JP3042088B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method

Info

Publication number
JP3042088B2
JP3042088B2 JP3285148A JP28514891A JP3042088B2 JP 3042088 B2 JP3042088 B2 JP 3042088B2 JP 3285148 A JP3285148 A JP 3285148A JP 28514891 A JP28514891 A JP 28514891A JP 3042088 B2 JP3042088 B2 JP 3042088B2
Authority
JP
Japan
Prior art keywords
crucible
refractory
diameter
single crystal
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3285148A
Other languages
Japanese (ja)
Other versions
JPH05117072A (en
Inventor
融 松永
敏之 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP3285148A priority Critical patent/JP3042088B2/en
Publication of JPH05117072A publication Critical patent/JPH05117072A/en
Application granted granted Critical
Publication of JP3042088B2 publication Critical patent/JP3042088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、フェライトな
どの多成分系の単結晶の製造に適用して好適な単結晶の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal suitable for producing a multi-component single crystal such as ferrite.

【0002】[0002]

【従来の技術】従来、各種単結晶を製造する方法とし
て、操作が容易で設備も簡単なブリッジマン法が広く用
いられていた。このブリッジマン法は、温度勾配を利用
して結晶化をすすめるものであり、例えば溶融試料の一
端を冷却して結晶化させ、これを徐々に成長させるとい
うものである。このブリッジマン法において、現在ルツ
ボの尖頭部に種子結晶を入れて単結晶化の確率を高くす
る方法が通例であるが、生産性を向上させるためにイン
ゴットの大口経化及び長尺化が図られている。
2. Description of the Related Art Conventionally, as a method for producing various single crystals, the Bridgman method, which is easy to operate and has simple equipment, has been widely used. In the Bridgman method, crystallization is promoted by using a temperature gradient. For example, one end of a molten sample is cooled and crystallized, and this is gradually grown. In the Bridgman method, it is customary to increase the probability of single crystallization by inserting a seed crystal into the crucible apex.However, in order to improve productivity, the ingot has to be made larger and longer. It is planned.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来の単結晶の製造方法では、大型の単結晶を育成す
る際、結晶化がおこる固液界面の温度条件が、単結晶自
体の熱容量とサイズのために結晶育成において不利な方
へと変化し、その結果、結晶粒界や結晶方位の曲がりな
どが発生して結晶性に著しく悪影響を及ぼすといった問
題があった。
However, in the conventional single crystal manufacturing method described above, when growing a large single crystal, the temperature condition of the solid-liquid interface at which crystallization occurs depends on the heat capacity and the size of the single crystal itself. For this reason, the crystal growth disadvantageously changes, and as a result, there is a problem that a crystal grain boundary and a bending of a crystal orientation are generated, which significantly adversely affects the crystallinity.

【0004】本発明はこのような課題に鑑みてなされた
ものであり、単結晶化の確率を大幅に改善することがで
きるとともに、結晶性の優れた単結晶を得ることができ
る方法を提供することを目的とする。
The present invention has been made in view of such problems, and provides a method capable of greatly improving the probability of single crystallization and obtaining a single crystal having excellent crystallinity. The purpose is to:

【0005】[0005]

【課題を解決するための手段】本発明単結晶の製造方法
は、融液状態の原材料が保持されているルツボを、温度
勾配を有する炉中を徐々に通過させることにより、結晶
を成長させる単結晶の製造方法において、以下のことを
特徴とするものである。(イ)上記ルツボの尖頭部を、
耐火物で保温及び保護する。(ロ)上記耐火物は略円柱
形であり、該円柱の一方の底面側は、上記耐火物と上記
尖頭部とが常に密着できるように、加工が施されてい
る。(ハ)上記耐火物は、上記ルツボの径と同等程度の
径を有し、かつ上記ルツボの径の1〜1.5倍の高さを
有する。 また、本発明単結晶の製造方法は、融液状態の
原材料が保持されているルツボを、温度勾配を有する炉
中を徐々に通過させることにより、結晶を成長させる単
結晶の製造方法において、以下のことを特徴とするもの
である。(イ)上記ルツボの尖頭部を、耐火物で保温及
び保護する。(ロ)上記耐火物は略円柱形であり、該円
柱の一方の底面側は、上記耐火物と上記尖頭部とが常に
密着できるように、加工が施されている。(ハ)上記耐
火物は、上記ルツボの径の0.8〜1倍の径を有し、か
つ上記ルツボの径と同程度の高さを有する。 また、本発
明単結晶の製造方法は、融液状態の原材料が保持されて
いるルツボを、温度勾配を有する炉中を徐々に通過させ
ることにより、結晶を成長させる単結晶の製造方法にお
いて、以下のことを特徴とするものである。(イ)上記
ルツボの尖頭部を、耐火物で保温及び保護する。(ロ)
上記耐火物は略円錐台形であり、該円錐台形の一方の底
面側は、上記耐火物と上記尖頭部とが常に密着できるよ
うに、加工が施されている。(ハ)上記耐火物は、上記
一方の底面が上記ルツボの径と同程度の径を有し、他方
の底面が上記ルツボの径の0.5〜1倍の径を有し、か
つ上記ルツボの径と同程度の高さを有する。
Production method of the present invention a single crystal, there is provided a resolving means for] is a crucible raw material of the melt state is maintained, the temperature
Crystals are slowly passed through a furnace with a gradient
In the method for producing a single crystal for growing
It is a feature. (A) The cranial point of the crucible is
Keep and protect with refractory. (B) The refractory is substantially cylindrical
The bottom surface of one of the cylinders has the refractory and the
Processed so that the pointed head can always be in close contact
You. (C) The refractory has a diameter equivalent to the diameter of the crucible.
With a diameter of 1 to 1.5 times the diameter of the crucible.
Have. Further, the method for producing a single crystal of the present invention,
A crucible holding raw materials is placed in a furnace with a temperature gradient.
A single crystal that grows by gradually passing through
A method for producing a crystal, characterized by the following:
It is. (B) Keep the crucible head warm with refractory
And protect. (B) The refractory has a substantially cylindrical shape.
On one bottom side of the pillar, the refractory and the pointed head are always
It is processed so that it can be in close contact. (C) The above resistance
The fire has a diameter of 0.8 to 1 times the diameter of the crucible,
And has a height approximately equal to the diameter of the crucible. In addition,
The production method for bright single crystals is that raw materials in the molten state are retained.
The crucible that passes through the furnace with a temperature gradient
In this way, a single crystal manufacturing method for growing a crystal
And is characterized by the following. (B) Above
The crucible tip is kept warm and protected with refractory. (B)
The refractory is substantially frustoconical, and one bottom of the frustum is
On the surface side, the refractory and the pointed head can always be in close contact.
Indeed, it has been processed. (C) The refractory is
One bottom surface has a diameter approximately equal to the diameter of the crucible, and the other
Has a diameter of 0.5 to 1 times the diameter of the crucible,
And has a height approximately equal to the diameter of the crucible.

【0006】[0006]

【作用】本発明単結晶の製造方法によれば、ルツボの尖
頭部1aを、略円柱形または略円錐台形の耐火物4で、
保温し、保護することにより、単結晶化の確率を大幅に
改善することができるとともに、結晶性の優れた単結晶
を得ることができる。
According to the method for producing a single crystal of the present invention, the crucible tip 1a is made of a refractory 4 having a substantially cylindrical or frusto-conical shape .
By maintaining and protecting the temperature, the probability of single crystallization can be greatly improved, and a single crystal having excellent crystallinity can be obtained.

【0007】[0007]

【実施例】以下、本発明単結晶の製造方法の実施例につ
いて、図1から図6を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the method for producing a single crystal according to the present invention will be described below with reference to FIGS.

【0008】図2はブリッジマン法による単結晶製造を
実現するための装置の一例を示すものである。
FIG. 2 shows an example of an apparatus for realizing single crystal production by the Bridgman method.

【0009】まず、図2に示すような白金製のルツボ1
を用意し、原材料2を入れておく。
First, a platinum crucible 1 as shown in FIG.
Is prepared, and the raw material 2 is put.

【0010】次に、図2(a)に示すようにルツボ1を
育成炉中心部に設置し、育成炉を昇温して原材料2を完
全に融解させ、融液2を形成する。そして、図2(a)
右側に模式的に示すような温度勾配を有する炉内を徐々
に降下させていく。
Next, as shown in FIG. 2A, the crucible 1 is installed at the center of the growth furnace, and the temperature of the growth furnace is raised to completely melt the raw material 2 to form a melt 2. Then, FIG.
The furnace is gradually lowered in a furnace having a temperature gradient as schematically shown on the right side.

【0011】続いて、このルツボ1を降下させると、図
2(b)に示すようにルツボ1の下端が炉内温度が晶出
温度となっているX点に達し、この融液2の下端が結晶
晶出温度以下に冷却され、この融液2の下端から単結晶
3が晶出し始める。
Subsequently, when the crucible 1 is lowered, the lower end of the crucible 1 reaches a point X where the furnace temperature is the crystallization temperature, as shown in FIG. Is cooled below the crystallization temperature, and a single crystal 3 starts to crystallize from the lower end of the melt 2.

【0012】最終的には、図2(c)に示すように、こ
の融液2が全て単結晶3となるまでルツボ1の降下を続
け、徐々に冷却して棒状の単結晶3を取り出す。
Finally, as shown in FIG. 2 (c), the crucible 1 is continued to descend until all of the melt 2 becomes a single crystal 3, and is gradually cooled to take out a rod-shaped single crystal 3.

【0013】このとき、本発明においては、ルツボ1の
尖頭部を、ルツボ径R以上に長い高さhを有し、その径
rがルツボ径Rと同等程度の長さを有する略円柱形の耐
火物で保温及び保護しながら単結晶を育成するのであ
る。
At this time, in the present invention, the pointed tip of the crucible 1 is formed in a substantially cylindrical shape having a height h longer than the crucible diameter R and having a diameter r substantially equal to the crucible diameter R. The single crystal is grown while keeping the temperature and protection with the refractory.

【0014】この方法によれば、得られる単結晶の単結
晶化の確率が大幅に改善され、結晶性の優れたものとな
るのである。
According to this method, the probability of single crystallization of the obtained single crystal is greatly improved, and excellent crystallinity is obtained.

【0015】ここでは、ルツボ1の尖頭部を、図3
(a)〜(c)、及び図4(a)〜(c)に示すような
形状の耐火物(アルミナのレンガ)で保温及び保護しな
がらフェライト単結晶を作製した。また、比較のために
ルツボ1の尖頭部に何も付けない状態でもフェライト単
結晶を作製した。
Here, the tip of the crucible 1 is shown in FIG.
(A) to (c) and a refractory (alumina brick) having a shape as shown in FIGS. For comparison, a ferrite single crystal was prepared even when nothing was attached to the point of the crucible 1.

【0016】なお、図1に示すように、ルツボ1は、下
端が円錐状に尖ってその先に種子結晶部1bのついた円
筒状容器であり、円筒部の管径(ルツボ径)をR、長さ
をLとし、尖頭部1aの角度を90°とする。また、耐
火物4は、耐火物4と尖頭部1aとが常に密着できるよ
うに、加工が施され尖頭部1aに固定されているものと
する。
As shown in FIG. 1, the crucible 1 is a cylindrical container having a conical bottom end and a seed crystal part 1b at the tip, and has a tube diameter (crucible diameter) of R. , The length is L, and the angle of the pointed head 1a is 90 °. It is assumed that the refractory 4 is processed and fixed to the pointed head 1a so that the refractory 4 and the pointed head 1a can always be in close contact with each other.

【0017】図3(a)は、円柱状の耐火物の径rがル
ツボ径Rと等しく、高さhがルツボ径Rの半分の場合
(比較例1)を示し、図3(b)は、円柱状の耐火物の
径rがルツボ径Rの5分の4と小さく、高さhがルツボ
径Rと等しい場合(実施例1)、図3(c)は、円錐台
形の耐火物で上部の径rがルツボ径Rで、下部の径r′
がルツボ径Rの2分の1であり、高さhがルツボ径Rと
等しい場合(実施例2)、図4(a)は、円柱状の耐火
物の径rがルツボ径Rと等しく、高さhがルツボ径Rと
等しい場合(実施例)、図4(b)は、円柱状の耐火
物の径rがルツボ径Rと等しく、高さhがルツボ径Rの
1.5倍と長い場合(実施例)、図4(c)は、耐火
物を付けない場合(比較例)を示す。
FIG. 3A shows a case where the diameter r of the cylindrical refractory is equal to the crucible diameter R and the height h is half of the crucible diameter R (Comparative Example 1), and FIG. When the diameter r of the cylindrical refractory is as small as 4/5 of the crucible diameter R and the height h is equal to the crucible diameter R ( Example 1 ), FIG. The upper diameter r is the crucible diameter R and the lower diameter r '
Is 1/2 of the crucible diameter R and the height h is equal to the crucible diameter R ( Example 2 ), FIG. 4A shows that the diameter r of the cylindrical refractory is equal to the crucible diameter R, When the height h is equal to the crucible diameter R (Example 3 ), FIG. 4B shows that the diameter r of the cylindrical refractory is equal to the crucible diameter R, and the height h is 1.5 times the crucible diameter R. when is longer (example 4), FIG. 4 (c) shows the case where without a refractory (Comparative example 2).

【0018】各実施例及び比較例により得られた単結晶
の表面の様子及び結晶粒界の発生率Pを図5(a)〜
(c)、及び図6(a)〜(c)に示す。なお、結晶粒
界の発生率Pとは、各実施例及び比較例によってそれぞ
れ10本ずつ単結晶を製造したときの、結晶粒界の発生
している単結晶の数を割合として表したものである。図
5(a)は、比較例1で得られた単結晶であって、種子
結晶部のところから多数の結晶粒界が認められ、結晶粒
界の発生率Pは100%であった。図5(b)は、実施
例1で得られた単結晶であって、尖頭部の上端のところ
から2〜3個の結晶粒界が認められ、結晶粒界の発生率
Pは50%であった。図5(c)は、実施例2で得られ
た単結晶であって、種子結晶部のところから大きな結晶
粒界が一つ認められ、結晶粒界の発生率Pは30%であ
った。図6(a)は、実施例で得られた単結晶であっ
て、結晶粒界や結晶方位の曲がりはほとんど認められな
かった。図6(b)は、実施例で得られた単結晶であ
って、結晶粒界や結晶方位の曲がりは全く認められなか
った。図6(c)は、比較例で得られた単結晶であっ
て、尖頭部内からインゴット後端にかけて、多数の結晶
粒界と数本のクラックが認められ、結晶粒界の発生率P
は100%であった。
FIGS. 5 (a) to 5 (a) show the appearance of the surface of the single crystal obtained in each of the examples and comparative examples and the occurrence rate P of the crystal grain boundaries.
6 (c) and FIGS. 6 (a) to 6 (c). Note that the occurrence rate P of the crystal grain boundary is expressed as a ratio of the number of single crystals in which the crystal grain boundary is generated when 10 single crystals are manufactured in each of Examples and Comparative Examples. is there. FIG. 5A shows the single crystal obtained in Comparative Example 1, in which many crystal grain boundaries were observed from the seed crystal part, and the occurrence rate P of the crystal grain boundaries was 100%. FIG. 5 (b) shows the implementation
In the single crystal obtained in Example 1 , two to three crystal grain boundaries were observed from the upper end of the cusp, and the occurrence rate P of the crystal grain boundaries was 50%. FIG. 5C shows the single crystal obtained in Example 2 , in which one large crystal grain boundary was observed from the seed crystal part, and the occurrence rate P of the crystal grain boundary was 30%. FIG. 6A shows the single crystal obtained in Example 3 , in which the bending of the crystal grain boundaries and the crystal orientation was hardly recognized. FIG. 6B shows the single crystal obtained in Example 4 , in which no bending of the crystal grain boundaries or crystal orientation was observed. FIG. 6C shows the single crystal obtained in Comparative Example 2 , in which a large number of crystal grain boundaries and several cracks were observed from within the pointed tip to the rear end of the ingot, and the occurrence rate of the crystal grain boundaries was observed. P
Was 100%.

【0019】この図5の(b)及び(c)、並びに、
6の(a)及び(b)から、得られる単結晶の単結晶化
の確率が改善され、その結晶性が向上したことは明白で
ある。
From FIGS. 5 (b) and 5 (c) and FIGS. 6 (a) and 6 (b), the probability of single crystallization of the obtained single crystal is improved, and the crystallinity is improved. Is obvious.

【0020】以上総括すると、本例の方法によれば、ブ
リッジマン法により単結晶を育成する際に、ルツボの尖
頭部を、略円柱形または略円錐台形の耐火物で、保温
し、保護することにより、結晶粒界の原因となる結晶核
の発生を抑制して、種子結晶からの成長を促すことがで
きるので、単結晶化の確率を大幅に改善することができ
るとともに、結晶性の優れた単結晶を得ることができ
た。
Summarizing the above, according to the method of this example, when growing a single crystal by the Bridgman method, the tip of the crucible is kept warm and protected by a substantially columnar or substantially frustoconical refractory. By doing so, the generation of crystal nuclei causing crystal grain boundaries can be suppressed, and growth from seed crystals can be promoted, so that the probability of single crystallization can be greatly improved, and crystallinity can be improved. Excellent single crystals could be obtained.

【0021】なお、本発明は上述の実施例に限らず本発
明の要旨を逸脱することなく種々の構成を採り得ること
はもちろんである。
The present invention is not limited to the above-described embodiment, but can adopt various configurations without departing from the gist of the present invention.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
結晶粒界の原因となる結晶核の発生を抑制して、種子結
晶からの成長を促すことができるので、単結晶化の確率
を大幅に改善することができるとともに、結晶性の優れ
た単結晶を得ることができるという利益が得られる。
As described above, according to the present invention,
Since the generation of crystal nuclei causing crystal grain boundaries can be suppressed and growth from seed crystals can be promoted, the probability of single crystallization can be greatly improved, and single crystals with excellent crystallinity can be obtained. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本例で用いる単結晶製造装置を示す線図であ
る。
FIG. 1 is a diagram showing a single crystal manufacturing apparatus used in this example.

【図2】本例の単結晶製造工程を示す線図である。FIG. 2 is a diagram showing a single crystal manufacturing process of the present example.

【図3】本例で用いた耐火物を示す線図である。FIG. 3 is a diagram showing a refractory used in the present example.

【図4】本例で用いた耐火物を示す線図である。FIG. 4 is a diagram showing a refractory used in this example.

【図5】本例で得られた単結晶を示す線図である。FIG. 5 is a diagram showing a single crystal obtained in this example.

【図6】本例で得られた単結晶を示す線図である。FIG. 6 is a diagram showing a single crystal obtained in this example.

【符号の説明】[Explanation of symbols]

1 ルツボ 1a 尖頭部 1b 種子結晶部 1c 先トジ 4 耐火物 DESCRIPTION OF SYMBOLS 1 Crucible 1a Pointed head 1b Seed crystal part 1c Point nose 4 Refractory

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C30B 1/00-35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 融液状態の原材料が保持されているルツ
ボを、温度勾配を有する炉中を徐々に通過させることに
より、結晶を成長させる単結晶の製造方法において、以下のことを特徴とする単結晶の製造方法。 (イ)上記ルツボの尖頭部を、耐火物で保温及び保護す
る。 (ロ)上記耐火物は略円柱形であり、該円柱の一方の底
面側は、上記耐火物と上記尖頭部とが常に密着できるよ
うに、加工が施されている。 (ハ)上記耐火物は、上記ルツボの径と同等程度の径を
有し、かつ上記ルツボの径の1〜1.5倍の高さを有す
る。
1. A method for producing a single crystal, in which a crucible holding raw materials in a molten state is gradually passed through a furnace having a temperature gradient to grow a crystal , characterized by the following features. Single crystal production method. (B) Keep the crucible heads warm and protected with refractory
You. (B) The refractory is substantially cylindrical, and one bottom of the column
On the surface side, the refractory and the pointed head can always be in close contact.
Indeed, it has been processed. (C) The refractory has a diameter approximately equal to the diameter of the crucible.
And has a height of 1 to 1.5 times the diameter of the crucible
You.
【請求項2】 融液状態の原材料が保持されているルツ
ボを、温度勾配を有する炉中を徐々に通過させることに
より、結晶を成長させる単結晶の製造方法において、 以下のことを特徴とする単結晶の製造方法。 (イ)上記ルツボの尖頭部を、耐火物で保温及び保護す
る。 (ロ)上記耐火物は略円柱形であり、該円柱の一方の底
面側は、上記耐火物と上記尖頭部とが常に密着できるよ
うに、加工が施されている。 (ハ)上記耐火物は、上記ルツボの径の0.8〜1倍の
径を有し、かつ上記ルツボの径と同程度の高さを有す
る。
2. Ruth holding raw materials in a molten state.
To gradually pass through the furnace with a temperature gradient.
According to a method for producing a single crystal for growing a crystal, a method for producing a single crystal characterized by the following. (B) Keep the crucible heads warm and protected with refractory
You. (B) The refractory is substantially cylindrical, and one bottom of the column
On the surface side, the refractory and the pointed head can always be in close contact.
Indeed, it has been processed. (C) The refractory is 0.8 to 1 times the diameter of the crucible.
It has a diameter and a height about the same as the diameter of the crucible.
You.
【請求項3】 融液状態の原材料が保持されているルツ
ボを、温度勾配を有する炉中を徐々に通過させることに
より、結晶を成長させる単結晶の製造方法において、 以下のことを特徴とする単結晶の製造方法。 (イ)上記ルツボの尖頭部を、耐火物で保温及び保護す
る。 (ロ)上記耐火物は略円錐台形であり、該円錐台形の一
方の底面側は、上記耐火物と上記尖頭部とが常に密着で
きるように、加工が施されている。 (ハ)上記耐火物は、上記一方の底面が上記ルツボの径
と同程度の径を有し、他方の底面が上記ルツボの径の
0.5〜1倍の径を有し、かつ上記ルツボの径と同程度
の高さを有する。
3. Ruth holding raw materials in a molten state.
To gradually pass through the furnace with a temperature gradient.
According to a method for producing a single crystal for growing a crystal, a method for producing a single crystal characterized by the following. (B) Keep the crucible heads warm and protected with refractory
You. (B) The refractory has a substantially frusto-conical shape.
On the bottom side, the refractory and the pointed head are always in close contact.
It has been processed so that it can be used. (C) In the refractory, the one bottom surface has a diameter of the crucible.
The diameter of the crucible is the same as that of the crucible.
0.5 to 1 times the diameter and about the same as the diameter of the crucible
With a height of
JP3285148A 1991-10-30 1991-10-30 Single crystal manufacturing method Expired - Fee Related JP3042088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285148A JP3042088B2 (en) 1991-10-30 1991-10-30 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285148A JP3042088B2 (en) 1991-10-30 1991-10-30 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH05117072A JPH05117072A (en) 1993-05-14
JP3042088B2 true JP3042088B2 (en) 2000-05-15

Family

ID=17687720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285148A Expired - Fee Related JP3042088B2 (en) 1991-10-30 1991-10-30 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP3042088B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608894B2 (en) * 2004-02-04 2011-01-12 株式会社ニコン Fluoride single crystal manufacturing apparatus and manufacturing method

Also Published As

Publication number Publication date
JPH05117072A (en) 1993-05-14

Similar Documents

Publication Publication Date Title
EP0445036A1 (en) Polycrystalline silicon rod for floating zone method and process for making the same
JP3042088B2 (en) Single crystal manufacturing method
JP2525300B2 (en) Method for producing silicon single crystal
JPS5825078B2 (en) Single crystal manufacturing method
US5454345A (en) Method of growing single crystal of β-barium borate
JPS62167284A (en) Method and device for producing single crystal by bridgman technique
Goodrum Solution top-seeding: Growth of GeO2 polymorphs
JPS59107996A (en) Single crystal growing up method of solid solution composition of inorganic compound oxide
JPS5953240B2 (en) Method for producing rare earth gallium garnet single crystal
JP2959097B2 (en) Single crystal growth method
JP3208603B2 (en) How to make a single crystal
JP3255753B2 (en) Method of growing rutile rod-shaped single crystal
JPH06279174A (en) Production of oxide single crystal
JPH01167295A (en) Crucible for growing single crystal of compound semiconductor
JPS63303895A (en) Production of lithium tantalate single crystal
JPS6116757B2 (en)
JPS60200893A (en) Crucible
JPH04270191A (en) Method for growing oxide single crystal
JPS6136192A (en) Crucible for producing single crystal
JPS5921594A (en) Crucible
RU1445270C (en) Process of growing crystals of corundum
JPS63166785A (en) Apparatus for producing single crystal
JPS63252990A (en) Growth of crystal having large diameter
JPH03122092A (en) Method for growing polycrystal ingot
JPH0737360B2 (en) Beta barium borate single crystal growth method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees