0011】(a)層状チタン酸化合物 本発明における層状チタン酸化合物は、層状の格子間に
有する陽イオンを、化合物の外部の陽イオンとイオン交
換できるものであれば如何なるものでもよいが、具体的
には、H2 Ti2 O5 、H2 Ti3 O7 、H2 Ti4 O
9 、H2 La2Ti3 O10、HTiNbO5 、及びこれ
らのアルカリ金属塩及びアルカリ土類金属塩等が挙げら
れ、特にH2 Ti2 O5 、H2 Ti3 O7 、H2 Ti4
O9 が好ましい。 (A) Layered titanate compound The layered titanate compound in the present invention may be any compound as long as it can ion-exchange a cation having a layered interstitial with a cation outside the compound. Specifically, H 2 Ti 2 O 5 , H 2 Ti 3 O 7 , H 2 Ti 4 O
9 , H 2 La 2 Ti 3 O 10 , HTiNbO 5 , and alkali metal salts and alkaline earth metal salts thereof, and particularly, H 2 Ti 2 O 5 , H 2 Ti 3 O 7 , H 2 Ti 4
O 9 is preferred.
【0012】本発明の光分解触媒では、このような層状
チタン酸化合物中に、上記金属イオンが含まれており、
金属イオンの少なくとも一部がこのような層状チタン酸
化合物の結晶構造中のチタン原子の一部と置換され、バ
ンドギャップエネルギーが低下するものと考えられる。In the photodecomposition catalyst of the present invention, the metal ion is contained in such a layered titanate compound,
It is considered that at least a part of the metal ion is replaced with a part of the titanium atom in the crystal structure of such a layered titanate compound, and the band gap energy is reduced.
【0013】上記金属イオンの含有量は、特に限定され
るものではないが、層状チタン酸化合物の結晶構造中の
チタンサイトの0.01〜2.0モル%程度であること
が好ましく、さらに好ましくは、0.02〜0.5モル
%程度である。The content of the metal ions is not particularly limited, but is preferably about 0.01 to 2.0 mol% of titanium sites in the crystal structure of the layered titanate compound, and more preferably. Is about 0.02 to 0.5 mol%.
【0014】(b)助触媒 助触媒としては、上述のように、酸化チタン、白金、ル
テニウム、ロジウム、銅、及びニッケルから選ばれる少
なくとも1種の金属または金属酸化物が用いられる。よ
り好ましくは、白金、ルテニウム、ロジウムについては
これらの金属元素が用いられ、銅及びニッケルについて
は、これらの酸化物が用いられる。 (B) Promoter As described above, at least one metal or metal oxide selected from titanium oxide, platinum, ruthenium, rhodium, copper, and nickel is used as the promoter. More preferably, these metal elements are used for platinum, ruthenium, and rhodium, and their oxides are used for copper and nickel.
【0015】酸化チタンを層間に包接する場合には、上
述のように、酸化チタン以外の他の助触媒を予め包接し
た層状チタン酸化合物の層間に酸化チタンを包接させて
もよい。酸化チタンの包接は、酸化チタンコロイド溶液
を反応させて包接させてもよいし、チタンを含む錯陽イ
オンをインターカーレートした後、これを熱分解または
光分解することによって層間に酸化チタンを生成させて
もよい。When the titanium oxide is included between the layers, as described above, the titanium oxide may be included between the layers of the layered titanate compound in which a promoter other than the titanium oxide is previously included. Titanium oxide may be included by reacting a titanium oxide colloid solution, or by intercalating a complex cation containing titanium and then thermally or photolytically decomposing the titanium oxide between the layers. May be generated.
【0016】チタンを含む錯陽イオンとしては、例え
ば、チタンアシル錯体の陽イオン(〔Ti(OAc)x
(OH)y 〕Z+)が挙げられる。また、チタンを含む錯
陽イオンとして、その他クエン酸などのカルボン酸を用
いた錯体の陽イオンが挙げられる。As the complex cation containing titanium, for example, a cation of a titanium acyl complex ([Ti (OAc) x
(OH) y ] Z + ). Further, examples of the complex cation containing titanium include a cation of a complex using a carboxylic acid such as citric acid.
【0017】助触媒の包接量は、上述のように、光分解
触媒全体に対して0.01〜10重量%であることが好
ましい。特に、酸化チタンは、それ自身太陽光等の光で
励起され、電子と正孔を生成する半導体であるので、比
較的多量に包接することができ、光分解触媒全体に対し
て、1.0〜5.0重量%包接することが好ましい。ま
た、酸化チタン以外の助触媒については、光分解触媒全
体に対して0.05〜0.1重量%包接することが好ま
しい。As described above, the amount of the cocatalyst included is preferably 0.01 to 10% by weight based on the entire photolysis catalyst. In particular, since titanium oxide itself is a semiconductor that is excited by light such as sunlight and generates electrons and holes, it can be included in a relatively large amount, and the amount of titanium oxide is 1.0% with respect to the entire photolysis catalyst. It is preferable that the inclusion is made up to 5.0% by weight. In addition, it is preferable that the cocatalyst other than titanium oxide be included in an amount of 0.05 to 0.1% by weight based on the entire photolysis catalyst.
【0018】(2)光分解触媒の製造方法 本発明の光分解触媒の製造方法を、以下に例を挙げて説
明する。層状チタン酸化合物の原料となる金属酸化物ま
たは金属炭酸塩等と、添加する金属イオンの原料となる
金属酸化物または金属炭酸塩等とを所定のモル比で混合
し、これを焼成することにより上記金属イオンを含んだ
層状チタン酸化合物を得ることができる。層状チタン酸
化合物としてチタン酸カリウムを合成する場合には、例
えば、K2 CO3 、TiO2 、及び添加する金属イオン
の原料となる金属酸化物または金属炭酸塩等を所定のモ
ル比で混合し、800〜1500℃で1〜240時間焼
成することにより、金属イオンを含有するチタン酸カリ
ウムを合成することができる。カリウム塩以外のチタン
酸化合物を合成する場合には、K2CO3 を他の金属酸
化物または金属炭酸塩等に置き換えることにより合成す
ることができる。また、このような固相法以外に、フラ
ックス法や水熱法により合成してもよい。また、層状チ
タン酸化合物を、鉱酸中でイオン交換すると、層間金属
イオンを水素イオンにイオン交換した層状チタン酸を得
ることができる。(2) Method for Producing Photodecomposition Catalyst A method for producing the photodecomposition catalyst of the present invention will be described below with reference to examples. By mixing a metal oxide or a metal carbonate or the like as a raw material of the layered titanate compound and a metal oxide or a metal carbonate or the like as a raw material of a metal ion to be added at a predetermined molar ratio, and baking the mixture. A layered titanate compound containing the metal ion can be obtained. In the case of synthesizing potassium titanate as a layered titanate compound, for example, K 2 CO 3 , TiO 2 , and a metal oxide or metal carbonate as a raw material of a metal ion to be added are mixed at a predetermined molar ratio. By baking at 800 to 1500 ° C. for 1 to 240 hours, potassium titanate containing metal ions can be synthesized. When synthesizing a titanate compound other than a potassium salt, it can be synthesized by replacing K 2 CO 3 with another metal oxide or metal carbonate. Moreover, you may synthesize | combine by a flux method or a hydrothermal method other than such a solid phase method. Further, when the layered titanate compound is ion-exchanged in a mineral acid, a layered titanic acid in which interlayer metal ions are ion-exchanged into hydrogen ions can be obtained.
【0019】助触媒の包接 上記のようにして得られた金属イオンを含有させた層状
チタン酸化合物を、〔Pt(NH3 )4 〕Cl2 等のP
t、Ru、Rh、Cu、Ni化合物水溶液に懸濁し、層
間にPt(NH3 )4 2+等を包接させた後、UV光を
0.5〜100時間照射して、Pt、Ru、Rh等の元
素を層間に析出させる。Ru、Cu、Niの酸化物を包
接させる場合には、層間に包接した金属化合物を加水分
解あるいは脱水する方法を用いることができる。 Inclusion of Co-Catalyst The layered titanate compound containing metal ions obtained as described above is treated with a Pt such as [Pt (NH 3 ) 4 ] Cl 2.
After suspending in an aqueous solution of t, Ru, Rh, Cu, and Ni compounds and allowing Pt (NH 3 ) 4 2+ or the like to be included between the layers, the suspension is irradiated with UV light for 0.5 to 100 hours to produce Pt, Ru, Elements such as Rh are deposited between the layers. When the oxides of Ru, Cu, and Ni are included, a method of hydrolyzing or dehydrating the metal compound included between the layers can be used.
【0020】また、チタンアシル錯体を用いて酸化チタ
ンを包接させる場合には、金属イオンを含有させた層状
チタン酸化合物、またはこれにPt等の助触媒を包接し
た層状チタン酸化合物を、n−ヘキサン等の有機溶媒ま
たは水中に分散させた後、n−C8 H17NH2 やn−C
3 H7 NH2 等のアルキルアミンを添加し、室温以上か
つ溶媒の沸点未満の温度で1〜240時間反応させ、層
間の陽イオンをアルキルアンモニウムイオンとイオン交
換する。得られたアルキルアンモニウムイオン含有層状
チタン酸化合物を、Ti(i−C3 H7 O)4 と酢酸の
反応等により得られたチタンアシル錯体(〔Ti(OA
c)x (OH)y 〕z+)溶液に加えて、室温から90℃
で1〜240時間反応させ、層間にチタンアシル錯体を
包接させ、次にUV光を0.5〜50時間照射するか、
あるいは250〜600℃の温度で1〜5時間熱処理し
て、酸化チタン、または白金等の助触媒を担持した酸化
チタンを層状チタン酸化合物に包接した光分解触媒を得
る。In the case where titanium oxide is included using a titanium acyl complex, a layered titanate compound containing a metal ion or a layered titanate compound containing a cocatalyst such as Pt is added to n. -After being dispersed in an organic solvent such as hexane or water, n-C 8 H 17 NH 2 or n-C
3 H 7 was added an alkyl amine such as NH 2, is reacted 1 to 240 hours at a temperature below the boiling point of room temperature or higher and a solvent, the cations between the layers alkyl ammonium ion and ion exchange. The resulting alkyl ammonium ion-containing layered titanic acid compound, Ti (i-C 3 H 7 O) 4 and Chitan'ashiru complex obtained by reaction of acetic acid ([Ti (OA
c) x (OH) y ] z + ) solution and add room temperature to 90 ° C
Reaction for 1 to 240 hours, the titanium acyl complex is included between the layers, and then UV light is irradiated for 0.5 to 50 hours,
Alternatively, heat treatment is performed at a temperature of 250 to 600 ° C. for 1 to 5 hours to obtain a photodecomposition catalyst in which titanium oxide or titanium oxide supporting a promoter such as platinum is included in a layered titanate compound.
【0021】なお、上述のように、酸化チタンを包接す
る場合、上記のチタンアシル錯体溶液の代わりに、酸化
チタンコロイド溶液を用い、これを反応させて包接させ
てもよい。なお、上記の製造方法は、本発明の光分解触
媒の製造方法の一例であり、本発明の光分解触媒は、上
記製造方法に限定されるものではない。As described above, when the titanium oxide is included, a titanium oxide colloid solution may be used instead of the titanium acyl complex solution, and the titanium oxide colloid solution may be reacted and included. The above-described production method is an example of the method for producing the photolysis catalyst of the present invention, and the photodecomposition catalyst of the present invention is not limited to the above-described production method.
【0022】上記本発明の光分解触媒を使用した本発明
の水素の製造方法を以下説明する。光分解の対象となる
水溶液は、純水(不純物を含まない意味ではなく、正孔
と反応する有機物のような犠牲還元剤が添加されていな
い水を意味する)でもよいが、好ましくは、アルカリ化
合物水溶液やアルコール水溶液、あるいはこれらの混合
水溶液のような、還元性化合物が添加された水溶液を使
用する。アルカリ化合物としては、Na2 S、Na2 S
O3 、Na2 S2 O3 、NaNO2 等が好ましく、これ
らの混合物であってもよい。濃度は、0.01〜1mo
l/リットルが好ましい。また、アルコールとしては、
メタノール、エタノール、プロパノール、2−アミノエ
タノール等が好ましく、これらの混合物であってもよ
い。濃度は0.01〜1mol/リットルが好ましい。The method for producing hydrogen of the present invention using the photolysis catalyst of the present invention will be described below. The aqueous solution to be subjected to photodecomposition may be pure water (meaning water containing no sacrificial reducing agent, such as an organic substance that reacts with holes, but not containing impurities), but is preferably alkaline. An aqueous solution to which a reducing compound is added, such as a compound aqueous solution, an alcohol aqueous solution, or a mixed aqueous solution thereof is used. Na 2 S, Na 2 S
O 3 , Na 2 S 2 O 3 , NaNO 2 and the like are preferable, and a mixture thereof may be used. The concentration is 0.01-1mo
1 / liter is preferred. Also, as alcohol,
Methanol, ethanol, propanol, 2-aminoethanol and the like are preferable, and a mixture thereof may be used. The concentration is preferably 0.01 to 1 mol / liter.
【0023】上記水溶液に、本発明の光分解触媒を添加
する。光分解触媒の添加量は、0.5〜50mg/cm
3 が好ましく、特に1〜3mg/cm3 が好ましい。こ
のように光分解触媒を添加した水溶液に光を照射するこ
とによって水が分解し、水素が発生する。水溶液の温度
は25〜60℃程度が好ましい。The photolysis catalyst of the present invention is added to the above aqueous solution. The addition amount of the photolysis catalyst is 0.5 to 50 mg / cm.
3 is preferable, and 1 to 3 mg / cm 3 is particularly preferable. By irradiating the aqueous solution to which the photolysis catalyst has been added with light as described above, water is decomposed and hydrogen is generated. The temperature of the aqueous solution is preferably about 25 to 60 ° C.
【0024】上記のように、本発明の光分解触媒は、水
を分解し水素を製造する際の光分解触媒として有用なも
のであるが、本発明の光分解触媒は、このような用途に
限定されるものではなく、例えば、有機物合成反応の触
媒や、有害物質の分解反応の触媒としても用いることが
できるものである。As described above, the photodecomposition catalyst of the present invention is useful as a photodecomposition catalyst for decomposing water to produce hydrogen. The photodecomposition catalyst of the present invention is suitable for such applications. It is not limited, and can be used, for example, as a catalyst for an organic substance synthesis reaction or a catalyst for a decomposition reaction of harmful substances.
【0025】有害物質としては、例えば、人体や生活環
境に悪影響を及ぼす物質や可能性がある物質が挙げら
れ、種々の生物学的酸素要求物質、大気汚染物質や除草
剤、殺菌剤、殺虫剤などの種々の農薬などの物質、細
菌、放線菌、菌類、藻類、カビ類などの微生物、煙草の
ヤニ、臭い、ペット臭、悪臭ガス、し尿臭などが挙げら
れる。環境汚染物質としては、有機ハロゲン化物、有機
リン化合物やそれ以外の有機化合物、窒素化合物、硫黄
化合物、シアン化合物、クロム化合物などが挙げられ
る。有機ハロゲン化合物としては、具体的には、ポリ塩
化ビフェニル、フロン、トリハロメタン、トリクロロエ
チレン、テトラクロロエチレンなどが例示できる。有機
ハロゲン化合物以外としては、界面活性剤や油類などの
炭化水素類、アルデヒド類、メルカプタン類、アルコー
ル類、アミン類、アミン酸類、蛋白質等が例示できる。
窒素化合物としては、アンモニア、窒素酸化物(N
OX )、硫黄酸化物(SOX )などが例示できる。The harmful substances include, for example, substances that have a bad influence on the human body and the living environment, and substances having a possibility, and include various biological oxygen-requiring substances, air pollutants, herbicides, bactericides, and insecticides. And various microorganisms such as agrochemicals, bacteria, actinomycetes, fungi, algae, molds, etc., cigarette tar, odor, pet odor, malodorous gas, human odor and the like. Examples of the environmental pollutants include organic halides, organic phosphorus compounds and other organic compounds, nitrogen compounds, sulfur compounds, cyanide compounds, chromium compounds and the like. Specific examples of the organic halogen compound include polychlorinated biphenyl, freon, trihalomethane, trichloroethylene, and tetrachloroethylene. Other than the organic halogen compounds, examples thereof include hydrocarbons such as surfactants and oils, aldehydes, mercaptans, alcohols, amines, amine acids, and proteins.
As the nitrogen compound, ammonia, nitrogen oxide (N
O x ), sulfur oxide (SO x ) and the like.
【0026】また、本発明の光分解触媒は親水性付与反
応にも用いることができる。この親水性付与反応を利用
して鏡、ガラス、眼鏡などを曇らないようにしたり、外
壁などの汚れを防止することができる。また、内視鏡な
どを利用してガン細胞を治療することもできる。The photodecomposition catalyst of the present invention can also be used for a hydrophilicity imparting reaction. By utilizing the hydrophilicity imparting reaction, it is possible to prevent mirrors, glasses, glasses, and the like from fogging, and to prevent stains on the outer walls and the like. In addition, cancer cells can be treated using an endoscope or the like.
【0027】本発明の光分解触媒は種々の方法で用いる
ことができる。例えば、本発明の光分解触媒を基材中に
含有させたり、本発明の光分解触媒を含有する塗液を基
材表面に塗布して膜を形成したり、本発明の光分解触媒
を含有するフィルムを基材表面に積層したりして用いる
ことができる。The photolysis catalyst of the present invention can be used in various ways. For example, the photodecomposition catalyst of the present invention may be contained in a substrate, or a coating solution containing the photodecomposition catalyst of the present invention may be applied to the surface of a substrate to form a film, or the photodecomposition catalyst of the present invention may be contained. A film to be formed can be used by laminating it on the surface of a substrate.
【0028】基材としては、陶磁器、セラミック、金
属、ガラス、プラスチック、木材あるいはそれらの複合
物等を例示できる。基材の形状はどのようなものでもよ
く、球状物、円柱物、円筒物、タイル、壁材、床材等の
板状物などの単純形状のものでも、衛生陶器、洗面台、
浴槽、流し台などの複雑形状のものでもよい。その他、
カーブミラー、標識、反射板、トンネル内装板、トンネ
ル照明、外壁、屋根、サッシ、鏡、ショーケース、冷蔵
・冷凍ショーケース、ショーウインドウ、看板、ガラス
温室、ビニルハウス、ディスプレー、太陽電池、眼鏡、
光学レンズ、内視鏡レンズ、塗料、内装部材等に用いる
ことができる。基材表面は多孔質でも緻密質でもよい。Examples of the substrate include porcelain, ceramic, metal, glass, plastic, wood, and composites thereof. The shape of the base material may be any shape, such as a spherical shape, a cylindrical shape, a cylindrical shape, a simple shape such as a plate-like material such as a tile, a wall material, a floor material, a sanitary ware, a wash basin,
It may be of a complicated shape such as a bathtub or a sink. Others
Curve mirrors, signs, reflectors, tunnel interior boards, tunnel lighting, exterior walls, roofs, sashes, mirrors, showcases, refrigerated and frozen showcases, show windows, signboards, glass greenhouses, vinyl houses, displays, solar cells, glasses,
It can be used for optical lenses, endoscope lenses, paints, interior members, and the like. The substrate surface may be porous or dense.
【0029】基材中に含有させる場合には、無機質バイ
ンダーとして、ケイ酸塩系ガラス、ホウ酸塩系ガラス、
リン酸塩系ガラス等、また一般陶器用釉薬フリットなど
が挙げられる。例えば、SiO2 −Al2 O3 −Na2
O/K2 Oフリットからなるバインダー液中に、本発明
の光分解触媒を分散させ、光分解触媒をその一部がバイ
ンダー層から露出するように基材に付着させ、次いで加
熱してバインダー層を溶融せしめた後、冷却してバイン
ダー層を固化せしめることにより、本発明の光分解触媒
を含有した多機能基材が得られる。When incorporated in a base material, silicate glass, borate glass,
Phosphate-based glass and the like, and glaze frit for general ceramics and the like can be mentioned. For example, SiO 2 —Al 2 O 3 —Na 2
The photo-decomposition catalyst of the present invention is dispersed in a binder liquid composed of an O / K 2 O frit, and the photo-decomposition catalyst is adhered to a substrate such that a part of the photo-decomposition catalyst is exposed from the binder layer. Is melted, and then cooled to solidify the binder layer, whereby a multifunctional substrate containing the photolysis catalyst of the present invention can be obtained.
【0030】光分解触媒を含有する塗液は、光分解触媒
と塗液用バインダーを混合することにより得られる。塗
液用バインダーとしては、光分解触媒活性に対して耐性
のあるバインダーが望まれ、例えばシロキサン樹脂、シ
リコン樹脂、フッ素樹脂、ケイ酸ガラス等が挙げられ
る。また、層中において混合された光分解触媒をより有
効に利用するには、バインダーとして透光性を有するも
のがより好適である。また、汚れが付きにくい点を考え
ると、シロキサン樹脂、フッ素樹脂等の撥水性を有する
ものが好ましい。The coating solution containing the photodecomposition catalyst can be obtained by mixing the photodecomposition catalyst and a coating solution binder. As the binder for the coating liquid, a binder having resistance to photodecomposition catalytic activity is desired, and examples thereof include a siloxane resin, a silicon resin, a fluororesin, and silicate glass. In order to more effectively utilize the photodecomposition catalyst mixed in the layer, a binder having a light transmitting property is more preferable. Considering that dirt is difficult to adhere, those having water repellency, such as siloxane resin and fluorine resin, are preferable.
【0031】塗液は通常の方法で塗布可能で、例えばス
プレー・コーティング、ディップ・コーティング、ロー
ル・コーティング、スピン・コーティングなどの方法を
挙げることができる。基材表面に塗布して膜を形成させ
る場合には、光分解触媒作用を有する層を基材の表面の
全面に塗布して形成してもよいし、一部に塗布して形成
してもよい。また、光分解触媒を含有する塗液は、基材
に直接塗布してもよいし、プライマー層を介して塗布し
てもよい。特に基材が金属、ガラス質の場合には、プラ
イマー層を介する方が接着強度向上の上で好ましい。The coating liquid can be applied by a usual method, and examples thereof include spray coating, dip coating, roll coating, and spin coating. When forming a film by coating on the surface of the base material, a layer having a photodegradation catalytic action may be formed by coating the entire surface of the base material, or may be formed by coating a part of the surface. Good. Further, the coating solution containing the photodecomposition catalyst may be applied directly to the substrate, or may be applied via a primer layer. In particular, when the base material is metallic or vitreous, the use of a primer layer is preferable from the viewpoint of improving the adhesive strength.
【0032】光分解触媒を含有するフィルムは、例えば
離型紙上に光分解触媒とバインダーの混合物を光分解触
媒の一部がバインダー層から露出するように、吹き付け
て、硬化または乾燥させ、次いで離型紙を剥離して得ら
れるが、これに限定されるものではない。次いで得られ
たフィルムを基材の上に積層または貼着し、加熱してバ
インダー層を溶融せしめた後に冷却することによって、
基材表面に光分解触媒を含有するフィルムの積層された
多機能部材を得ることができる。The film containing the photo-decomposition catalyst is sprayed on a release paper, for example, by spraying a mixture of the photo-decomposition catalyst and the binder such that a part of the photo-decomposition catalyst is exposed from the binder layer, and then cured or dried. It is obtained by peeling the pattern paper, but is not limited thereto. Next, by laminating or pasting the obtained film on a substrate, heating and melting the binder layer, and then cooling,
A multifunctional member in which a film containing a photolysis catalyst is laminated on the surface of a substrate can be obtained.
【0033】[0033]
【作用】上述したように、従来の層状チタン酸化合物の
バンドギャップエネルギーは、3.2〜3.5eVであ
り、可視光照射では十分な光触媒活性を示さないが、本
発明の光分解触媒は、バンドギャップエネルギーが、例
えば2.4〜3.3eVであり、波長375〜550n
mの可視光の照射でも励起され、水の光分解などに対す
る高い触媒活性を示す。これは、上述のように、金属イ
オンが、層状チタン酸化合物のチタン原子と置換するこ
とにより、層状チタン酸化合物のバンドギャップエネル
ギーを低下させるためであると考えられる。As described above, the bandgap energy of the conventional layered titanate compound is 3.2 to 3.5 eV and does not show sufficient photocatalytic activity under irradiation with visible light. , The band gap energy is, for example, 2.4 to 3.3 eV, and the wavelength is 375 to 550 n.
It is excited even by irradiation with visible light of m, and shows high catalytic activity for photolysis of water and the like. It is considered that this is because the band gap energy of the layered titanate compound is reduced by replacing the metal ion with the titanium atom of the layered titanate compound as described above.
【0034】さらに、層間に助触媒を包接すると、ホス
ト層の層状チタン酸化合物が光励起されて生成する電子
または正孔が、助触媒に移動することにより、電荷分離
が有効に起こり、電子と正孔の再結合が抑制されるた
め、光触媒活性が向上する。また、本発明の光分解触媒
は、水溶液中でもほとんど溶解することがなく、化学的
に安定している。Further, when a cocatalyst is included between the layers, electrons or holes generated by photoexcitation of the layered titanate compound of the host layer move to the cocatalyst, whereby charge separation effectively occurs, and electrons and holes are effectively generated. Since the recombination of holes is suppressed, the photocatalytic activity is improved. Further, the photodecomposition catalyst of the present invention hardly dissolves in an aqueous solution, and is chemically stable.
【0035】[0035]
【実施例】以下、本発明の具体的な実施例によりさらに
詳細に説明するが、本発明は以下の実施例により限定さ
れるものではない。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to the following examples.
【0036】実施例1 K2 CO3 、TiO2 、Fe2 O3 を、モル比1:2.
25:0.25で混合し、1300℃で5時間焼成し
て、鉄イオンを含んだチタン酸カリウムの粉末を合成し
た。このチタン酸カリウムの粉末を30℃の1M塩酸水
溶液に30分間分散し、6.6重量%の鉄イオンを含有
(固溶)したチタン酸を得た。この試料の粉末X線回折
パターンと紫外−可視拡散反射スペクトルを図1及び図
2に示す。この試料0.5gを、60℃の0.1MNa
2 S水溶液500cm3 に添加し、100Wの水銀灯波
長400nm以上の可視光を照射した。可視光照射によ
り水の光分解が起こり、水素が発生した。この時の水素
生成量を図3に示す。 Example 1 K 2 CO 3 , TiO 2 and Fe 2 O 3 were mixed at a molar ratio of 1: 2.
The mixture was mixed at 25: 0.25 and calcined at 1300 ° C. for 5 hours to synthesize potassium titanate powder containing iron ions. This potassium titanate powder was dispersed in a 1 M aqueous hydrochloric acid solution at 30 ° C. for 30 minutes to obtain titanic acid containing (solid solution) 6.6% by weight of iron ions. The powder X-ray diffraction pattern and ultraviolet-visible diffuse reflection spectrum of this sample are shown in FIGS. 0.5 g of this sample was added to 0.1 M Na at 60 ° C.
The solution was added to 500 cm 3 of a 2S aqueous solution, and a 100 W mercury lamp with visible light having a wavelength of 400 nm or more was irradiated. Photolysis of water occurred by irradiation with visible light, and hydrogen was generated. FIG. 3 shows the amount of hydrogen generated at this time.
【0037】実施例2 K2 CO3 、TiO2 、NiOを、モル比1:2:0.
5で混合し、1300℃で5時間焼成して、ニッケルイ
オンを含んだチタン酸カリウムの粉末を合成した。この
チタン酸カリウムの粉末を30℃の1M塩酸水溶液に3
0分間分散し、7.3重量%のニッケルイオンを含有
(固溶)したチタン酸を得た。この試料の粉末X線回折
パターンと紫外−可視拡散反射スペクトルを図1及び図
2に示す。この試料0.5gを、60℃の0.1MNa
2 S水溶液500cm3 に添加し、100Wの水銀灯波
長400nm以上の可視光を照射した。可視光照射によ
り水の光分解が起こり、水素が発生した。この時の水素
生成量を図3に示す。 Example 2 K 2 CO 3 , TiO 2 and NiO were mixed at a molar ratio of 1: 2: 0.
5 and baked at 1300 ° C. for 5 hours to synthesize a powder of potassium titanate containing nickel ions. This potassium titanate powder was added to a 1 M aqueous hydrochloric acid solution at 30 ° C.
The mixture was dispersed for 0 minute to obtain titanic acid containing (solid solution) 7.3% by weight of nickel ions. The powder X-ray diffraction pattern and ultraviolet-visible diffuse reflection spectrum of this sample are shown in FIGS. 0.5 g of this sample was added to 0.1 M Na at 60 ° C.
The solution was added to 500 cm 3 of a 2S aqueous solution, and a 100 W mercury lamp with visible light having a wavelength of 400 nm or more was irradiated. Photolysis of water occurred by irradiation with visible light, and hydrogen was generated. FIG. 3 shows the amount of hydrogen generated at this time.
【0038】実施例3 K2 CO3 、TiO2 、CuOを、モル比1:2.4
5:0.05で混合し、1300℃で5時間焼成して、
銅イオンを含んだチタン酸カリウムの粉末を合成した。
このチタン酸カリウムの粉末を30℃の1M塩酸水溶液
に30分間分散し、0.43重量%の銅イオンを含有
(固溶)したチタン酸を得た。この試料の粉末X線回折
パターンと紫外−可視拡散反射スペクトルを図1及び図
2に示す。この試料0.5gを、60℃の0.1MNa
2 S水溶液500cm3 に添加し、100Wの水銀灯波
長400nm以上の可視光を照射した。可視光照射によ
り水の光分解が起こり、水素が発生した。この時の水素
生成量を図3に示す。 Example 3 K 2 CO 3 , TiO 2 and CuO were mixed at a molar ratio of 1: 2.4.
5: 0.05, baked at 1300 ° C. for 5 hours,
A powder of potassium titanate containing copper ions was synthesized.
This potassium titanate powder was dispersed in a 1 M aqueous hydrochloric acid solution at 30 ° C. for 30 minutes to obtain titanic acid containing (solid solution) 0.43% by weight of copper ions. The powder X-ray diffraction pattern and ultraviolet-visible diffuse reflection spectrum of this sample are shown in FIGS. 0.5 g of this sample was added to 0.1 M Na at 60 ° C.
The solution was added to 500 cm 3 of a 2S aqueous solution, and a 100 W mercury lamp with visible light having a wavelength of 400 nm or more was irradiated. Photolysis of water occurred by irradiation with visible light, and hydrogen was generated. FIG. 3 shows the amount of hydrogen generated at this time.
【0039】比較例1 K2 CO3 、TiO2 をモル比1:2.5で混合し、1
300℃で5時間焼成し、層状四チタン酸カリウム(K
2 Ti4 O9 )の粉末を合成した。この層状四チタン酸
カリウムの粉末を30℃の1M塩酸水溶液に30分間分
散し、四チタン酸(H2 Ti4 O9 )を得た。この試料
の粉末X線回線パターンと紫外−可視拡散反射スペクト
ルを図1及び図2に示す。この試料0.5gを、60℃
の0.1MNa2 S水溶液500cm3 に添加し、10
0Wの水銀灯波長400nm以上の可視光を照射した。
可視光照射では水の光分解は全く進行しなかった。図3
に、水素生成量を示す。 Comparative Example 1 K 2 CO 3 and TiO 2 were mixed at a molar ratio of 1: 2.5.
Baking at 300 ° C. for 5 hours to form a layered potassium tetratitanate (K
2 Ti 4 O 9 ) powder was synthesized. This layered potassium tetratitanate powder was dispersed in a 1 M aqueous hydrochloric acid solution at 30 ° C. for 30 minutes to obtain tetratitanic acid (H 2 Ti 4 O 9 ). The powder X-ray line pattern and ultraviolet-visible diffuse reflection spectrum of this sample are shown in FIGS. 0.5 g of this sample is placed at 60 ° C.
Was added to 500 cm 3 of a 0.1 M Na 2 S aqueous solution of
A visible light of 0 W mercury lamp wavelength of 400 nm or more was irradiated.
Photolysis of water did not proceed at all with visible light irradiation. FIG.
Shows the amount of hydrogen generated.
【0040】図1から明らかなように、実施例1〜3の
試料は、いずれも比較例1の四チタン酸と類似のX線回
線パターンを示している。また、図2から明らかなよう
に、比較例1の四チタン酸は上部吸収端波長が400n
mであり、波長400nm以上の可視光では励起されな
いが、鉄イオン、ニッケルイオン、銅イオンを添加した
実施例1〜3の四チタン酸の吸収端波長はそれぞれ54
3、538、530nmであり、可視光での励起が可能
である。As is apparent from FIG. 1, the samples of Examples 1 to 3 all show an X-ray line pattern similar to that of the tetratitanic acid of Comparative Example 1. As is clear from FIG. 2, the tetratitanic acid of Comparative Example 1 has an upper absorption edge wavelength of 400 n.
m and is not excited by visible light having a wavelength of 400 nm or more, but the absorption edge wavelength of each of the tetratitanic acids of Examples 1 to 3 to which iron ions, nickel ions, and copper ions are added is 54
3, 538 and 530 nm, and can be excited by visible light.
【0041】また、図3から明らかなように、比較例1
の四チタン酸は、波長400nm以上の可視光照射では
光触媒活性を示さず水素発生が認められなかったのに対
し、鉄イオン、ニッケルイオン及び銅イオンを添加した
実施例1〜3の四チタン酸は、いずれも可視光照射で光
触媒活性を示し、水を光分解し水素を生成した。As is clear from FIG. 3, Comparative Example 1
The tetratitanic acid of Examples 1 to 3 to which iron ions, nickel ions and copper ions were added, whereas the tetratitanic acid did not show photocatalytic activity under visible light irradiation at a wavelength of 400 nm or more and did not generate hydrogen. All showed photocatalytic activity upon irradiation with visible light and photolyzed water to generate hydrogen.
【0042】実施例4 最も活性の高かった実施例3の0.43重量%の銅イオ
ンを含有したチタン酸を、〔Pt(NH3 )4 〕Cl2
水溶液(〔Pt/チタン酸重量比=0.01となるよう
にPtを含有)に懸濁し、層間に〔Pt(NH3 )4 〕
2+を包接させた後、450Wの水銀灯の光を1時間照射
して、層間にPtを析出させた。この触媒の白金包接量
は0.3重量%であった。この試料0.5gを、60℃
の0.1MNa2 S水溶液500cm3 に添加し、10
0Wの水銀灯波長400nm以上の可視光を照射した。
可視光照射により水の光分解が起こり、水素が発生し
た。この時の水素生成量を図4に示す。 Example 4 The titanic acid containing 0.43% by weight of copper ion of Example 3 having the highest activity was replaced with [Pt (NH 3 ) 4 ] Cl 2
Suspended in an aqueous solution (containing Pt so that the weight ratio of Pt / titanic acid = 0.01), and [Pt (NH 3 ) 4 ]
After the inclusion of 2+ , a mercury lamp of 450 W was irradiated for 1 hour to precipitate Pt between the layers. The platinum inclusion amount of this catalyst was 0.3% by weight. 0.5 g of this sample is placed at 60 ° C.
Was added to 500 cm 3 of a 0.1 M Na 2 S aqueous solution of
A visible light of 0 W mercury lamp wavelength of 400 nm or more was irradiated.
Photolysis of water occurred by irradiation with visible light, and hydrogen was generated. FIG. 4 shows the amount of hydrogen generated at this time.
【0043】実施例5 最も活性の高かった実施例3の0.43重量%の銅イオ
ンを含有したチタン酸を、水に分散させ、モル比でこの
チタン酸の20倍量のn−C3 H7 NH2 を添加し、2
5℃で4日間反応させ、層間のH+ をn−C3 H7 NH
3 + とイオン交換した。また、Ti(i−C3 H7 O)
4 にモル比で5倍の氷酢酸を加え30分間攪拌し、Ti
(CH3 CO)x (i−C3 H7 O)y 錯体を調製した
後、この溶液に5倍量の水を加え、1時間攪拌し、Ti
(CH3 CO)x (OH)y Z+を調製した。この溶液
に、n−C3 H7 NH3 + をイオン交換した銅イオン含
有チタン酸を懸濁し(層状チタン酸/Ti(CH3 C
O)x (OH)y Z+のモル比=40)、室温で5〜15
0時間反応させて層間のn−C3 H7 NH3 + をTi
(CH3 CO)x (OH)y Z+とイオン交換し、ろ過分
離後、試料を水に再分散し、450Wの水銀灯の光を1
0時間照射して、層間に包接させたTi(CH3 CO)
x (OH)y Z+を光分解して酸化チタンとし、酸化チタ
ンを包接した光分解触媒を調製した。この光分解触媒の
酸化チタン包接量は26重量%であった。この試料0.
5gを、60℃の0.1MNa2 S水溶液500cm3
に添加し、100Wの水銀灯波長400nm以上の可視
光を照射した。可視光照射により水の光分解が起こり、
水素が発生した。この時の水素生成量を図4に示す。 Example 5 The titanic acid containing 0.43% by weight of copper ion of Example 3 having the highest activity was dispersed in water, and the molar ratio of nC 3 was 20 times the titanic acid. H 7 NH 2 was added and 2
The reaction was performed at 5 ° C. for 4 days, and H + between layers was replaced with nC 3 H 7 NH.
3 + and the ion exchange. Further, Ti (i-C 3 H 7 O)
Glacial acetic acid 5 times in molar ratio was added to 4 and stirred for 30 minutes.
After preparing a (CH 3 CO) x (i-C 3 H 7 O) y complex, a 5-fold amount of water was added to the solution, and the mixture was stirred for 1 hour,
(CH 3 CO) x (OH) y Z + was prepared. In this solution, copper ion-containing titanic acid obtained by ion-exchanging nC 3 H 7 NH 3 + is suspended (layered titanic acid / Ti (CH 3 C 3
O) x (OH) y Z + molar ratio = 40), 5-15 at room temperature
0 hours to react n-C 3 H 7 NH 3 + between the layers with Ti
After ion exchange with (CH 3 CO) x (OH) y Z + , filtration and separation, the sample was redispersed in water, and the light of a 450 W mercury lamp was
Irradiation for 0 hour, Ti (CH 3 CO) included between layers
x (OH) yZ + was photodecomposed into titanium oxide, and a photodecomposition catalyst containing titanium oxide was prepared. The titanium oxide inclusion amount of this photolysis catalyst was 26% by weight. This sample 0.
5 g of a 0.1 M Na 2 S aqueous solution of 500 cm 3 at 60 ° C.
And irradiated with 100 W mercury lamp visible light having a wavelength of 400 nm or more. Photolysis of water occurs by irradiation with visible light,
Hydrogen evolved. FIG. 4 shows the amount of hydrogen generated at this time.
【0044】図4から明らかなように、銅イオンを含有
したチタン酸の光触媒活性は、層間に助触媒として白金
や酸化チタンを包接することにより著しく向上し、水素
生成速度は実施例3に比べそれぞれ約10倍及び約3倍
速くなっている。As is apparent from FIG. 4, the photocatalytic activity of titanic acid containing copper ions is significantly improved by enclosing platinum or titanium oxide as a co-catalyst between the layers, and the hydrogen generation rate is higher than that of Example 3. It is about 10 times and about 3 times faster, respectively.
【0045】[0045]
【発明の効果】本発明の光分解触媒によれば、層状チタ
ン酸化合物に鉄、ニッケル、銅などの金属イオンを含有
させることにより、バンドギャップエネルギーを低下す
ることができ、可視光で励起可能な優れた光分解触媒と
することができる。According to the photodecomposition catalyst of the present invention, the bandgap energy can be reduced by adding a metal ion such as iron, nickel, or copper to the layered titanate compound, and the layer can be excited by visible light. An excellent photodecomposition catalyst can be obtained.
【0046】さらに、層状チタン酸化合物の層間に助触
媒を包接することにより、さらに光触媒活性を高めるこ
とができる。また、本発明の水素製造方法によれば、上
記本発明の光分解触媒を用いることにより、効率良く水
を分解し、水素を製造することができる。The photocatalytic activity can be further enhanced by including a co-catalyst between the layers of the layered titanate compound. According to the hydrogen production method of the present invention, water can be efficiently decomposed and hydrogen can be produced by using the photodecomposition catalyst of the present invention.
【図1】実施例1〜3及び比較例1における金属イオン
含有チタン酸及び層状四チタン酸の粉末X線回折パター
ンを示す図。FIG. 1 is a view showing powder X-ray diffraction patterns of metal ion-containing titanic acid and layered tetratitanic acid in Examples 1 to 3 and Comparative Example 1.
【図2】実施例1〜3及び比較例1における金属イオン
含有チタン酸及び層状四チタン酸の紫外−拡散反射スペ
クトルを示す図。FIG. 2 is a diagram showing an ultraviolet-diffuse reflection spectrum of metal ion-containing titanic acid and layered tetratitanic acid in Examples 1 to 3 and Comparative Example 1.
【図3】実施例1〜3及び比較例1における水素生成量
を示す図。FIG. 3 is a graph showing hydrogen generation amounts in Examples 1 to 3 and Comparative Example 1.
【図4】実施例3〜5における水素生成量を示す図。FIG. 4 is a graph showing hydrogen generation amounts in Examples 3 to 5.
フロントページの続き (72)発明者 内田 聡 宮城県仙台市太白区八木山南1−9−7 小畑ハイツ202号 (72)発明者 柳沢 将 宮城県仙台市太白区向山2−2−22 和 香荘105 (56)参考文献 特開 平2−172535(JP,A) 特表 昭64−500187(JP,A) MACHIDA,M.et.al." Preparation and na nostructure of pil lared layered tita nates and tantalat es for photocataly tic materials”Stu d.Surf.Sci.Caral., 118(Preparation of Catalysts ▲VII▼), 951−958(elsevier)Aug. 1998 (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C01B 3/04 CA(STN)Continued on the front page. (72) Inventor Satoshi Uchida 1-9-7 Minami Yagiyama, Taihaku-ku, Sendai, Miyagi Prefecture Obata Heights 202 (72) Inventor Masaru Yanagisawa 2-2-22 Mukoyama, Taihaku-ku, Sendai City, Miyagi Prefecture Wakaso 105 (56) References JP-A-2-172535 (JP, A) JP-A-64-500187 (JP, A) MACHIDA, M .; et. al. "Preparation and na nostructure of pil laid layered titanates and tantalates for photocatalytic ticial materials" Stud. Surf. Sci. Caral. , 118 (Preparation of Catalysts VII), 951-958 (elsevier) Aug. 1998 (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 C01B 3/04 CA ( STN)
Claims (5)
バルト、ニッケル、銅、モリブデン、ルテニウム、銀、
カドミウム、及びセリウムから選ばれる少なくとも1種
の金属イオンを層状チタン酸の結晶構造中に含む陽イオ
ン交換性の層状チタン酸化合物からなる光分解触媒に、
波長400nm以上の可視光を照射して励起させること
を特徴とする光分解触媒の使用方法。1. Vanadium, chromium, manganese, iron, cobalt, nickel, copper, molybdenum, ruthenium, silver,
Cadmium, and a photo-decomposition catalyst comprising a cation-exchangeable layered titanate compound containing at least one metal ion selected from cerium in the crystal structure of the layered titanic acid ,
A method for using a photolysis catalyst , which comprises irradiating visible light having a wavelength of 400 nm or more to excite the visible light .
チタン、白金、ルテニウム、ロジウム、銅、及びニッケ
ルから選ばれる少なくとも1種の金属または金属酸化物
を包接した光分解触媒を用いることを特徴とする請求項
1に記載の光分解触媒の使用方法。2. A photo-decomposition catalyst comprising at least one metal or metal oxide selected from titanium oxide, platinum, ruthenium, rhodium, copper and nickel between the layers of the layered titanate compound. A method for using the photolysis catalyst according to claim 1.
O5 、H2 Ti3 O7 、H2 Ti4 O9 、H2 La2 T
i3 O10、HTiNbO5 及びこれらのアルカリ金属塩
及びアルカリ土類金属塩から選ばれる少なくとも1種で
あることを特徴とする請求項1または2に記載の光分解
触媒の使用方法。3. The method according to claim 2 , wherein the layered titanate compound is H 2 Ti 2
O 5 , H 2 Ti 3 O 7 , H 2 Ti 4 O 9 , H 2 La 2 T
i 3 O 10, HTiNbO 5 and using the photodegradation catalyst according to claim 1 or 2, characterized in that at least one selected from the alkali metal salts and alkaline earth metal salts.
分解触媒を用い、波長400nm以上の可視光を照射し
て水を分解し水素を製造することを特徴とする水素製造
方法。4. A method for producing hydrogen by decomposing water by irradiating visible light having a wavelength of 400 nm or more using the photodecomposition catalyst according to claim 1. Description: Hydrogen production method.
を含む水溶液であることを特徴とする請求項4に記載の
水素製造方法。5. The hydrogen production method according to claim 4, wherein the water to be subjected to photolysis is an aqueous solution containing a reducing compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10273802A JP3046581B2 (en) | 1998-09-28 | 1998-09-28 | Method for using photolysis catalyst and method for producing hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10273802A JP3046581B2 (en) | 1998-09-28 | 1998-09-28 | Method for using photolysis catalyst and method for producing hydrogen |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11373537A Division JP2000176295A (en) | 1999-01-01 | 1999-12-28 | Photolysis catalyst and hydrogen production method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000102733A JP2000102733A (en) | 2000-04-11 |
JP3046581B2 true JP3046581B2 (en) | 2000-05-29 |
Family
ID=17532788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10273802A Expired - Fee Related JP3046581B2 (en) | 1998-09-28 | 1998-09-28 | Method for using photolysis catalyst and method for producing hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3046581B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4526619B2 (en) * | 1999-09-21 | 2010-08-18 | 大塚化学株式会社 | Visible light active photocatalyst |
JP4777870B2 (en) * | 2006-12-22 | 2011-09-21 | パナソニック株式会社 | Photocatalyst material, method for producing the same, and purification device |
JP5710444B2 (en) * | 2011-10-17 | 2015-04-30 | 本田技研工業株式会社 | Photocatalyst and method for producing the same |
JP6186262B2 (en) * | 2013-12-06 | 2017-08-23 | 株式会社 グリーンケミー | Visible light region responsive catalyst and water decomposition method using the same |
JP6630141B2 (en) * | 2014-12-25 | 2020-01-15 | 太陽工業株式会社 | Titanium oxide-containing composition, method for producing titanium oxide-containing composition, photocatalyst structure |
-
1998
- 1998-09-28 JP JP10273802A patent/JP3046581B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
MACHIDA,M.et.al."Preparation and nanostructure of pillared layered titanates and tantalates for photocatalytic materials"Stud.Surf.Sci.Caral.,118(Preparation of Catalysts ▲VII▼),951−958(elsevier)Aug.1998 |
Also Published As
Publication number | Publication date |
---|---|
JP2000102733A (en) | 2000-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3356437B2 (en) | Photocatalyst, method for producing the same, and multifunctional member | |
EP0590477B2 (en) | Architectural material using metal oxide exhibiting photocatalytic activity | |
Fresno et al. | Photocatalytic materials: recent achievements and near future trends | |
Andersson et al. | Ag/AgCl-loaded ordered mesoporous anatase for photocatalysis | |
Fujishima et al. | Titanium dioxide photocatalysis | |
JP3690864B2 (en) | Production method of photocatalyst | |
JP4293801B2 (en) | Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant | |
Andersson et al. | Microemulsion-mediated room-temperature synthesis of high-surface-area rutile and its photocatalytic performance | |
KR100444892B1 (en) | Synthesis of highly active photocatalytic TiO2-sol containing active metals | |
Smirnova et al. | Synthesis and characterization of photocatalytic porous Fe3+/TiO2 layers on glass | |
JP5627006B2 (en) | Photocatalyst and method for producing the same | |
JP3046581B2 (en) | Method for using photolysis catalyst and method for producing hydrogen | |
JP3987289B2 (en) | Photocatalyst, method for producing the same, and photocatalyst using the same | |
JP4526619B2 (en) | Visible light active photocatalyst | |
CA2754162A1 (en) | Photocatalyst and method for production | |
KR100403275B1 (en) | Photocatalytic Coating Composition, Preparation Method Thereof and Coated Body Using the Same | |
JP3002186B1 (en) | Titanium dioxide photocatalyst | |
JP2000176295A (en) | Photolysis catalyst and hydrogen production method using the same | |
WO2006030780A1 (en) | Process for producing flaky titanium oxide capable of absorbing visible light | |
CN104023847B (en) | The manufacture method of photocatalyst and photocatalyst | |
KR20160121852A (en) | Multifunctional Cu-TiO2-PU having both photocatalyst and adsorbent activity and manufacturing method thereof | |
JP3440295B2 (en) | Novel semiconductor photocatalyst and photocatalytic reaction method using the same | |
JP4849862B2 (en) | Novel heteropolyacid salt, photocatalyst using the same, and photocatalytic functional member | |
JPH08309203A (en) | Photocatalyst composition | |
CN108380194A (en) | A kind of photochemical catalyst and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080317 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |