JP3046411B2 - Thermal analog sensor - Google Patents

Thermal analog sensor

Info

Publication number
JP3046411B2
JP3046411B2 JP3205424A JP20542491A JP3046411B2 JP 3046411 B2 JP3046411 B2 JP 3046411B2 JP 3205424 A JP3205424 A JP 3205424A JP 20542491 A JP20542491 A JP 20542491A JP 3046411 B2 JP3046411 B2 JP 3046411B2
Authority
JP
Japan
Prior art keywords
temperature
signal
analog sensor
circuit
thermal analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3205424A
Other languages
Japanese (ja)
Other versions
JPH0528376A (en
Inventor
康男 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP3205424A priority Critical patent/JP3046411B2/en
Publication of JPH0528376A publication Critical patent/JPH0528376A/en
Application granted granted Critical
Publication of JP3046411B2 publication Critical patent/JP3046411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、火災予報のために警戒
区域の温度情報を送る熱アナログ式感知器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal analog type sensor for transmitting temperature information of a security zone for a fire forecast.

【0002】[0002]

【従来の技術】従来、この種の熱アナログ式感知器とし
ては、例えば図5に示すものがある。この熱アナログ式
感知器は、熱検出素子50、A/D変換回路51、CP
U52、メモリ回路53、温度情報出力回路54、電源
回路55で構成され、熱検出素子50からのアナログ出
力信号をA/D変換回路51でディジタル化し、このデ
ィジタル信号をCPU52に入力し予めメモリ回路53
に記憶されている各温度でのディジタルデータと比較
し、熱検出信号から当該出力信号は何度の温度を示す信
号であるのかを判定し、その温度情報信号を温度情報出
力回路54を介して本熱アナログ式感知器に接続してい
る防災監視盤に出力するものである。つまり、この熱ア
ナログ式感知器は、警戒区域の温度情報を防災監視盤へ
刻々出力し、一方防災監視盤側では受け取った温度情報
から火災予測を行ない、火災に至らぬ前に警報するもの
として使用されている。
2. Description of the Related Art Conventionally, as this type of thermal analog type sensor, for example, there is one shown in FIG. This thermal analog sensor comprises a heat detection element 50, an A / D conversion circuit 51, a CP
U52, a memory circuit 53, a temperature information output circuit 54, and a power supply circuit 55. An analog output signal from the heat detection element 50 is digitized by an A / D conversion circuit 51, and this digital signal is inputted to a CPU 52 and stored in a memory circuit in advance. 53
Is compared with the digital data at each temperature stored therein, and from the heat detection signal, it is determined how many temperatures the output signal indicates, and the temperature information signal is output via the temperature information output circuit 54. This is output to the disaster prevention monitoring panel connected to the thermal analog sensor. In other words, this thermal analog sensor outputs the temperature information of the alert area to the disaster prevention monitoring panel every moment, while the disaster prevention monitoring panel performs a fire prediction based on the received temperature information and gives an alarm before a fire occurs. in use.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
ような従来の熱アナログ式感知器にあっては、この火災
予測には全検出温度範囲にわたって高精度で均一の温度
精度と高分解能が必要とされていた。このために熱検出
素子として温度特性が直線性を有する白金抵抗測温体、
PN接合半導体、温度IC等を用いる必要があるため、
熱検出素子自体が高価なものとなってしまったり、ま
た、これらの素子は出力信号が非常に小さいので、増幅
率の非常に大きな増幅回路が必要となり、全体のコスト
が高くなるという問題があった。また、安価な熱検出素
子としてはサーミスタがあるが、温度特性は非直線性で
あり、上記で述べた条件には合わず使用できない。図6
は従来のサーミスタ60と抵抗61を直列に接続した場
合の回路であり、図7はその回路の温度特性を示したも
のである。図から分るように、低温域と高温域で出力変
化率が小さい非直線性が現われている。従って、この特
性のままサーミスタの出力をA/D変換器でディジタル
化させると、高低温域で分解能が悪くなる。つまり、中
温域では数ビット/℃が得られるのに対し、高低温域で
は1ビット/℃未満という場合もあり得る。このような
理由により、熱検出素子としてサーミスタを使用するに
は問題がある。また、熱検出素子としてサーミスタを使
用する場合でも、A/D変換器のビット数が大きいもの
を使用すれば分解能は改善されるが、非常にコストが高
いものになってしまう。本発明は、上記のような従来の
課題を解決するためになされたものであり、火災予測の
条件である全検出温度範囲にわたって高精度で均一な高
分解能をうることができ、かつコストの安価な熱アナロ
グ式感知器を提供することを目的とする。
However, in the conventional thermal analog type sensor as described above, the fire prediction requires high accuracy and uniform temperature accuracy and high resolution over the entire detection temperature range. It had been. For this purpose, a platinum resistance thermometer having a linear temperature characteristic as a heat detecting element,
Since it is necessary to use a PN junction semiconductor, temperature IC, etc.,
The heat detection elements themselves become expensive, and since these elements have very small output signals, an amplifier circuit with a very high amplification factor is required, which raises the problem of increasing the overall cost. Was. A thermistor is an inexpensive heat detecting element, but the temperature characteristic is non-linear and cannot be used because it does not meet the conditions described above. FIG.
FIG. 7 shows a circuit in which a conventional thermistor 60 and a resistor 61 are connected in series, and FIG. 7 shows a temperature characteristic of the circuit. As can be seen from the figure, non-linearity in which the output change rate is small in the low temperature range and the high temperature range appears. Therefore, if the output of the thermistor is digitized by the A / D converter while keeping this characteristic, the resolution is deteriorated in a high / low temperature range. That is, several bits / ° C. can be obtained in the medium temperature range, but less than 1 bit / ° C. in the high / low temperature range. For these reasons, there is a problem in using a thermistor as a heat detecting element. Further, even when a thermistor is used as the heat detecting element, the resolution is improved by using an A / D converter having a large number of bits, but the cost becomes extremely high. The present invention has been made in order to solve the conventional problems as described above, and it is possible to obtain high accuracy and uniform high resolution over the entire detection temperature range which is a condition of fire prediction, and at a low cost. It is an object of the present invention to provide a thermal analog sensor.

【0004】[0004]

【課題を解決するための手段】上記従来の課題を解決す
ために請求項1の本発明は、熱検出素子からのアナロ
グ信号をディジタル信号に変換し、該ディジタル信号に
基づきCPUで温度解析し温度情報を出力する熱アナロ
グ式感知器において、上記熱検出素子からのアナログ信
号のうち所定以下の低温域信号を減算し、残りの信号を
直線性の良い温度特性を有する信号に増幅して出力する
差動増幅手段を備えたことを特徴とする。請求項2の熱
アナログ式感知器は、温度検出範囲を複数に分割し、該
複数の温度検出範囲毎に不要な低温域信号を減算し、異
なる増幅率で増幅する差動増幅手段を備えたことを特徴
とする。請求項3の熱アナログ式感知器は、熱検出素子
を含む熱検出部に対する電源回路からの電源供給を一定
時間毎に断続させることにより、上記熱検出部を間欠的
に駆動する間欠駆動手段を備えたことを特徴とする。
Means for Solving the Problems The present invention according to claim 1 to solve the above problems, the analog signals from the thermal detection element is converted into a digital signal, and the temperature analyzed by the CPU on the basis of the digital signal In a thermal analog type sensor that outputs temperature information, a low-temperature signal equal to or less than a predetermined value is subtracted from the analog signal from the heat detecting element, and the remaining signal is amplified and output to a signal having good linear temperature characteristics. And a differential amplifying means. The thermal analog sensor according to the second aspect includes a differential amplifying unit that divides the temperature detection range into a plurality of parts, subtracts an unnecessary low-temperature range signal for each of the plurality of temperature detection ranges, and amplifies the signals at different amplification factors. It is characterized by the following. The thermal analog type sensor according to claim 3 is a thermal detection element.
Constant power supply from the power supply circuit to the heat detection unit including
The heat detector is intermittently activated by intermittent
Intermittently driving means for driving the motor.

【0005】[0005]

【実施例】以下、本発明の実施例について図面を用いて
詳細に説明する。図1は本発明の一実施例による熱アナ
ログ式感知器の構成を示すブロック図である。本熱アナ
ログ式感知器は、回路全体に電源を供給する電源回路1
と、回路を一定の時間間隔で間欠的に駆動する間欠駆動
回路2と、温度を検出してその温度に対応する電圧値の
アナログ信号を出力する熱検出部3と、熱検出部3から
のアナログ信号を処理して増幅する差動増幅回路4,
5,6と、差動増幅回路4,5,6からのアナログ出力
をディジタル信号に変換するA/D変換器7と、A/D
変換器7からのディジタル信号に基づいて温度解析を行
なうCPU8と、温度とディジタル信号の値との対応関
係をデータとして記憶するメモリ回路9と、CPU8か
らの温度情報を防災監視盤等に出力する温度情報出力回
路10とで構成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a thermal analog sensor according to an embodiment of the present invention. The thermal analog sensor is a power supply circuit 1 that supplies power to the entire circuit.
An intermittent drive circuit 2 for intermittently driving the circuit at fixed time intervals, a heat detection unit 3 for detecting a temperature and outputting an analog signal of a voltage value corresponding to the temperature, and a heat detection unit 3. A differential amplifier circuit for processing and amplifying analog signals 4,
5, 6 and an A / D converter 7 for converting analog outputs from the differential amplifier circuits 4, 5, 6 into digital signals;
CPU 8 for performing temperature analysis based on the digital signal from converter 7, memory circuit 9 for storing the correspondence between the temperature and the value of the digital signal as data, and outputting the temperature information from CPU 8 to a disaster prevention monitor panel or the like. And a temperature information output circuit 10.

【0006】間欠駆動回路2は、電源回路1による電源
供給を一定時間毎に断続させることにより、熱アナログ
式感知器の熱検出動作を間欠的に行なわせるものであ
り、例えば有接点リレーや無接点式のスイッチング回路
等が用いられる。この間欠駆動回路2によって間欠動作
させることにより、平均消費電流を小さく抑えることが
できる。
The intermittent drive circuit 2 intermittently supplies power from the power supply circuit 1 at regular intervals, thereby intermittently performing the heat detection operation of the thermal analog sensor. A contact type switching circuit or the like is used. By performing the intermittent operation by the intermittent drive circuit 2, the average current consumption can be reduced.

【0007】熱検出部3及び差動増幅回路4,5,6の
詳細な回路構成を図2に示す。熱検出部3は、図示の如
く熱検出素子としてのサーミスタ30と、オペアンプ3
1及び抵抗R5 ,R6 ,R7 とで構成されている。サー
ミスタ30と抵抗R7との直列回路の接続点がオペアン
プ31の入力に接続され、オペアンプ31の出力は、抵
抗R5 を介して差動増幅回路4,5,6に入力されてい
る。サーミスタ30の出力は、オペアンプ31でインピ
ーダンス変換され電圧VTHとして出力される。電圧VTH
は、 VTH={ R7 /(RTH+R7 )} VDD の式により与えられる。ここで、RTHは、サーミスタ3
0の内部抵抗、VDDは、電源回路1の電圧である。この
電圧VTHは、各差動増幅回路4,5,6のオペアンプ4
0の非反転入力に入力される。
FIG. 2 shows a detailed circuit configuration of the heat detecting section 3 and the differential amplifier circuits 4, 5, and 6. The heat detecting section 3 includes a thermistor 30 as a heat detecting element as shown in FIG.
1 and resistors R5, R6, R7. The connection point of the series circuit of the thermistor 30 and the resistor R7 is connected to the input of the operational amplifier 31, and the output of the operational amplifier 31 is input to the differential amplifiers 4, 5, and 6 via the resistor R5. The output of the thermistor 30 is impedance-converted by the operational amplifier 31 and output as a voltage VTH. Voltage VTH
Is given by the formula: VTH = {R7 / (RTH + R7)} VDD. Here, RTH is thermistor 3
The internal resistance of 0, VDD is the voltage of the power supply circuit 1. This voltage VTH is applied to the operational amplifiers 4 of the differential amplifier circuits 4, 5, and 6.
0 is input to the non-inverting input.

【0008】差動増幅回路4,5,6は、それぞれオペ
アンプ40及び41と、抵抗R1 〜R4 とで構成されて
いる。図2では、差動増幅回路4の回路構成のみを示し
たが、差動増幅回路5,6についても全く同一の構成と
なっている。本実施例では、火災予測の条件である検出
温度範囲を−30〜80℃に設定し、かつこの検出温度
範囲を低温度域(−30〜0℃)、中温度域(0〜40
℃)、高温度域(40〜80℃)に3分割し、各温度域
における信号処理をそれぞれ差動増幅回路4,5,6に
よって行なっている。抵抗R3 ,R4で設定された電圧
がオペアンプ41に入力されインピーダンス変換され
て、各差動増幅回路4,5,6のオペアンプ41からは
それぞれ電圧Vref1,Vref2,Vref3が出力され、この
電圧Vref1,Vref2,Vref3がオペアンプ40の反転入
力に入力される。電圧Vref 1(2,3 )は、 Vref 1(2,3 )={ R4 /(R3 +R4 )} VDD の式により与えられる。また、各差動増幅回路4,5,
6のオペアンプ40では、電圧VTHと電圧Vref 1(2,
3 )の差を増幅した値をVout1,Vout2,Vout3として
出力する。このVout1(2,3 )は、 Vout1(2,3)={(R1+R2)R6/ (R5+R6)R1}VTH−( R2/R1)Vref1(2,3) の式により与えられる。
The differential amplifier circuits 4, 5, and 6 are composed of operational amplifiers 40 and 41, respectively, and resistors R1 to R4. FIG. 2 shows only the circuit configuration of the differential amplifier circuit 4, but the differential amplifier circuits 5 and 6 have exactly the same configuration. In the present embodiment, the detection temperature range, which is a condition for fire prediction, is set to -30 to 80 ° C, and this detection temperature range is set to a low temperature range (-30 to 0 ° C) and a medium temperature range (0 to 40 ° C).
C.) and a high temperature range (40 to 80 ° C.), and signal processing in each temperature range is performed by the differential amplifier circuits 4, 5, and 6, respectively. The voltages set by the resistors R3 and R4 are input to the operational amplifier 41 and impedance-converted. The operational amplifiers 41 of the differential amplifier circuits 4, 5 and 6 output voltages Vref1, Vref2 and Vref3, respectively. Vref2 and Vref3 are input to the inverting input of the operational amplifier 40. The voltage Vref1 (2,3) is given by the following equation: Vref1 (2,3) = {R4 / (R3 + R4)} VDD. In addition, each of the differential amplifier circuits 4, 5,
In the operational amplifier 40 of No. 6, the voltage VTH and the voltage Vref 1 (2,
3) The amplified value of the difference is output as Vout1, Vout2, and Vout3. This Vout1 (2,3) is given by the following equation: Vout1 (2,3) = {(R1 + R2) R6 / (R5 + R6) R1} VTH- (R2 / R1) Vref1 (2,3)

【0009】上記抵抗R3 ,R4 の抵抗値を差動増幅回
路4,5,6毎に変えてVref 1(2,3 )を異なる値と
することによって、差動増幅回路4では、−30℃以下
の温度域に対応する信号を、差動増幅回路5では、0℃
以下の温度域に対応する信号を、差動増幅回路6では、
40℃以下の温度域に対応する信号をそれぞれカットす
るように設定している。また、上記抵抗R1 ,R2 の抵
抗値を差動増幅回路4,5,6毎に変えることにより異
なる増幅率を設定して図4の点線で示すように各温度域
の出力を補正し、図3に示すような温度特性が得られる
ようにしている。すなわち、低温度域(−30〜0℃)
及び高温度域(40〜80℃)においては図7に示すよ
うに中温度域(0から40℃)に比べ出力変化率が小さ
いので、ほぼ中温度域と同じ出力変化率となるように増
幅率を設定している。これにより、全検出温度範囲にお
いて、高分解能の検出が可能となっている。また、各差
動増幅回路4,5,6において、各担当の温度域以上の
温度に対応する信号に対しては、図3に示すように一定
の飽和した電圧値(=VDD)がVout1,Vout2,Vout3
として出力されるようになっている。
The resistance value of the resistors R3 and R4 is changed for each of the differential amplifier circuits 4, 5, and 6 so that Vref1 (2,3) is set to a different value. A signal corresponding to the following temperature range is converted into 0 ° C.
In the differential amplifier circuit 6, signals corresponding to the following temperature ranges are
The signal corresponding to the temperature range of 40 ° C. or less is set to be cut. Further, by changing the resistance values of the resistors R1 and R2 for each of the differential amplifier circuits 4, 5 and 6, different amplification factors are set to correct the output in each temperature range as shown by the dotted line in FIG. The temperature characteristics as shown in FIG. That is, low temperature range (-30 to 0 ° C)
As shown in FIG. 7, the output change rate in the high temperature range (40 to 80 ° C.) is smaller than that in the middle temperature range (0 to 40 ° C.), so that the output change rate is almost the same as that in the middle temperature range. The rate is set. This enables high-resolution detection over the entire detection temperature range. Further, in each of the differential amplifier circuits 4, 5, and 6, for a signal corresponding to a temperature equal to or higher than the temperature range in charge, a constant saturated voltage value (= VDD) as shown in FIG. Vout2, Vout3
Is output.

【0010】次に、上記の如く構成される本熱アナログ
式感知器の動作を説明する。熱検出部3から雰囲気温度
に応じた電圧VTHのアナログ信号が出力される。この電
圧VTHは、図7に示す温度特性に従っている。電圧VTH
の信号は、それぞれ差動増幅回路4,5,6に入力さ
れ、図4に示す特性に従って信号処理がなされる。例え
ば、電圧VTHが低温域の−10℃に対応する値の場合、
差動増幅回路4によって増幅されVout1が出力される。
この場合、−10℃は差動増幅回路5,6の温度域以下
であるので、差動増幅回路5,6では増幅されずVout
2,Vout3は共に0となる。また、電圧VTHが中温域の
20℃に対応する値の場合、差動増幅回路5によって増
幅されVout2が出力される。差動増幅回路4では低温域
を越えているので飽和した電圧値(=VDD)のVout1が
出力され、差動増幅回路6では高温域以下であるのでV
out3は0となる。同様に、電圧VTHが高温域の50℃に
対応する値の場合、差動増幅回路4,5からは飽和した
電圧値(=VDD)のVout1及びVout2が出力され、差動
増幅回路6から増幅されたVout3が出力される。
Next, the operation of the thermal analog type sensor configured as described above will be described. The heat detector 3 outputs an analog signal of the voltage VTH corresponding to the ambient temperature. This voltage VTH follows the temperature characteristic shown in FIG. Voltage VTH
Are input to differential amplifier circuits 4, 5, and 6, respectively, and are subjected to signal processing according to the characteristics shown in FIG. For example, when the voltage VTH is a value corresponding to −10 ° C. in a low temperature range,
Vout1 is output after being amplified by the differential amplifier circuit 4.
In this case, since -10 ° C. is equal to or lower than the temperature range of the differential amplifier circuits 5 and 6, the signal is not amplified by the differential amplifier circuits 5 and 6 and Vout
2 and Vout3 both become 0. When the voltage VTH has a value corresponding to the medium temperature range of 20 ° C., the voltage is amplified by the differential amplifier circuit 5 and Vout2 is output. The differential amplifier circuit 4 outputs Vout1 of a saturated voltage value (= VDD) because the temperature exceeds the low temperature range.
out3 becomes 0. Similarly, when the voltage VTH is a value corresponding to 50 ° C. in a high temperature region, the differential amplifier circuits 4 and 5 output saturated voltage values (= VDD) Vout 1 and Vout 2, and the differential amplifier circuit 6 amplifies the voltage. The output Vout3 is output.

【0011】差動増幅回路4,5,6の出力Vout1,V
out2,Vout3は、CPU8によって制御されるA/D変
換器7でディジタル化され、CPU8に入力される。C
PU8には、0または飽和電圧値(=VDD)以外の出力
Vout1,Vout2,Vout3のみがディジタル化されて入力
される。CPU8では、どの差動増幅回路からのディジ
タル信号かを判別し、そのディジタル信号を予めメモリ
回路9に記憶されている温度とディジタル信号との対応
関係を示すデータと比較し、熱検出部3で検出した温度
を解析する。そして、CPU8は、その解析した温度情
報を温度情報出力回路10を介して、例えば熱アナログ
式感知器が接続されている防災監視盤等に伝送する。
Outputs Vout1, Vout of differential amplifier circuits 4, 5, 6
out2 and Vout3 are digitized by the A / D converter 7 controlled by the CPU 8 and input to the CPU 8. C
Only outputs Vout1, Vout2, and Vout3 other than 0 or a saturation voltage value (= VDD) are digitized and input to PU8. The CPU 8 determines which of the differential amplifier circuits the digital signal is from, and compares the digital signal with data indicating the correspondence between the temperature and the digital signal stored in the memory circuit 9 in advance. Analyze the detected temperature. Then, the CPU 8 transmits the analyzed temperature information via the temperature information output circuit 10 to, for example, a disaster prevention monitoring panel or the like to which a thermal analog sensor is connected.

【0012】以上、好ましい実施例をあげて本発明を説
明したが、本発明は上記実施例に限定されるものではな
い。例えば、消費電流の軽減を考えなければ間欠駆動回
路2は必ずしも設ける必要はない。上記実施例では、温
度検出範囲を−30〜80℃と広く設定したため、温度
域を低、中、高の3つに分割し、それに対応して差動増
幅回路を3回路設けたが、温度検出範囲が狭い場合は1
または2の差動増幅回路でも良いし、逆により広い場合
は4回路以上設けても良い。また、実施例では、A/D
変換器7が入力端子を複数有し、この入力端子に各差動
増幅回路4,5,6が接続されている場合を示したが、
A/D変換器7は1入力のものとし、差動増幅回路とA
/D変換器7の間にマルチプレクサ回路を追加した構成
としても良い。熱検出素子としては、サーミスタ30に
は限られず、直線性の良い白金抵抗測温体、PN接合半
導体、温度IC等でも良い。但し、相応の増幅回路を要
する。なお、A/D変換器7、CPU8、メモリ回路9
はそれぞれ独立の部品でも、これらをワンパッケージし
た部品でもよい。
Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above embodiments. For example, the intermittent drive circuit 2 does not always need to be provided unless reduction in current consumption is considered. In the above embodiment, since the temperature detection range is set wide from -30 to 80 ° C., the temperature range is divided into low, middle, and high, and three differential amplifier circuits are provided correspondingly. 1 if the detection range is narrow
Alternatively, two differential amplifier circuits may be used, or conversely, four or more differential amplifier circuits may be provided in a wider case. In the embodiment, A / D
Although the case where the converter 7 has a plurality of input terminals and the differential amplifier circuits 4, 5, and 6 are connected to the input terminal is shown,
The A / D converter 7 has one input, and the differential amplifier circuit and A
A configuration in which a multiplexer circuit is added between the / D converters 7 may be employed. The heat detecting element is not limited to the thermistor 30, but may be a platinum resistance thermometer, a PN junction semiconductor, a temperature IC, or the like having good linearity. However, a corresponding amplifier circuit is required. The A / D converter 7, the CPU 8, the memory circuit 9
May be independent components, or may be a component obtained by packaging them in one package.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、熱
検出素子からのアナログ信号のうち所定以下の低温域信
号を減算し、残りの信号を直線性の良い温度特性を有す
る信号に増幅して出力する差動増幅手段を備えたことに
より、高精度で均一の温度精度及び均一な高分解能が得
られるようになる。また、熱検出素子は温度特性が非直
線の安価なものですみ、かつその他のA/D変換器や増
幅器等も高価なものを使用する必要がないので、低いコ
ストで提供することが可能である。請求項2の本発明に
よれば、温度検出範囲を複数に分割し、該複数の温度検
出範囲毎に不要な低温域信号を減算し、異なる増幅率で
増幅する差動増幅手段を備えたことにより、広い温度範
囲でより精度の高い温度精度及び高分解能が得られ、正
確な温度解析が可能となる。請求項3の本発明によれ
ば、熱検出素子を含む熱検出部に対する電源回路からの
電源供給を一定時間毎に断続させることにより、上記熱
検出部を間欠的に駆動する間欠駆動手段を備えたことに
より、消費電流を小さく抑えることができるようにな
る。
As described above, according to the present invention, a low-temperature signal equal to or less than a predetermined value is subtracted from the analog signal from the heat detecting element, and the remaining signal is amplified to a signal having a temperature characteristic with good linearity. With the provision of the differential amplifying means for outputting the same, high-precision and uniform temperature accuracy and uniform high-resolution can be obtained. In addition, the heat detection element can be provided at a low cost because the temperature characteristic is non-linear and inexpensive, and there is no need to use expensive A / D converters and amplifiers. is there. According to the second aspect of the present invention, there is provided differential amplification means for dividing the temperature detection range into a plurality of parts, subtracting unnecessary low-temperature range signals for each of the plurality of temperature detection ranges, and amplifying the signals at different amplification factors. Thereby, higher temperature accuracy and higher resolution can be obtained in a wide temperature range, and accurate temperature analysis can be performed. According to the third aspect of the present invention, the power detection circuit including the heat detection element is supplied from the power supply circuit.
By interrupting the power supply at regular intervals, the heat
The provision of the intermittent driving means for intermittently driving the detection section makes it possible to reduce current consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による熱アナログ式感知器の
全体構成を示すブロック図である。
FIG. 1 is a block diagram illustrating an overall configuration of a thermal analog sensor according to an embodiment of the present invention.

【図2】本発明の一実施例による熱アナログ式感知器の
熱検出部及び差動増幅回路の詳細な構成を示すブロック
図である。
FIG. 2 is a block diagram showing a detailed configuration of a heat detection unit and a differential amplifier circuit of the thermal analog sensor according to one embodiment of the present invention.

【図3】本発明の一実施例による熱アナログ式感知器の
温度−電圧特性を示す図である。
FIG. 3 is a diagram illustrating temperature-voltage characteristics of a thermal analog sensor according to an embodiment of the present invention.

【図4】本発明の一実施例による熱アナログ式感知器の
補正状態を示す図である。
FIG. 4 is a diagram illustrating a correction state of a thermal analog sensor according to an embodiment of the present invention.

【図5】従来の熱アナログ式感知器の全体構成を示すブ
ロック図である。
FIG. 5 is a block diagram showing an overall configuration of a conventional thermal analog sensor.

【図6】サーミスタを使用した回路の一例を示す回路図
である。
FIG. 6 is a circuit diagram showing an example of a circuit using a thermistor.

【図7】図6に示すサーミスタの温度−電圧特性を示す
図である。
FIG. 7 is a diagram showing temperature-voltage characteristics of the thermistor shown in FIG.

【符号の説明】[Explanation of symbols]

2 間欠駆動回路 3 熱検出部 4,5,6 差動増幅回路 7 A/D変換器 8 CPU 9 メモリ回路 30 サーミスタ 40,41 オペアンプ 2 Intermittent drive circuit 3 Heat detection unit 4, 5, 6 Differential amplifier circuit 7 A / D converter 8 CPU 9 Memory circuit 30 Thermistor 40, 41 Operational amplifier

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱検出素子からのアナログ信号をディジ
タル信号に変換し、該ディジタル信号に基づきCPUで
温度解析し温度情報を出力する熱アナログ式感知器にお
いて、 上記熱検出素子からのアナログ信号のうち所定以下の低
温域信号を減算し、残りの信号を直線性の良い温度特性
を有する信号に増幅して出力する差動増幅手段を備えた
ことを特徴とする熱アナログ式感知器。
1. A thermal analog sensor which converts an analog signal from a heat detecting element into a digital signal, analyzes the temperature with a CPU based on the digital signal, and outputs temperature information. A thermal analog sensor comprising a differential amplifying means for subtracting a low-temperature region signal equal to or less than a predetermined value, amplifying the remaining signal into a signal having a temperature characteristic with good linearity, and outputting the amplified signal.
【請求項2】 温度検出範囲を複数に分割し、該複数の
温度検出範囲毎に不要な低温域信号を減算し、異なる増
幅率で増幅する差動増幅手段を備えたことを特徴とする
請求項1記載の熱アナログ式感知器。
2. The apparatus according to claim 1, further comprising: a differential amplifying unit that divides the temperature detection range into a plurality of parts, subtracts an unnecessary low-temperature range signal for each of the plurality of temperature detection ranges, and amplifies the signals with different amplification factors. Item 4. A thermal analog sensor according to Item 1.
【請求項3】 上記熱検出素子を含む熱検出部に対する
電源回路からの電源供給を一定時間毎に断続させること
により、上記熱検出部を間欠的に駆動する間欠駆動手段
を備えたことを特徴とする請求項1または2記載の熱ア
ナログ式感知器。
3. A heat detecting section including the heat detecting element.
Interrupting the power supply from the power supply circuit at regular intervals
The thermal analog sensor according to claim 1, further comprising an intermittent driving unit for intermittently driving the heat detecting unit.
JP3205424A 1991-07-22 1991-07-22 Thermal analog sensor Expired - Lifetime JP3046411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3205424A JP3046411B2 (en) 1991-07-22 1991-07-22 Thermal analog sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3205424A JP3046411B2 (en) 1991-07-22 1991-07-22 Thermal analog sensor

Publications (2)

Publication Number Publication Date
JPH0528376A JPH0528376A (en) 1993-02-05
JP3046411B2 true JP3046411B2 (en) 2000-05-29

Family

ID=16506622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3205424A Expired - Lifetime JP3046411B2 (en) 1991-07-22 1991-07-22 Thermal analog sensor

Country Status (1)

Country Link
JP (1) JP3046411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105946104A (en) * 2016-07-06 2016-09-21 上海应用技术学院 Die table overturning machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022542A (en) * 2000-07-05 2002-01-23 Toshiba Mach Co Ltd Plc with variable temperature measurement resolution
KR101683460B1 (en) * 2016-02-05 2016-12-07 (주)세종코리아지능화시스템 Dual Thermistor Sensing Circuit for high Accuracy Temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105946104A (en) * 2016-07-06 2016-09-21 上海应用技术学院 Die table overturning machine

Also Published As

Publication number Publication date
JPH0528376A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
US7325449B2 (en) Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
US7880661B2 (en) Analog-digital converter and on-die thermal sensor including the same
US7145380B2 (en) Low power consumed and small circuit area occupied temperature sensor
JP5591294B2 (en) Temperature information output device and memory device including the same
US20100066582A1 (en) Current mode double-integration conversion apparatus
JP3231887B2 (en) Heat detector
JP3046411B2 (en) Thermal analog sensor
US4123938A (en) Device for measuring thermal parameters
US5436614A (en) Thermal analog fire detector
CN111189561A (en) Ultra-high temperature far-end temperature measurement calibration method, measurement calibration circuit and medium
US7862232B2 (en) Temperature sensor, device and system including same, and method of operation
US10942069B2 (en) Temperature measurement apparatus
EP3644080A1 (en) Sensor circuit with offset compensation
JP2869910B2 (en) Magnetic sensor device
JPH0690046A (en) Optical monitor circuit
JPH11160347A (en) Sensor circuit
JP3113226B2 (en) Combustion state determination device
JP2000214030A (en) Pressure sensor circuit
JP3519464B2 (en) Heat detector
JPH06109677A (en) Humidity detection circuit
RU1837397C (en) Method of and device for functional analog-to-digital conversion
JP2819377B2 (en) Information transmission method
RU2160960C1 (en) Integral converter
JP2595858B2 (en) Temperature measurement circuit
JP2005249537A (en) Thermocouple detector circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12