JP3041557B2 - Headlight optical axis adjustment method - Google Patents
Headlight optical axis adjustment methodInfo
- Publication number
- JP3041557B2 JP3041557B2 JP5002061A JP206193A JP3041557B2 JP 3041557 B2 JP3041557 B2 JP 3041557B2 JP 5002061 A JP5002061 A JP 5002061A JP 206193 A JP206193 A JP 206193A JP 3041557 B2 JP3041557 B2 JP 3041557B2
- Authority
- JP
- Japan
- Prior art keywords
- headlight
- irradiation area
- illuminance
- optical axis
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、自動車その他の車両用
ヘッドライトの光軸調整方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting the optical axis of headlights for automobiles and other vehicles.
【0002】[0002]
【従来の技術】従来、この種の方法として、特公平2−
9298号公報により、ヘッドライトの前方に配置した
スクリーンに照射される配光パターンをCCDカメラで
撮像し、画像処理によって照度の重心座標を計測し、こ
の重心座標を光軸の位置としてこれがスクリーン上の所
定範囲内に位置するようにヘッドライトの光軸を調整す
るものが知られている。2. Description of the Related Art Conventionally, this type of method has been disclosed in
According to Japanese Patent No. 9298, a light distribution pattern applied to a screen disposed in front of a headlight is imaged by a CCD camera, and the barycentric coordinates of illuminance are measured by image processing. Is known in which the optical axis of the headlight is adjusted so as to be located within a predetermined range.
【0003】ところで、従来は、ヘッドライトの光源
(フィラメント)が予め定めた設定位置に存するものと
し、この設定位置とスクリーンまでの距離とに基いて光
軸が位置すべきスクリーン上での合格範囲を予め定めて
いるが、サスペンションの初期なじみ、タイヤのエア
圧、組付誤差等により実際の光源の位置が設定位置から
ずれてしまうことがあり、この場合には光軸の向きが正
規の向きからずれていても光軸が合格範囲に入ってしま
い正確な光軸調整を行い得なくなる。Conventionally, it is assumed that the light source (filament) of the headlight is located at a predetermined set position, and an acceptable range on the screen where the optical axis should be located based on the set position and the distance to the screen. Although the actual position of the light source may deviate from the set position due to suspension initial adaptation, tire air pressure, assembly error, etc., in this case, the direction of the optical axis is Even if it is deviated, the optical axis falls within the acceptable range, and accurate optical axis adjustment cannot be performed.
【0004】また、従来、本願出願人の出願に係る特開
平4−147030号公報により、ヘッドライトの前方
に、前後方向に長手の格子孔をマトリックス状に複数設
けた格子体を配置し、各格子孔によりマトリックス状に
区分される各照射区域における各格子孔の透過光の照射
面積と照度とを測定してヘッドライトの光軸を調整する
方法が提案されている。この方法によれば、格子孔のう
ちその孔軸の延長線がヘッドライトの光源を通る格子孔
に対応する照射区域にはその全面に亘って光線が照射さ
れて照射面積が最大となり、一方、ヘッドライトの光軸
に合致する格子孔に対応する照射区域は照度が最大とな
る。従って、光源の位置がサスペンションの初期なじみ
やタイヤのエア圧のばらつき等により設定位置からずれ
ても、照射区域が最大となる照射区域から光源の位置を
割出すことができ、この光源の位置と照度が最大となる
照射区域から割出される光軸の位置とに基いて光軸が正
規の向きとなるように光軸調整を行うことができる。[0004] Conventionally, according to Japanese Patent Application Laid-Open No. 4-147030 filed by the applicant of the present invention, a grid body having a plurality of grid holes elongated in the front-rear direction is arranged in front of a headlight. There has been proposed a method of adjusting the optical axis of the headlight by measuring the irradiation area and illuminance of the transmitted light of each grid hole in each irradiation area divided in a matrix by the grid holes. According to this method, the irradiation area corresponding to the lattice hole whose extension line of the hole axis of the lattice hole passes through the light source of the headlight is irradiated with light over the entire surface thereof, and the irradiation area is maximized. The illumination area corresponding to the lattice hole corresponding to the optical axis of the headlight has the highest illuminance. Therefore, even if the position of the light source deviates from the set position due to the initial adaptation of the suspension or the variation of the air pressure of the tire, the position of the light source can be determined from the irradiation area where the irradiation area is maximum, and this light source position and The optical axis can be adjusted based on the position of the optical axis determined from the irradiation area where the illuminance is maximized so that the optical axis is in the normal direction.
【0005】[0005]
【発明が解決しようとする課題】ところで、ヘッドライ
トの配光パターンを取扱う場合、一つの点光源ではなく
反射鏡上の複数の仮想光源から光線が照射されていると
考える方が妥当であり、例えばスポットビーム型ヘッド
ライトでは、図6(a)に示す如く、フィラメントaの
一側と他側の反射鏡上の仮想光源a1、a2から光線が
照射され、また、フラットビーム型ヘッドライトでは、
図6(b)に示す如く、反射鏡上の面状の仮想光源から
光線が照射されていると考えられる。By the way, when dealing with a light distribution pattern of a headlight, it is more appropriate to consider that light rays are emitted from a plurality of virtual light sources on a reflecting mirror instead of one point light source. For example, in a spot beam type headlight, as shown in FIG. 6 (a), light rays are emitted from virtual light sources a1 and a2 on a reflecting mirror on one side of a filament a and the other side, and in a flat beam type headlight,
As shown in FIG. 6B, it is considered that light is emitted from a planar virtual light source on the reflecting mirror.
【0006】このようなヘッドライトの光軸を上記格子
体を透過させた照射パターンに基いて調整する場合、各
格子孔の開口寸法を何れか一つの格子孔の視野内に両側
の仮想光源が収まるような大きさにすれば、照射面積が
最大となる照射区域が一つに特定されるが、光軸の調整
公差を小さくするために格子孔の開口寸法を小さくする
と、照射面積が最大となる照射区域が複数発生してしま
い、光源の位置を単純に割り出せなくなり、更に、照度
の大きな照射区域も複数発生してしまい、光軸の位置を
簡単には特定できなくなる。When the optical axis of such a headlight is adjusted based on the irradiation pattern transmitted through the lattice body, the virtual light sources on both sides are set within the field of view of any one of the lattice holes. If it is set to a size that can fit, the irradiation area with the largest irradiation area is specified as one.However, if the opening size of the lattice hole is reduced to reduce the adjustment tolerance of the optical axis, the irradiation area will be the maximum. A plurality of irradiation areas are generated, and the position of the light source cannot be simply determined. Further, a plurality of irradiation areas having high illuminance also occur, and the position of the optical axis cannot be easily specified.
【0007】本発明は、格子体を用いる場合の上記問題
点を解決して、ヘッドライトの光軸を正確に調整し得る
ようにした光軸調整方法を提供することをその目的とし
ている。SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical axis adjusting method capable of accurately adjusting the optical axis of a headlight by solving the above-mentioned problems when using a lattice.
【0008】[0008]
【課題を解決するための手段】上記目的を達成すべく、
本発明は、ヘッドライトの前方に、前後方向に長手の格
子孔をマトリックス状に複数設けた格子体を配置し、各
格子孔によってマトリックス状に区分される各照射区域
における各格子孔の透過光の照射面積と照度とを測定
し、照射面積の大きな照射区域の分布に基いてヘッドラ
イトの光源の位置を割出し、この光源の位置に対応する
か又は隣接する照射区域を基準にしてその左右の照射区
域群における合計照度の差と上下の照射区域群における
合計照度の差とが夫々所定の基準値になるようにヘッド
ライトの光軸を調整することを特徴とする。尚、格子体
は、縦横複数枚の板を格子状に枠組みしたものであって
も、又筒体の複数本を集合したものであっても良い。In order to achieve the above object,
The present invention arranges a grid body having a plurality of grid holes elongated in the front-rear direction in a matrix in front of a headlight, and transmits light transmitted through each grid hole in each irradiation area divided into a matrix by each grid hole. The illumination area and illuminance of the headlight are measured, and the position of the light source of the headlight is determined based on the distribution of the illumination area having a large illumination area, and the position corresponding to this light source position
Or the difference between the total illuminance in the left and right irradiation area groups and the upper and lower irradiation area groups
The optical axis of the headlight is adjusted so that the difference between the total illuminance and the difference becomes a predetermined reference value . The lattice body may be one in which a plurality of vertical and horizontal plates are framed in a lattice shape or one in which a plurality of cylindrical bodies are assembled.
【0009】[0009]
【作用】反射鏡上の仮想光源に正対する複数の格子孔に
対応する複数の照射区域で照射面積が最大になるが、照
射面積の大きな照射面積の分布に基いてヘッドライトの
光源(フィラメント)の位置を正確に割り出すことがで
きる。そして、ヘッドライトが正規の向きであれば、光
源の位置に対応する照射区域を中心にした上下の照度分
布と左右の照度分布とは夫々所定の分布となり、この照
射区域を基準にしてその左右の照射区域群における合計
照度の差と上下の照射区域群における合計照度の差とが
夫々上記所定の照度分布に応じた基準値となるように光
軸調整を行えば、ヘッドライトの光軸は正規の向きに正
確に調整される。The illumination area is maximized in a plurality of illumination areas corresponding to a plurality of lattice holes facing the virtual light source on the reflector, but the light source (filament) of the headlight is based on the distribution of the illumination area having a large illumination area. Can be accurately determined. Then, if the orientation of the headlight is normal, it becomes each predetermined distribution illuminance distribution in the vertical centered on the irradiation area corresponding to the position of the light source and the left and right illuminance distribution, the irradiation
The sum of the irradiation area groups on the left and right of the irradiation area
The difference between the illuminance and the total
If the optical axis is adjusted so as to be a reference value corresponding to the above-mentioned predetermined illuminance distribution, the optical axis of the headlight is accurately adjusted in a normal direction.
【0010】[0010]
【実施例】図1を参照して、1は定位置に停止させる自
動車AのヘッドライトBの前方の3m程度の近距離に配
置した測定装置を示し、該装置1は、図2に示す如く、
前後方向に長手の格子孔2をマトリックス状に複数設け
た格子体3と、格子体3の前面(ヘッドライトBと逆
側)に設けたすりガラス等から成るスクリーン4と、ス
クリーン4の前方に対設したCCDカメラ5とで構成さ
れ、カメラ5からの影像信号を画像処理回路を内蔵する
コンピュータ6に入力し、ヘッドライトBの上下方向と
横方向の向きを調整する1対の工具7、7を有するサー
ボドライバーユニット8を該コンピュータ6により制御
して、ヘッドライトBの光軸調整を行うようにした。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, reference numeral 1 denotes a measuring device arranged at a short distance of about 3 m in front of a headlight B of an automobile A to be stopped at a fixed position, and the device 1 is, as shown in FIG. ,
A grid body 3 having a plurality of grid holes 2 elongated in the front-rear direction in a matrix, a screen 4 made of frosted glass or the like provided on the front surface of the grid body 3 (on the side opposite to the headlight B), and a pair in front of the screen 4 And a pair of tools 7, 7 for inputting an image signal from the camera 5 to a computer 6 having a built-in image processing circuit and adjusting the vertical and horizontal directions of the headlight B. Is controlled by the computer 6 to adjust the optical axis of the headlight B.
【0011】格子体3を透過した光線のスクリーン4に
対する照射パターンは、各格子孔2に対応するマトリッ
クス状に区分された各照射区域に該各格子孔2の透過光
が照射されるパターンとなる。そして、格子孔2の孔軸
の延長線がヘッドライトBの光源を通る格子孔に対応す
る照射区域にはその全面に亘って光線が照射されて照射
面積が大きくなり、また、ヘッドライトBの光軸に合致
する格子孔2に対応する照射区域は照度が大きくなる。The irradiation pattern of the light beam transmitted through the grid 3 onto the screen 4 is a pattern in which the light transmitted through each grid hole 2 is applied to each of the irradiation areas divided in a matrix corresponding to each grid hole 2. . Then, the irradiation area corresponding to the grid hole passing through the light source of the headlight B is irradiated with light rays over the entire surface thereof, and the irradiation area becomes large. The illumination area corresponding to the lattice hole 2 corresponding to the optical axis has a high illuminance.
【0012】ここで、ヘッドライトBが図6(a)に示
すようなスポットビーム型である場合、スクリーン4に
対する照射パターンを立体的な照度分布を現わすヒスト
グラムで示すと図4に示す通りになる。図中X軸、Y軸
は夫々左右方向と上下方向の座標軸であり、左下隅の照
射区域から右側にn番目、上方にm番目の照射区域の座
標値を(Xn、Ym)で表わすとして、孔軸がヘッドラ
イトBの左側の仮想光源a1を通る格子孔2に対応する
照射区域の座標値は(X1、Y2)、孔軸がヘッドライ
トBの右側の仮想光源a2を通る格子孔2に対応する照
射区域の座標値は(X5、Y2)であり、(X1、Y
2)、(X2、Y2)、(X3、Y2)、(X4、Y
2)、(X5、Y2)の5個の照射区域には夫々その全
面に亘って光線が照射され、これら照射面積の大きな照
射区域の分布中心(Xc、Yc)即ち(X3、Y2)が
実光源たるフィラメントaのスクリーン4上の位置にな
る。Here, when the headlight B is of a spot beam type as shown in FIG. 6A, an irradiation pattern on the screen 4 is represented by a histogram showing a three-dimensional illumination distribution as shown in FIG. Become. In the figure, the X axis and the Y axis are coordinate axes in the left-right direction and the up-down direction, respectively. From the irradiation area at the lower left corner, the coordinate values of the n-th irradiation area to the right and the m-th irradiation area upward are represented by (Xn, Ym). The coordinate value of the irradiation area whose hole axis corresponds to the grid hole 2 passing through the virtual light source a1 on the left side of the headlight B is (X1, Y2). The coordinate values of the corresponding irradiation area are (X5, Y2) and (X1, Y
2), (X2, Y2), (X3, Y2), (X4, Y
2) and (X5, Y2) are irradiated with light rays over their entire surfaces, respectively, and the distribution center (Xc, Yc) of the irradiation area having a large irradiation area, that is, (X3, Y2) is actually obtained. The filament a, which is the light source, is located on the screen 4.
【0013】また、ヘッドライトBの向きが正規であれ
ば、図4(a)に示す如く、実光源に対し所定の位置関
係に存する照射区域(本実施例では実光源に合致する
(X3、Y2)の照射区域)を中心にしてそこから上
下、左右に離れるに従って照度が漸減するような照度分
布を示すが、光軸がずれると上記照射区域を中心にした
照度分布の対称性がくずれ、光軸が例えば右下にずれる
と図4(b)に示すようになる。If the direction of the headlight B is normal, as shown in FIG. 4A, an irradiation area having a predetermined positional relationship with respect to the real light source (in this embodiment, it matches the real light source (X3, Y2) shows an illuminance distribution such that the illuminance gradually decreases as the distance from the center increases or decreases from left to right or left or right, but if the optical axis shifts, the symmetry of the illuminance distribution centering on the illuminated area is lost. When the optical axis shifts, for example, to the lower right, it becomes as shown in FIG.
【0014】図6(b)に示す如きフラットビーム型ヘ
ッドライトの照射パターンは図5に示す通りであり、面
状仮想光源に正対する、X座標がX2〜X5、Y座標が
Y1〜Y3の照射区域で照射面積が最大になる。また、
ヘッドライトの向きが正規であれば、図5(a)に示す
如く、上記照射区域の照度がほぼ同程度に高くなるが、
光軸がずれるとこれら照射区域における照度の等分布性
がくずれ、光軸が例えば右下にずれると図5(b)に示
すようになる。尚、図示のもので照射面積の大きな照射
区域の分布中心(Xc、Yc)は照射区域間の間隙に位
置しているが、この場合には(Xc、Yc)に隣接する
片側例えば左側の照射区域を(Xc、Yc)として後記
する計測処理を行う。The irradiation pattern of the flat beam type headlight as shown in FIG. 6B is as shown in FIG. 5, and the X coordinate is X2 to X5 and the Y coordinate is Y1 to Y3 directly facing the planar virtual light source. The irradiation area is maximized in the irradiation area. Also,
If the headlight direction is normal, as shown in FIG. 5A, the illuminance of the above-mentioned irradiation area becomes almost the same,
If the optical axis shifts, the uniformity of the illuminance in these irradiation areas deteriorates, and if the optical axis shifts, for example, to the lower right, it becomes as shown in FIG. In the drawing, the distribution center (Xc, Yc) of the irradiation area having a large irradiation area is located in the gap between the irradiation areas. In this case, one side adjacent to (Xc, Yc), for example, the irradiation on the left side A measurement process described below is performed with the area set as (Xc, Yc).
【0015】ヘッドライトBの光軸調整のフローは図3
に示す通りであり、先ずスクリーン4の照射パターンを
CCDカメラ5で撮像し(S1)、カメラ5のアイリス
量を調整して(S2)、照度の上下の閾値Lh、Llを
設定し(S3)、Llで2値化して各照射区域のLl以
上の照射面積を求め、この照射面積が最大となる照射区
域の分布中心座標(Xc、Yc)を計算すると共に(S
4)、Lhで2値化してLh以上の照度を持つ照射区域
の分布中心座標(Xp、Yp)を計算する(S5)。FIG. 3 is a flowchart for adjusting the optical axis of the headlight B.
First, the irradiation pattern of the screen 4 is captured by the CCD camera 5 (S1), the iris amount of the camera 5 is adjusted (S2), and the upper and lower thresholds Lh and Ll of the illuminance are set (S3). , Ll to obtain an irradiation area of Ll or more in each irradiation area, calculate the distribution center coordinates (Xc, Yc) of the irradiation area having the maximum irradiation area, and calculate (Sc).
4) Binarization is performed using Lh, and distribution center coordinates (Xp, Yp) of the irradiation area having the illuminance equal to or greater than Lh are calculated (S5).
【0016】ここで、ヘッドライトBの反射鏡やレンズ
に歪み等がない限りLh以上の照度を持つ照射区域は特
定領域に集中するはずであり、高照度の照射区域が互い
に離れて散在しているときは、異常表示を行って処理を
中止する(S6、S7)。Here, as long as there is no distortion or the like in the reflecting mirror or lens of the headlight B, the illuminated areas having the illuminance of Lh or more should be concentrated in a specific area, and the illuminated areas of high illuminance are scattered apart from each other. If yes, an error is displayed and the process is stopped (S6, S7).
【0017】高照度の照射区域が散在していないとき
は、先ずヘッドライトBの上下方向の向きを合わせる上
下調整を行う。この調整に際しては、先ずYpとYcと
の偏位量を計算し(S8)、この偏位量を上下方向の調
整量に変換して上下調整を行い(S9、S10)、次に
X=Xcで上下走査してYcの上方の照射区域群の合計
照度と下方の照射区域群の合計照度との照度差を計算し
て(S11)、この照度差が基準値になったか否かを判
別し(S12)、照度差が基準値に減少するまで上下調
整を繰返し、照度差が基準値に減少したところでヘッド
ライトの左右方向の向きを合わせる左右調整を行う。When the irradiation areas of high illuminance are not scattered, firstly, the vertical adjustment of the headlight B in the vertical direction is performed. At the time of this adjustment, the amount of deviation between Yp and Yc is calculated first (S8), and this amount of deviation is converted into an amount of adjustment in the up-down direction to perform up-down adjustment (S9, S10), and then X = Xc To calculate the illuminance difference between the total illuminance of the irradiation area group above Yc and the total illuminance of the irradiation area group below Yc (S11), and determine whether or not this illuminance difference has reached the reference value. (S12) The vertical adjustment is repeated until the illuminance difference decreases to the reference value. When the illuminance difference decreases to the reference value, the left and right adjustment for aligning the headlight in the left-right direction is performed.
【0018】左右調整に際しては、Y=Ycで左右走査
してXcの左方の照射区域群の合計照度と右方の照射区
域群の合計照度との照度差を計算し(S13)、この照
度差を左右方向の調整量に変換して左右調整を行い(S
14、S15)、照度差が基準値になったか否かを判別
して(S16)、照度差が基準値に減少するまで左右調
整を繰返し、照度差が基準値に減少したところで光軸調
整を完了する。At the time of right and left adjustment, Y = Yc is scanned right and left to calculate an illuminance difference between the total illuminance of the left irradiation area group and the total illuminance of the right irradiation area group of Xc (S13). The difference is converted into an adjustment amount in the left-right direction, and left-right adjustment is performed (S
14, S15), it is determined whether or not the illuminance difference has reached the reference value (S16), and the left and right adjustments are repeated until the illuminance difference decreases to the reference value. When the illuminance difference decreases to the reference value, the optical axis adjustment is performed. Complete.
【0019】尚、S9、S14のステップにおける調整
量変換の変換係数及びS12、S16のステップにおけ
る基準値はスポットビーム型とフラットビーム型とで異
なる値に設定する必要がある。ここで、照射面積が最大
となる照射区域の数はフラットビーム型の方が多く、こ
の数に基いてスポットビーム型かフラットビーム型かの
機種判別を行い、上記した変換係数や基準値を設定す
る。It should be noted that the conversion coefficients for the adjustment amount conversion in steps S9 and S14 and the reference values in steps S12 and S16 need to be set to different values for the spot beam type and the flat beam type. Here, the number of irradiation areas with the maximum irradiation area is larger in the flat beam type, and based on this number, the type of the spot beam type or the flat beam type is determined, and the above conversion coefficients and reference values are set. I do.
【0020】また、上記実施例では(Xc、Yc)の照
射区域の上下の照射区域群における合計照度の差と左右
の照射区域群における合計照度の差とを各照射区域の最
高照度の合計値の差として計測したが、Lhの所定割合
例えば70%の照度Lmで2値化して、各照射区域のL
m以上の照射面積の合計値の差として計測しても良く、
更には図4及び図5に示すヒストグラムの体積の合計値
の差として計測しても良い。Further, in the above embodiment (Xc, Yc) maximum illumination intensity sum of the differences and the respective irradiation areas of the total illumination in the difference between the left and right irradiation region group total illuminance at the upper and lower irradiation area groups of the irradiation area of the Is binarized at a predetermined ratio of Lh, for example, illuminance Lm of 70%, and L of each irradiation area is binarized.
m may be measured as a difference between the total values of the irradiation areas of m or more,
Further, it may be measured as a difference between the total values of the volumes of the histograms shown in FIGS.
【0021】[0021]
【発明の効果】以上の説明から明らかなように、本発明
によれば、ヘッドライトの光源の位置を検出でき、光源
の位置がずれていても光源の実際の位置を基準にしてヘ
ッドライトの光軸を正確に調整できる。As is apparent from the above description, according to the present invention, the position of the light source of the headlight can be detected, and even if the position of the light source is displaced, the position of the headlight is determined with reference to the actual position of the light source. The optical axis can be adjusted accurately.
【図1】 本発明方法の実施に用いる装置の一例の概略
側面図FIG. 1 is a schematic side view of an example of an apparatus used to carry out the method of the present invention.
【図2】 格子体の一例の斜視図FIG. 2 is a perspective view of an example of a lattice body.
【図3】 本発明方法の一例の光軸調整手順を示すフロ
ーチャートFIG. 3 is a flowchart showing an optical axis adjustment procedure according to an example of the method of the present invention;
【図4】 (a)(b)はスポットビーム型ヘッドライ
トの照射パターンを示すヒストグラムFIGS. 4A and 4B are histograms showing irradiation patterns of a spot beam type headlight.
【図5】 (a)(b)はフラットビーム型ヘッドライ
トの照射パターンを示すヒストグラムFIGS. 5A and 5B are histograms showing irradiation patterns of a flat beam type headlight. FIGS.
【図6】 (a)(b)は夫々スポットビーム型とフラ
ットビーム型ヘッドライトの光線の照射方向と配光パタ
ーンとを示す図6 (a) and 6 (b) are diagrams showing irradiation directions of light beams and light distribution patterns of a spot beam type and a flat beam type headlight, respectively.
B ヘッドライト a フィラメント(光
源) 2 格子孔 3 格子体 4 スクリーン 5 CCDカメラ 6 コンピュータB Headlight a Filament (light source) 2 Grid hole 3 Grid body 4 Screen 5 CCD camera 6 Computer
Claims (1)
の格子孔をマトリックス状に複数設けた格子体を配置
し、各格子孔によってマトリックス状に区分される各照
射区域における各格子孔の透過光の照射面積と照度とを
測定し、照射面積の大きな照射区域の分布に基いてヘッ
ドライトの光源の位置を割出し、この光源の位置に対応
するか又は隣接する照射区域を基準にしてその左右の照
射区域群における合計照度の差と上下の照射区域群にお
ける合計照度の差とが夫々所定の基準値になるようにヘ
ッドライトの光軸を調整することを特徴とするヘッドラ
イトの光軸調整方法。1. A grid having a plurality of longitudinal grid holes arranged in a matrix in the front-rear direction is arranged in front of a headlight, and the transmission of each grid hole in each irradiation area divided into a matrix by each grid hole is provided. Measures the light irradiation area and illuminance, determines the position of the headlight light source based on the distribution of the irradiation area with a large irradiation area, and responds to this light source position
Or the difference between the total illuminance in the left and right irradiation areas and the upper and lower irradiation areas based on the adjacent irradiation areas .
The optical axis of the headlight is adjusted so that the difference between the total illuminance and the total illuminance becomes a predetermined reference value .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5002061A JP3041557B2 (en) | 1993-01-08 | 1993-01-08 | Headlight optical axis adjustment method |
US08/031,468 US5392111A (en) | 1990-10-09 | 1993-03-15 | Method of measuring and adjusting optical axis of headlight |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5002061A JP3041557B2 (en) | 1993-01-08 | 1993-01-08 | Headlight optical axis adjustment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06201522A JPH06201522A (en) | 1994-07-19 |
JP3041557B2 true JP3041557B2 (en) | 2000-05-15 |
Family
ID=11518834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5002061A Expired - Fee Related JP3041557B2 (en) | 1990-10-09 | 1993-01-08 | Headlight optical axis adjustment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3041557B2 (en) |
-
1993
- 1993-01-08 JP JP5002061A patent/JP3041557B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06201522A (en) | 1994-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5453606A (en) | Apparatus for adjusting the optical axis of an optical system | |
US8077909B2 (en) | Apparatus and method for testing infrared camera | |
US7599521B2 (en) | Vehicle vicinity monitoring apparatus | |
US5392111A (en) | Method of measuring and adjusting optical axis of headlight | |
US4790023A (en) | Method for measuring dimensions of fine pattern | |
US7590263B2 (en) | Vehicle vicinity monitoring apparatus | |
US20090185157A1 (en) | Pattern projection light source and compound-eye distance measurement apparatus | |
US9797833B2 (en) | Method for determining the refractive power of a transparent object, and corresponding device | |
JP2008107194A (en) | Wheel alignment measuring device for vehicle | |
CN103493470A (en) | Method for determining adjustment deviations of an image data capture chip of an optical camera and corresponding adjustment verification devices | |
CN114331924B (en) | Large workpiece multi-camera vision measurement method | |
CN114813051A (en) | Lens assembly method, device and system based on inverse projection MTF detection | |
JP3015997B2 (en) | Headlight optical axis adjusting measuring device and optical axis adjusting method | |
US3077139A (en) | Apparatus for aiming headlamps | |
CN109556834B (en) | Lens characteristic measuring device and lens characteristic measuring method | |
JP3041557B2 (en) | Headlight optical axis adjustment method | |
US20060239019A1 (en) | Headlamp optical axis adjusting method | |
JP3074423B2 (en) | Model identification method for headlight optical axis adjustment | |
JP2681584B2 (en) | Headlight optical axis adjustment method | |
JP3897203B2 (en) | Ball grid array ball height measurement method | |
WO2021220169A1 (en) | Non-contact vehicle orientation and alignment sensor and method | |
JP2011090166A (en) | Stereo imaging apparatus | |
JP2566847B2 (en) | Headlight optical axis measuring method, optical axis adjusting method, and headlight position measuring method | |
JPH01303721A (en) | Plane inclination detector | |
CN100465783C (en) | Focusi regulating method for optical image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080310 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090310 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100310 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |