JP2681584B2 - Headlight optical axis adjustment method - Google Patents
Headlight optical axis adjustment methodInfo
- Publication number
- JP2681584B2 JP2681584B2 JP34779192A JP34779192A JP2681584B2 JP 2681584 B2 JP2681584 B2 JP 2681584B2 JP 34779192 A JP34779192 A JP 34779192A JP 34779192 A JP34779192 A JP 34779192A JP 2681584 B2 JP2681584 B2 JP 2681584B2
- Authority
- JP
- Japan
- Prior art keywords
- irradiation area
- headlight
- optical axis
- illuminance
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、一般にECE方式と呼
ばれる非対称配光型のヘッドライトの光軸調整方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting an optical axis of an asymmetric light distribution type headlight generally called an ECE method.
【0002】[0002]
【従来の技術】非対称配光型ヘッドライトは、図6
(a)に示す如く、反射鏡の焦点位置より前方に配置し
たロービーム用フィラメントaの下側に遮光板bを設
け、反射鏡の下半部で反射されて上向きに照射される、
フィラメントaからの下向き光をカットすることにより
配光パターンにはっきりとした明暗境界線即ちカットオ
フラインCLが現れるようにすると共に、遮光板bの横
方向一側部を切欠いて、図中縦線を付した領域からの下
向き光が反射鏡で反射されて横方向他側の図中斜線を付
した領域に照射され、カットオフラインCLが横方向他
側で斜め上方に立上るように構成されている。尚、図示
のものは左側交通用であり、遮光板bの右側部を切欠い
てカットオフラインCLが左側で立上るようにしてい
る。図中a′は反射鏡の焦点位置に配置するハイビーム
用のフィラメントである。2. Description of the Related Art An asymmetric light distribution type headlight is shown in FIG.
As shown in (a), a shading plate b is provided below the low-beam filament a arranged in front of the focal point of the reflecting mirror, and is reflected by the lower half of the reflecting mirror to irradiate upward.
By cutting down the downward light from the filament a, a clear light-dark boundary line, that is, a cutoff line CL appears in the light distribution pattern, and one side portion of the light shielding plate b in the horizontal direction is cut out so that a vertical line in the figure is formed. The downward light from the marked area is reflected by the reflecting mirror and is irradiated to the hatched area on the other side in the horizontal direction, and the cut-off line CL rises obliquely upward on the other side in the horizontal direction. . Incidentally, the one shown in the figure is for traffic on the left side, and the cut-off line CL is raised on the left side by notching the right side portion of the light shielding plate b. In the figure, a'denotes a filament for high beam which is arranged at the focal position of the reflecting mirror.
【0003】従来、このような非対称配光型ヘッドライ
トの光軸調整方法として、特開昭61−17934号公
報により、ヘッドライトの前方に配置したスクリーンに
照射される配光パターンをCCDカメラで撮像し、画像
処理によって等照度曲線を作成してカットオフラインを
求め、カットオフラインが所定範囲内に位置するように
ヘッドライトの光軸を調整するものが知られている。Conventionally, as a method of adjusting the optical axis of such an asymmetrical light distribution type headlight, according to Japanese Patent Application Laid-Open No. 61-17934, a light distribution pattern irradiated on a screen arranged in front of the headlight is measured by a CCD camera. It is known that an image is taken, an isoilluminance curve is created by image processing to obtain a cutoff line, and the optical axis of the headlight is adjusted so that the cutoff line is located within a predetermined range.
【0004】ところで、従来は、ヘッドライトの光源
(フィラメント)が予め定めた設定位置に存するものと
し、この設定位置とスクリーンまでの距離とに基いてカ
ットオフラインが位置すべきスクリーン上での合格範囲
を予め定めているが、サスペンションの初期なじみ、タ
イヤのエア圧、組付誤差等により実際の光源の位置が設
定位置からずれてしまうことがあり、この場合には光軸
の向きが正規の向きからずれていてもカットオフライン
が合格範囲に入ってしまい正確な光軸調整を行い得なく
なる。By the way, conventionally, it is assumed that the light source (filament) of the headlight is located at a predetermined setting position, and the cut-off line should be located on the screen based on the setting position and the distance to the screen. However, the actual position of the light source may deviate from the set position due to initial running-in of the suspension, tire air pressure, assembly error, etc.In this case, the direction of the optical axis is the normal direction. Even if it is out of alignment, the cut-off line falls within the acceptable range, and accurate optical axis adjustment cannot be performed.
【0005】また、従来、本願出願人の出願に係る特開
平4−147030号公報により、主としてハイビーム
における光軸調整に関するものであるが、ヘッドライト
の前方に、前後方向に長手の格子孔をマトリックス状に
複数設けた格子体を配置し、各格子孔によりマトリック
ス状に区分される各照射区域における各格子孔の透過光
の照射面積と照度とを測定してヘッドライトの光軸を調
整する方法が提案されている。この方法によれば、格子
孔のうちその孔軸の延長線がヘッドライトの光源を通る
格子孔に対応する照射区域にはその全面に亘って光線が
照射されて照射面積が最大となり、一方、ヘッドライト
の光軸に合致する格子孔に対応する照射区域は照度が最
大となる。従って、光源の位置がサスペンションの初期
なじみやタイヤのエア圧のばらつき等により設定位置か
らずれても、照射区域が最大となる照射区域から光源の
位置を割出すことができ、この光源の位置と照度が最大
となる照射区域から割出される光軸の位置とに基いて光
軸が正規の向きとなるように光軸調整を行うことができ
る。Further, conventionally, according to Japanese Patent Application Laid-Open No. 4-147030 filed by the applicant of the present application, which mainly relates to the adjustment of the optical axis in a high beam, a matrix of longitudinal grid holes in the front-rear direction is provided in front of the headlight. A method for adjusting the optical axis of the headlight by arranging a plurality of grids arranged in a matrix and measuring the irradiation area and illuminance of the transmitted light of each grating hole in each irradiation area divided by each grating hole in a matrix Is proposed. According to this method, the extended area of the hole axis of the grid hole corresponds to the grid hole that passes through the light source of the headlight, the irradiation area is maximized by irradiating light rays over the entire surface, while, The illuminance is maximum in the irradiation area corresponding to the grid hole that matches the optical axis of the headlight. Therefore, even if the position of the light source deviates from the set position due to the initial familiarity of the suspension, the tire air pressure variation, etc., the position of the light source can be determined from the irradiation region where the irradiation region is the maximum. The optical axis can be adjusted so that the optical axis has a regular orientation based on the position of the optical axis indexed from the irradiation area where the illuminance is maximum.
【0006】[0006]
【発明が解決しようとする課題】ところで、ヘッドライ
トの配光パターンを取扱う場合、一つの点光源ではなく
反射鏡上の複数の仮想光源から光線が照射されていると
考える方が妥当であり、非対称配光のロービームを照射
する場合には、図6(b)に示す如く、反射鏡上の一側
の仮想光源a1からの光線がカットオフラインCLの水
平部の下方領域に照射され、反射鏡上の他側の仮想光源
a2からの光線がカットオフラインCLの立上り部の下
方領域に照射されていると考えられる。By the way, when dealing with the light distribution pattern of the headlight, it is more appropriate to consider that the light rays are emitted from a plurality of virtual light sources on the reflecting mirror instead of one point light source. When irradiating a low beam of asymmetric light distribution, as shown in FIG. 6B, the light beam from the virtual light source a1 on one side of the reflecting mirror irradiates the lower region of the horizontal portion of the cutoff line CL, and the reflecting mirror It is considered that the light beam from the other virtual light source a2 on the other side is applied to the lower region of the rising portion of the cutoff line CL.
【0007】このような非対称配光型ヘッドライトの光
軸を上記格子体を透過させた照射パターンに基いて調整
する場合、各格子孔の開口寸法を何れか一つの格子孔の
視野内に両側の仮想光源が収まるような大きさにすれ
ば、照射面積が最大となる照射区域が一つに特定される
が、光軸の調整公差を小さくするために格子孔の開口寸
法を小さくすると、照射面積が最大となる照射区域が複
数発生してしまい、光源の位置を単純に割り出せなくな
り、更に、格子孔の孔軸に対し或る程度以上傾いた光線
は格子孔を透過できなくなるため、光源に正対する格子
孔から上下左右に或る程度離れた格子孔に対応する照射
区域には光線が照射されなくなり、これらの照射区域に
カットオフラインが入ってしまうと、カットオフライン
の位置を検出できなくなる。When the optical axis of such an asymmetrical light distribution type headlight is adjusted based on the irradiation pattern transmitted through the grating body, the opening size of each grating hole is adjusted so that both sides are within the field of view of any one grating hole. If the size is set to fit the virtual light source of, the irradiation area that maximizes the irradiation area is specified as one. However, if the aperture size of the lattice hole is reduced to reduce the adjustment tolerance of the optical axis, Since there are multiple irradiation areas with the maximum area, it is not possible to simply determine the position of the light source.Furthermore, a light beam that is tilted to some extent with respect to the hole axis of the lattice hole cannot pass through the lattice hole. If the irradiation areas corresponding to the grid holes that are distant vertically and horizontally from the facing grid holes to some extent are not irradiated with light rays and cut-off lines enter these irradiation areas, the position of the cut-off line cannot be detected. It made.
【0008】本発明は、格子体を用いる場合の上記問題
点を解決して、非対称配光型ヘッドライトの光軸を正確
に調整し得るようにした光軸調整方法を提供することを
その目的としている。SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical axis adjusting method which solves the above-mentioned problems in the case of using a grating body and is capable of accurately adjusting the optical axis of an asymmetrical light distribution type headlight. I am trying.
【0009】[0009]
【課題を解決するための手段】上記目的を達成すべく、
本発明は、非対称配光型のヘッドライトの光軸調整方法
であって、ヘッドライトの前方に、前後方向に長手の格
子孔をマトリックス状に複数設けた格子体を配置し、各
格子孔によってマトリックス状に区分される各照射区域
における該各格子孔の透過光の照射面積と照度とを測定
し、照射面積の大きな照射区域の分布に基いてヘッドラ
イトの光源の位置を割出し、この光源の位置に対し所定
の位置関係に存する照射区域における照度の分布パター
ンが該照射区域の中央部に比し両側部の照度が略同程度
高くなる2股状のパターンとなるようにヘッドライトの
光軸を調整することを特徴とする。尚、格子体は、縦横
複数枚の板を格子状に枠組みしたものであっても、又筒
体の複数本を集合したものであっても良い。In order to achieve the above object,
The present invention is a method for adjusting an optical axis of an asymmetrical light distribution type headlight, in which a grid body having a plurality of longitudinal grid holes arranged in a matrix is arranged in front of the headlight. The irradiation area and the illuminance of the transmitted light of each lattice hole in each irradiation area divided into a matrix are measured, and the position of the light source of the headlight is indexed based on the distribution of the irradiation area having a large irradiation area. Of the headlight so that the distribution pattern of the illuminance in the irradiation area existing in a predetermined positional relationship with respect to the position is a bifurcated pattern in which the illuminance on both sides of the irradiation area is about the same as that of the central part of the irradiation area. It is characterized by adjusting the axis. Note that the lattice body may be formed by arranging a plurality of vertical and horizontal plates in a lattice shape, or may be an aggregate of a plurality of cylindrical bodies.
【0010】[0010]
【作用】反射鏡上の複数の仮想光源に正対する複数の格
子孔に対応する複数の照射区域で照射面積が最大になる
が、照射面積の大きな照射面積の分布に基いてヘッドラ
イトの光源(フィラメント)の位置を正確に割り出すこ
とができる。ところで、非対称配光型ヘッドライトでは
フィラメントaの両側に位置する仮想光源a1、a2か
ら照射される光線の光軸c1、c2が互いに異なる方向
を向き、これら光軸が成す交差角の等角2等分線c0に
合致する格子孔にはその長手方向断面における2つの対
角線に沿って一側の仮想光源a1からの光線と他側の仮
想光源a2からの光線とが等分に入射されることにな
り、この格子孔に対応する照射区域における照度の分布
パターンは該照射区域の中央部に比しその両側部の照度
が略同程度高くなる2股状のパターンになる。ヘッドラ
イトの光軸が正規の向きであれば、ヘッドライトの光源
に対し所定の位置関係に存する格子孔に前記等角2等分
線が合致することになる。従って、該格子孔に対応する
照射区域における照度の分布パターンが上記2股状パタ
ーンになるように光軸調整を行えば、ヘッドライトの光
軸は正規の向きに正確に調整される。The irradiation area is maximized in a plurality of irradiation areas corresponding to a plurality of lattice holes facing the plurality of virtual light sources on the reflecting mirror, but the light source of the headlight ( The position of the filament) can be accurately determined. By the way, in the asymmetric light distribution type headlight, the optical axes c1 and c2 of the light beams emitted from the virtual light sources a1 and a2 located on both sides of the filament a are directed in different directions, and the equal angle 2 of the intersection angle formed by these optical axes is set. The light rays from the virtual light source a1 on one side and the light rays from the virtual light source a2 on the other side are equally incident on the lattice hole matching the bisector c0 along the two diagonal lines in the longitudinal section. Thus, the distribution pattern of the illuminance in the irradiation area corresponding to the lattice hole is a bifurcated pattern in which the illuminance on both sides of the irradiation area is substantially the same as that of the central area of the irradiation area. If the optical axis of the headlight is in the normal direction, the equiangular bisectors will coincide with the lattice holes that have a predetermined positional relationship with the light source of the headlight. Therefore, if the optical axis is adjusted so that the distribution pattern of the illuminance in the irradiation area corresponding to the lattice hole becomes the above-mentioned bifurcated pattern, the optical axis of the headlight is accurately adjusted in the normal direction.
【0011】[0011]
【実施例】図1を参照して、1は定位置に停止させる自
動車AのヘッドライトBの前方の3m程度の近距離に配
置した測定装置を示し、該装置1は、図2に示す如く、
前後方向に長手の格子孔2をマトリックス状に複数設け
た格子体3と、格子体3の前面(ヘッドライトBと逆
側)に設けたすりガラス等から成るスクリーン4と、ス
クリーン4の前方に対設したCCDカメラ5とで構成さ
れ、カメラ5からの影像信号を画像処理回路を内蔵する
コンピュータ6に入力し、ヘッドライトBの上下方向と
横方向の向きを調整する1対の工具7、7を有するサー
ボドライバーユニット8を該コンピュータ6により制御
して、ヘッドライトBの光軸調整を行うようにした。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, reference numeral 1 denotes a measuring device arranged at a short distance of about 3 m in front of a headlight B of an automobile A to be stopped at a fixed position. The device 1 is as shown in FIG. ,
A lattice body 3 having a plurality of lattice holes 2 elongated in the front-rear direction in a matrix, a screen 4 made of frosted glass or the like provided on the front surface of the lattice body 3 (on the side opposite to the headlight B), and in front of the screen 4. A pair of tools 7, 7 for adjusting the vertical direction and the horizontal direction of the headlight B by inputting the image signal from the camera 5 to the computer 6 having the built-in image processing circuit. The servo driver unit 8 having the above is controlled by the computer 6 so that the optical axis of the headlight B is adjusted.
【0012】格子体3を透過した光線のスクリーン4に
対する照射パターンは、各格子孔2に対応するマトリッ
クス状に区分された各照射区域に該各格子孔2の透過光
が照射されるパターンとなる。そして、格子孔2の孔軸
の延長線がヘッドライトBの光源を通る格子孔に対応す
る照射区域にはその全面に亘って光線が照射されて照射
面積が大きくなり、また、ヘッドライトBの光軸に合致
する格子孔2に対応する照射区域は照度が大きくなる。The irradiation pattern of the light beam transmitted through the grating body 3 on the screen 4 is such that the transmitted light of each grating hole 2 is irradiated to each irradiation area divided into a matrix corresponding to each grating hole 2. . Then, a light beam is irradiated over the entire surface of the irradiation area where the extension line of the hole axis of the grating hole 2 corresponds to the grating hole passing through the light source of the headlight B, and the irradiation area becomes large. The illumination area corresponding to the lattice hole 2 that matches the optical axis has a high illuminance.
【0013】ここで、ヘッドライトBが図6に示すよう
な左上りのカットオフラインCLを有する非対称配光型
である場合、スクリーン4に対する照射パターンを立体
的な照度分布を現わすヒストグラムで示すと図4に示す
通りになる。図中X軸、Y軸は夫々左右方向と上下方向
の座標軸であり、左下隅の照射区域から右側にn番目、
上方にm番目の照射区域の座標値を(Xn、Ym)で表
わすとして、孔軸がヘッドライトBの左側の仮想光源a
1を通る格子孔2に対応する照射区域の座標値は(X
1、Y2)、孔軸がヘッドライトBの右側の仮想光源a
2を通る格子孔2に対応する照射区域の座標値は(X
5、Y2)であり、(X1、Y2)、(X2、Y2)、
(X3、Y2)、(X4、Y2)、(X5、Y2)の5
個の照射区域には夫々その全面に亘って光線が照射さ
れ、これら照射面積の大きな照射区域の分布中心即ち
(X3、Y2)が実光源たるフィラメントaのスクリー
ン4上の位置になる。Here, when the headlight B is an asymmetric light distribution type having an upper left cutoff line CL as shown in FIG. 6, the irradiation pattern on the screen 4 is shown by a histogram showing a three-dimensional illuminance distribution. As shown in FIG. In the figure, the X-axis and the Y-axis are the coordinate axes in the left-right direction and the vertical direction, respectively, and are the n-th one to the right of the irradiation area in the lower left corner,
Assuming that the coordinate value of the m-th irradiation area upward is represented by (Xn, Ym), the hole axis is the virtual light source a on the left side of the headlight B.
The coordinate value of the irradiation area corresponding to the lattice hole 2 passing through 1 is (X
1, Y2), the virtual light source a with the hole axis on the right side of the headlight B
The coordinate value of the irradiation area corresponding to the lattice hole 2 passing through 2 is (X
5, Y2), and (X1, Y2), (X2, Y2),
5 of (X3, Y2), (X4, Y2), (X5, Y2)
The individual irradiation areas are respectively irradiated with light rays over their entire surfaces, and the distribution center of the irradiation areas having a large irradiation area, that is, (X3, Y2) is the position on the screen 4 of the filament a which is the actual light source.
【0014】また、左側の仮想光源a1から照射される
光線の光軸c1と右側の仮想光源a2から照射される光
線の光軸c2とが成す交差角の等角2等分線c0に合致
する格子孔2にはその長手方向断面における2つの対角
線に沿って左側の仮想光源a1からの光線と右側の仮想
光源a2からの光線とが等分に入射されることになり、
この格子孔2に対応する照射区域における照度の分布パ
ターンは該照射区域の中央部に比し両側部が略同程度高
くなる2股状のパターンになる。そして、ヘッドライト
Bの光軸が正規の向きであれば、実光源に対し所定の位
置関係に存する照射区域(本実施例で使用したヘッドラ
イトBでは実光源に合致する(X3、Y2)の照射区
域)の照度が高くなり且つ照度の分布パターンが上記2
股状パターンになる。Further, it coincides with the equiangular bisector c0 of the intersection angle formed by the optical axis c1 of the light beam emitted from the left virtual light source a1 and the optical axis c2 of the light beam emitted from the right virtual light source a2. The light beam from the left virtual light source a1 and the light beam from the right virtual light source a2 are equally incident on the lattice hole 2 along the two diagonal lines in the longitudinal section,
The distribution pattern of the illuminance in the irradiation area corresponding to the lattice holes 2 is a bifurcated pattern in which both side portions are substantially higher than the central portion of the irradiation area. Then, if the optical axis of the headlight B is in the normal direction, an irradiation area having a predetermined positional relationship with the actual light source (in the headlight B used in this embodiment, the actual light source is coincident with (X3, Y2)). The illuminance of the illuminated area) is high and the distribution pattern of the illuminance is 2
It becomes a crotch pattern.
【0015】図5はヘッドライトBの光軸が右下にずれ
ている場合のスクリーン4に対する照射パターンであ
り、照射面積の大きな照射区域の分布は変化しないが、
実光源に合致する(X3、Y2)の照射区域における照
度の分布パターンは、該区域の左側部に照射される右側
の仮想光源a2からの光線の照度が光軸の右方へのずれ
で低下して左右非対称な2股状パターンになる。FIG. 5 shows an irradiation pattern for the screen 4 when the optical axis of the headlight B is shifted to the lower right. Although the distribution of the irradiation area having a large irradiation area does not change,
The distribution pattern of the illuminance in the irradiation area of (X3, Y2) that matches the actual light source shows that the illuminance of the light beam from the right virtual light source a2 irradiated to the left side of the area decreases due to the shift of the optical axis to the right. Then, the pattern becomes bilaterally asymmetrical.
【0016】また、右側の仮想光源a2から照射される
光線にはカットオフラインCLの左上りの立上り部を形
成するための左上りの方向ベクトルを持つ成分が含まれ
ており(図6(a)の縦線を付した領域の反射光)、そ
の結果、実光源に合致する(X3、Y2)の照射区域の
上方左側に位置する複数の照射区域の左上隅部に右側の
仮想光源からの光線が照射されるが、光軸が下方にずれ
るとその照度が低下する。The light beam emitted from the virtual light source a2 on the right side includes a component having a direction vector on the upper left side for forming a rising portion on the upper left side of the cutoff line CL (FIG. 6 (a)). (Reflected light in the area marked with the vertical line), and as a result, light rays from the virtual light source on the right side in the upper left corner of the plurality of irradiation areas located above and to the left of the irradiation area of (X3, Y2) that match the real light source. However, if the optical axis shifts downward, the illuminance decreases.
【0017】ヘッドライトBの光軸調整のフローは図3
に示す通りであり、先ずスクリーン4の照射パターンを
CCDカメラ5で撮像し(S1)、カメラ5のアイリス
量を調整して(S2)、照度の上下の閾値Lh、Llを
設定し(S3)、Llで2値化して各照射区域のLl以
上の照射面積を求め、この照射面積が最大となる照射区
域の分布中心座標(Xc、Yc)(図4、図5では(X
3、Y2))を計算すると共に(S4)、Lhで2値化
してLh以上の照度を持つ照射区域の分布中心座標(X
p、Yp)(図4では(X3、Y2)、図5では(X
4、Y1))を計算する(S5)。The flow of adjusting the optical axis of the headlight B is shown in FIG.
First, the irradiation pattern of the screen 4 is imaged by the CCD camera 5 (S1), the iris amount of the camera 5 is adjusted (S2), and the upper and lower thresholds Lh and Ll of illuminance are set (S3). , Ll is binarized to obtain an irradiation area equal to or larger than Ll of each irradiation area, and the distribution center coordinates (Xc, Yc) of the irradiation area having the maximum irradiation area ((X
3, Y2)) is calculated (S4), and the distribution center coordinates (X
p, Yp) ((X3, Y2) in FIG. 4 and (X
4, Y1)) is calculated (S5).
【0018】ここで、ヘッドライトBの反射鏡やレンズ
に歪み等がない限りLh以上の照度を持つ照射区域は特
定領域に集中するはずであり、高照度の照射区域が互い
に離れて散在しているときは、異常表示を行って処理を
中止する(S6、S7)。Here, unless the reflecting mirror or the lens of the headlight B is distorted, the irradiation areas having an illuminance of Lh or more should be concentrated in a specific area, and the irradiation areas having a high illuminance are scattered apart from each other. If so, an error is displayed and the process is stopped (S6, S7).
【0019】高照度の照射区域が散在していないとき
は、先ずヘッドライトBの上下方向の向きを合わせる上
下調整を行う。この調整に際しては、先ず照射面積が最
大となる照射区域のうちカットオフラインCLが立上る
側に最もずれている照射区域のX座標値をXaとして
(図4、図5ではX1)、X=Xaで上下走査し(S
8)、Lhの所定割合例えば70%の照度Lmで2値化
して、X=Xaで且つYcより下方の照射区域(図4、
図5では(X1、Y1)、(X1、Y0)の照射区域)
のLm以上の合計照射面積とYcより上方の照射区域
(図4、図5では(X1、Y3)(X1、Y4)の照射
区域)のLm以上の合計照射面積との面積差を計算し
(S9)、この面積差を上下方向の調整量に変換して上
下調整を行い(S10、S11)、面積差が所定値にな
ったところで上下調整を完了し(S12)、ヘッドライ
トBの左右方向の向きを合わせる左右調整を行う。When the irradiation areas of high illuminance are not scattered, first, the vertical adjustment is performed to match the vertical direction of the headlight B. In this adjustment, first, of the irradiation areas having the maximum irradiation area, the X coordinate value of the irradiation area that is most displaced to the side where the cutoff line CL rises is Xa (X1 in FIGS. 4 and 5), and X = Xa. Scan up and down with (S
8), a predetermined ratio of Lh, for example, an illuminance Lm of 70%, is binarized, and X = Xa and an irradiation area below Yc (FIG. 4, FIG.
((X1, Y1), (X1, Y0) irradiation area in FIG. 5)
The area difference between the total irradiation area of Lm or more and the irradiation area above Yc (the irradiation area of (X1, Y3) (X1, Y4) in FIGS. 4 and 5) is Lm or more is calculated (( In step S9, the area difference is converted into an adjustment amount in the vertical direction for vertical adjustment (S10, S11). When the area difference reaches a predetermined value, the vertical adjustment is completed (S12), and the headlight B is moved in the horizontal direction. Adjust the right and left to match the orientation of.
【0020】この調整に際しては、先ず(Xc、Yc)
と(Xp、Yp)との間の偏位量に基いて光軸のずれが
大きいか小さいかを判別し(S13)、大ずれのときは
Y=Ycで左右走査し(S14)、Lmで2値化して、
Y=Ycで且つXcより左方の照射区域(図4、図5で
は(X0、Y2)、(X1、Y2)、(X2、Y2)の
照射区域)のLm以上の合計照射面積とXcより右方の
照射区域(図4、図5では(X4、Y2)、(X5、Y
2)、(X6、Y2)の照射区域)のLm以上の合計照
射面積との面積差を計算し(S15)、この面積差を上
下方向の調整量に変換して左右のラフ調整を行い(S1
6、S17)、次に(Xc、Yc)の照射区域の2股状
の照度分布パターンの2股レベル差を検出する(S1
8)。光軸のずれが小さいときは、S13からS18に
直接進む。そして、2股レベル差を左右方向の調整量に
変換して左右調整を行い(S19、S20)、2股レベ
ル差が所定値以下になったか否かを判別して(S2
1)、所定値以下になるまでS18からS20までの処
理を繰返す。In this adjustment, first (Xc, Yc)
And (Xp, Yp) based on the deviation amount between (Xp, Yp), it is determined whether the deviation of the optical axis is large or small (S13). When the deviation is large, left and right scanning is performed with Y = Yc (S14), and Lm Binarize,
From the total irradiation area of Lm or more and the irradiation area of Y = Yc and the irradiation area to the left of Xc (the irradiation areas of (X0, Y2), (X1, Y2), (X2, Y2) in FIGS. 4 and 5) The irradiation area on the right side ((X4, Y2) in FIGS. 4 and 5, (X5, Y
2), the area difference between the (X6, Y2) irradiation area) and the total irradiation area of Lm or more is calculated (S15), and the area difference is converted into a vertical adjustment amount to perform left and right rough adjustment ( S1
6, S17), and then the forked level difference of the forked illuminance distribution pattern in the irradiation area of (Xc, Yc) is detected (S1).
8). When the deviation of the optical axis is small, the process directly proceeds from S13 to S18. Then, the two-forked level difference is converted into an adjustment amount in the left-right direction for left-right adjustment (S19, S20), and it is determined whether or not the two-forked level difference is equal to or less than a predetermined value (S2).
1) The processes from S18 to S20 are repeated until the value becomes equal to or less than the predetermined value.
【0021】2股レベル差が所定値以下になったとき
は、カットオフラインCLの立上り部を挾んでその上下
に位置するはずである、(Xc、Yc)に基いて決定さ
れる2つの照射区域(例えば図4の(X3、Y3)、
(X3、Y4)の照射区域)の照度差を検出して合否検
査を行う(S22)。ヘッドライトBが正常であれば、
この照度差は所定値以上になるが、フィラメントaや遮
光板bの組付誤差等によりカットオフラインCLの立上
り部の立上り角が正規角度からずれているときは、該立
上り部が前記2つの照射区域の間を通らなくなり、前記
照度差が所定値を下回る。そこで、照度差が所定値以上
のときは合格として調整を完了し(S23、S24)、
照度差が所定値に達しないときは不合格として異常表示
を行う。When the two-forked level difference becomes less than a predetermined value, it should be located above and below the rising portion of the cut-off line CL. Two irradiation areas determined based on (Xc, Yc). (For example, (X3, Y3) in FIG.
The pass / fail test is performed by detecting the illuminance difference in the (X3, Y4) irradiation area (S22). If the headlight B is normal,
This illuminance difference is equal to or greater than a predetermined value, but when the rising angle of the rising portion of the cutoff line CL deviates from the normal angle due to an assembly error of the filament a or the light shielding plate b, the rising portion has the above two irradiations. The areas do not pass through, and the illuminance difference falls below a predetermined value. Therefore, when the illuminance difference is equal to or larger than the predetermined value, the adjustment is completed as a pass (S23, S24),
When the illuminance difference does not reach the predetermined value, it is judged as unacceptable and an abnormality is displayed.
【0022】尚、上記実施例では、S9、S15のステ
ップにおいてLmで2値化して面積差を求めたが、図
4、図5に示すヒストグラムの体積差を求めて、上下調
整や左右調整を行うようにしても良い。In the above embodiment, the area difference is obtained by binarizing with Lm in the steps S9 and S15, but the volume difference of the histograms shown in FIGS. 4 and 5 is obtained, and vertical adjustment and horizontal adjustment are performed. You may do it.
【0023】[0023]
【発明の効果】以上の説明から明らかなように、本発明
によれば、ヘッドライトの光源の位置を検出でき、光源
の位置がずれていても光源の実際の位置を基準にして非
対称配光型のヘッドライトの光軸を正確に調整できる。As is apparent from the above description, according to the present invention, the position of the light source of the headlight can be detected, and even if the position of the light source is deviated, the asymmetric light distribution is performed with reference to the actual position of the light source. The optical axis of the mold headlight can be adjusted accurately.
【図1】 本発明方法の実施に用いる装置の一例の概略
側面図FIG. 1 is a schematic side view of an example of an apparatus used for carrying out the method of the present invention.
【図2】 格子体の一例の斜視図FIG. 2 is a perspective view of an example of a lattice.
【図3】 本発明方法の一例の光軸調整手順を示すフロ
ーチャートFIG. 3 is a flowchart showing an optical axis adjustment procedure of an example of the method of the present invention.
【図4】 光軸が正規の向きであるときの照射パターン
を示すヒストグラムFIG. 4 is a histogram showing an irradiation pattern when the optical axis is in a normal direction.
【図5】 光軸がずれているときの照射パターンを示す
ヒストグラムFIG. 5 is a histogram showing an irradiation pattern when the optical axis is displaced.
【図6】 (a)はヘッドライトの構造を示す斜視図、
(b)はヘッドライトからの光線の照射方向と配光パタ
ーンとを示す図6A is a perspective view showing the structure of a headlight, FIG.
(B) is a figure which shows the irradiation direction of the light beam from a headlight, and a light distribution pattern.
B ヘッドライト a フィラメント(光
源) 2 格子孔 3 格子体 4 スクリーン 5 カメラ 6 コンピュータB Headlight a Filament (light source) 2 Lattice hole 3 Lattice body 4 Screen 5 Camera 6 Computer
Claims (1)
方法であって、ヘッドライトの前方に、前後方向に長手
の格子孔をマトリックス状に複数設けた格子体を配置
し、各格子孔によってマトリックス状に区分される各照
射区域における該各格子孔の透過光の照射面積と照度と
を測定し、照射面積の大きな照射区域の分布に基いてヘ
ッドライトの光源の位置を割出し、この光源の位置に対
し所定の位置関係に存する照射区域における照度の分布
パターンが該照射区域の中央部に比し両側部の照度が略
同程度高くなる2股状のパターンとなるようにヘッドラ
イトの光軸を調整することを特徴とするヘッドライトの
光軸調整方法。1. A method for adjusting an optical axis of an asymmetrical light distribution type headlight, wherein a grid body having a plurality of longitudinal grid holes arranged in a matrix in the front-rear direction is arranged in front of the headlight, and each grid hole is arranged. The irradiation area and the illuminance of the transmitted light of each lattice hole in each irradiation area divided by the matrix are measured, and the position of the light source of the headlight is indexed based on the distribution of the irradiation area having a large irradiation area. The illuminance distribution pattern in the irradiation area existing in a predetermined positional relationship with the position of the light source is a bifurcated pattern in which the illuminance on both sides of the irradiation area is approximately the same as the central area of the irradiation area. A method of adjusting an optical axis of a headlight, which comprises adjusting an optical axis.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34779192A JP2681584B2 (en) | 1992-12-28 | 1992-12-28 | Headlight optical axis adjustment method |
US08/031,468 US5392111A (en) | 1990-10-09 | 1993-03-15 | Method of measuring and adjusting optical axis of headlight |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34779192A JP2681584B2 (en) | 1992-12-28 | 1992-12-28 | Headlight optical axis adjustment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06201520A JPH06201520A (en) | 1994-07-19 |
JP2681584B2 true JP2681584B2 (en) | 1997-11-26 |
Family
ID=18392604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34779192A Expired - Fee Related JP2681584B2 (en) | 1990-10-09 | 1992-12-28 | Headlight optical axis adjustment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2681584B2 (en) |
-
1992
- 1992-12-28 JP JP34779192A patent/JP2681584B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06201520A (en) | 1994-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10107469B2 (en) | Vehicular lamp, vehicular lamp control system, and vehicle including the same | |
US5392111A (en) | Method of measuring and adjusting optical axis of headlight | |
US5270794A (en) | Fine structure evaluation apparatus and method | |
US7599521B2 (en) | Vehicle vicinity monitoring apparatus | |
JPWO2004013572A1 (en) | Curved shape inspection method and apparatus | |
JP6984396B2 (en) | Vehicle headlight device | |
US9588012B2 (en) | Method for calculating the surface area of optical lenses and projection lenses manufactured according to the method for use in a light module in a motor vehicle headlamp | |
KR20230036131A (en) | Lighting devices for automobile headlights | |
JP3015997B2 (en) | Headlight optical axis adjusting measuring device and optical axis adjusting method | |
JPH08114529A (en) | Method for adjusting optical axis of head light | |
JP2024506184A (en) | Microlens array projection devices, lighting devices, and vehicles | |
JP6838225B2 (en) | Stereo camera | |
JP2681584B2 (en) | Headlight optical axis adjustment method | |
CN116868002A (en) | Lighting device for a motor vehicle for illuminating a road | |
JPH10300633A (en) | Image processing head light tester | |
JP3074423B2 (en) | Model identification method for headlight optical axis adjustment | |
JP3041557B2 (en) | Headlight optical axis adjustment method | |
JP2566847B2 (en) | Headlight optical axis measuring method, optical axis adjusting method, and headlight position measuring method | |
JP2005300477A (en) | Headlight tester | |
JP3897203B2 (en) | Ball grid array ball height measurement method | |
JPH08261878A (en) | Adjusting method of optical axis of headlight | |
KR101826889B1 (en) | System for testing of lamp for vehicle | |
CN113701119B (en) | Optical system and lamp for improving near light path illumination uniformity | |
US5645339A (en) | Vehicle headlamp construction for a well defined lower beam pattern | |
JP7083014B2 (en) | Stereo camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |