JPH06201522A - Optical axis aligning method for headlight - Google Patents

Optical axis aligning method for headlight

Info

Publication number
JPH06201522A
JPH06201522A JP206193A JP206193A JPH06201522A JP H06201522 A JPH06201522 A JP H06201522A JP 206193 A JP206193 A JP 206193A JP 206193 A JP206193 A JP 206193A JP H06201522 A JPH06201522 A JP H06201522A
Authority
JP
Japan
Prior art keywords
headlight
irradiation
optical axis
light source
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP206193A
Other languages
Japanese (ja)
Other versions
JP3041557B2 (en
Inventor
Nagatoshi Murata
長俊 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP5002061A priority Critical patent/JP3041557B2/en
Priority to US08/031,468 priority patent/US5392111A/en
Publication of JPH06201522A publication Critical patent/JPH06201522A/en
Application granted granted Critical
Publication of JP3041557B2 publication Critical patent/JP3041557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

PURPOSE:To enable accurately aligning the optical axis of a headlight on the basis of the actual position of a light source as a reference even when the position of the light source of the headlight is shifted. CONSTITUTION:A grating body provided with a plurality of longitudinally-long grating holes arranged in the shape of a matrix is disposed in front of a headlight and the irradiation area and illuminance of a light transmitted through each grating hole in each irradiation region corresponding to each grating hole are measured. The irradiation areas of the irradiation regions (X1, Y2) and (X5, Y2) corresponding to the grating holes being opposed right to virtual light sources on the opposite right and left sides on a reflector of the headlight and of the irradiation regions between them are large and the center (X3, Y2) of distribution of the regions of which the area is large is the position of a real light source. When the direction of an optical axis is regular, an illuminance distribution being symmetric longitudinally and laterally with respect to the regions being present in a prescribed positional relationship with the position of the light source as shown in Fig. (a) (coinciding with the position of the light source in the Figure) as the center, is obtained. By adjusting the direction of the headlight so that this illuminance distribution be obtained, accurate adjustment of the optical axis can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車その他の車両用
ヘッドライトの光軸調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting an optical axis of a headlight for an automobile or other vehicle.

【0002】[0002]

【従来の技術】従来、この種の方法として、特公平2−
9298号公報により、ヘッドライトの前方に配置した
スクリーンに照射される配光パターンをCCDカメラで
撮像し、画像処理によって照度の重心座標を計測し、こ
の重心座標を光軸の位置としてこれがスクリーン上の所
定範囲内に位置するようにヘッドライトの光軸を調整す
るものが知られている。
2. Description of the Related Art Conventionally, as a method of this kind, Japanese Patent Publication No.
According to Japanese Patent No. 9298, a CCD camera captures an image of a light distribution pattern irradiated on a screen arranged in front of a headlight, and the barycentric coordinate of illuminance is measured by image processing. The barycentric coordinate is used as a position of an optical axis on the screen. It is known to adjust the optical axis of the headlight so that it is located within a predetermined range.

【0003】ところで、従来は、ヘッドライトの光源
(フィラメント)が予め定めた設定位置に存するものと
し、この設定位置とスクリーンまでの距離とに基いて光
軸が位置すべきスクリーン上での合格範囲を予め定めて
いるが、サスペンションの初期なじみ、タイヤのエア
圧、組付誤差等により実際の光源の位置が設定位置から
ずれてしまうことがあり、この場合には光軸の向きが正
規の向きからずれていても光軸が合格範囲に入ってしま
い正確な光軸調整を行い得なくなる。
By the way, conventionally, it is assumed that the light source (filament) of the headlight is located at a predetermined setting position, and the pass range on the screen where the optical axis should be located based on the setting position and the distance to the screen. However, the actual position of the light source may deviate from the set position due to initial running-in of the suspension, tire air pressure, assembly error, etc.In this case, the direction of the optical axis is the normal direction. Even if it is deviated, the optical axis falls within the acceptable range and accurate optical axis adjustment cannot be performed.

【0004】また、従来、本願出願人の出願に係る特開
平4−147030号公報により、ヘッドライトの前方
に、前後方向に長手の格子孔をマトリックス状に複数設
けた格子体を配置し、各格子孔によりマトリックス状に
区分される各照射区域における各格子孔の透過光の照射
面積と照度とを測定してヘッドライトの光軸を調整する
方法が提案されている。この方法によれば、格子孔のう
ちその孔軸の延長線がヘッドライトの光源を通る格子孔
に対応する照射区域にはその全面に亘って光線が照射さ
れて照射面積が最大となり、一方、ヘッドライトの光軸
に合致する格子孔に対応する照射区域は照度が最大とな
る。従って、光源の位置がサスペンションの初期なじみ
やタイヤのエア圧のばらつき等により設定位置からずれ
ても、照射区域が最大となる照射区域から光源の位置を
割出すことができ、この光源の位置と照度が最大となる
照射区域から割出される光軸の位置とに基いて光軸が正
規の向きとなるように光軸調整を行うことができる。
Further, according to the Japanese Patent Application Laid-Open No. 4-147030 filed by the applicant of the present application, a grid body having a plurality of grid holes, which are long in the front-rear direction and arranged in a matrix, is arranged in front of the headlight. There has been proposed a method of adjusting the optical axis of a headlight by measuring the irradiation area and illuminance of transmitted light of each grating hole in each irradiation area divided into a matrix by the grating hole. According to this method, the extended area of the hole axis of the grid hole corresponds to the grid hole that passes through the light source of the headlight, the irradiation area is maximized by irradiating light rays over the entire surface, while, The illuminance is maximum in the irradiation area corresponding to the grid hole that matches the optical axis of the headlight. Therefore, even if the position of the light source deviates from the set position due to the initial familiarity of the suspension, the tire air pressure variation, etc., the position of the light source can be determined from the irradiation region where the irradiation region is the maximum. The optical axis can be adjusted so that the optical axis has a regular orientation based on the position of the optical axis indexed from the irradiation area where the illuminance is maximum.

【0005】[0005]

【発明が解決しようとする課題】ところで、ヘッドライ
トの配光パターンを取扱う場合、一つの点光源ではなく
反射鏡上の複数の仮想光源から光線が照射されていると
考える方が妥当であり、例えばスポットビーム型ヘッド
ライトでは、図6(a)に示す如く、フィラメントaの
一側と他側の反射鏡上の仮想光源a1、a2から光線が
照射され、また、フラットビーム型ヘッドライトでは、
図6(b)に示す如く、反射鏡上の面状の仮想光源から
光線が照射されていると考えられる。
By the way, when dealing with the light distribution pattern of the headlight, it is more appropriate to consider that the light rays are emitted from a plurality of virtual light sources on the reflecting mirror instead of one point light source. For example, in the spot beam type headlight, as shown in FIG. 6A, light rays are emitted from virtual light sources a1 and a2 on the reflecting mirrors on one side and the other side of the filament a, and in the flat beam type headlight,
As shown in FIG. 6B, it is considered that the light rays are emitted from the virtual light source in the form of a plane on the reflecting mirror.

【0006】このようなヘッドライトの光軸を上記格子
体を透過させた照射パターンに基いて調整する場合、各
格子孔の開口寸法を何れか一つの格子孔の視野内に両側
の仮想光源が収まるような大きさにすれば、照射面積が
最大となる照射区域が一つに特定されるが、光軸の調整
公差を小さくするために格子孔の開口寸法を小さくする
と、照射面積が最大となる照射区域が複数発生してしま
い、光源の位置を単純に割り出せなくなり、更に、照度
の大きな照射区域も複数発生してしまい、光軸の位置を
簡単には特定できなくなる。
When the optical axis of such a headlight is adjusted on the basis of the irradiation pattern transmitted through the grating, the aperture size of each grating hole is adjusted so that the virtual light sources on both sides are within the visual field of any one grating hole. If the size is set to fit, the irradiation area that maximizes the irradiation area is specified as one, but if the opening size of the lattice hole is reduced to reduce the adjustment tolerance of the optical axis, the irradiation area becomes the maximum. Therefore, it becomes impossible to simply determine the position of the light source, and a plurality of irradiation areas with high illuminance also occur, so that the position of the optical axis cannot be easily specified.

【0007】本発明は、格子体を用いる場合の上記問題
点を解決して、ヘッドライトの光軸を正確に調整し得る
ようにした光軸調整方法を提供することをその目的とし
ている。
It is an object of the present invention to provide an optical axis adjusting method which solves the above-mentioned problems in the case of using a grating and enables the optical axis of a headlight to be adjusted accurately.

【0008】[0008]

【課題を解決するための手段】上記目的を達成すべく、
本発明は、ヘッドライトの前方に、前後方向に長手の格
子孔をマトリックス状に複数設けた格子体を配置し、各
格子孔によってマトリックス状に区分される各照射区域
における各格子孔の透過光の照射面積と照度とを測定
し、照射面積の大きな照射区域の分布に基いてヘッドラ
イトの光源の位置を割出し、この光源の位置に対し所定
の位置関係に存する照射区域を基準にしてその左右の照
射区域の照度分布と上下の照射区域の照度分布とが夫々
所定の分布になるようにヘッドライトの光軸を調整する
ことを特徴とする。尚、格子体は、縦横複数枚の板を格
子状に枠組みしたものであっても、又筒体の複数本を集
合したものであっても良い。
[Means for Solving the Problems] In order to achieve the above object,
According to the present invention, in front of the headlight, a grid body having a plurality of grid holes elongated in the front-back direction is arranged in a matrix, and transmitted light of each grid hole in each irradiation area divided into a matrix by each grid hole. The irradiation area and the illuminance are measured, the position of the light source of the headlight is indexed based on the distribution of the irradiation area having a large irradiation area, and the irradiation area existing in a predetermined positional relationship with respect to the position of the light source is used as a reference. The optical axis of the headlight is adjusted so that the illuminance distributions of the left and right irradiation areas and the illuminance distributions of the upper and lower irradiation areas have respective predetermined distributions. Note that the lattice body may be formed by arranging a plurality of vertical and horizontal plates in a lattice shape, or may be an aggregate of a plurality of cylindrical bodies.

【0009】[0009]

【作用】反射鏡上の仮想光源に正対する複数の格子孔に
対応する複数の照射区域で照射面積が最大になるが、照
射面積の大きな照射面積の分布に基いてヘッドライトの
光源(フィラメント)の位置を正確に割り出すことがで
きる。そして、ヘッドライトが正規の向きであれば、光
源に対し所定の位置関係に存する照射区域を中心にした
上下の照度分布左右の照度分布とは夫々所定の分布とな
り、これら照度分布が当該所定の分布となるように光軸
調整を行えば、ヘッドライトの光軸は正規の向きに正確
に調整される。
The irradiation area is maximized in a plurality of irradiation areas corresponding to a plurality of lattice holes facing the virtual light source on the reflecting mirror, but the light source (filament) of the headlight is based on the large irradiation area distribution. The position of can be accurately determined. Then, if the headlight is in a normal orientation, the upper and lower illuminance distributions centering on the irradiation area existing in a predetermined positional relationship with the light source and the left and right illuminance distributions have predetermined distributions, respectively, and these illuminance distributions have the predetermined distributions. If the optical axis is adjusted so as to have a distribution, the optical axis of the headlight is accurately adjusted to the normal direction.

【0010】[0010]

【実施例】図1を参照して、1は定位置に停止させる自
動車AのヘッドライトBの前方の3m程度の近距離に配
置した測定装置を示し、該装置1は、図2に示す如く、
前後方向に長手の格子孔2をマトリックス状に複数設け
た格子体3と、格子体3の前面(ヘッドライトBと逆
側)に設けたすりガラス等から成るスクリーン4と、ス
クリーン4の前方に対設したCCDカメラ5とで構成さ
れ、カメラ5からの影像信号を画像処理回路を内蔵する
コンピュータ6に入力し、ヘッドライトBの上下方向と
横方向の向きを調整する1対の工具7、7を有するサー
ボドライバーユニット8を該コンピュータ6により制御
して、ヘッドライトBの光軸調整を行うようにした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, reference numeral 1 denotes a measuring device arranged at a short distance of about 3 m in front of a headlight B of an automobile A to be stopped at a fixed position. The device 1 is as shown in FIG. ,
A lattice body 3 having a plurality of lattice holes 2 elongated in the front-rear direction in a matrix, a screen 4 made of frosted glass or the like provided on the front surface of the lattice body 3 (on the side opposite to the headlight B), and in front of the screen 4. A pair of tools 7, 7 for adjusting the vertical direction and the horizontal direction of the headlight B by inputting the image signal from the camera 5 to the computer 6 having the built-in image processing circuit. The servo driver unit 8 having the above is controlled by the computer 6 so that the optical axis of the headlight B is adjusted.

【0011】格子体3を透過した光線のスクリーン4に
対する照射パターンは、各格子孔2に対応するマトリッ
クス状に区分された各照射区域に該各格子孔2の透過光
が照射されるパターンとなる。そして、格子孔2の孔軸
の延長線がヘッドライトBの光源を通る格子孔に対応す
る照射区域にはその全面に亘って光線が照射されて照射
面積が大きくなり、また、ヘッドライトBの光軸に合致
する格子孔2に対応する照射区域は照度が大きくなる。
The irradiation pattern of the light rays transmitted through the grating body 3 on the screen 4 is a pattern in which the transmitted light of each lattice hole 2 is irradiated to each irradiation area divided into a matrix corresponding to each lattice hole 2. . Then, a light beam is irradiated over the entire surface of the irradiation area where the extension line of the hole axis of the grating hole 2 corresponds to the grating hole passing through the light source of the headlight B, and the irradiation area becomes large. The illumination area corresponding to the lattice hole 2 that matches the optical axis has a high illuminance.

【0012】ここで、ヘッドライトBが図6(a)に示
すようなスポットビーム型である場合、スクリーン4に
対する照射パターンを立体的な照度分布を現わすヒスト
グラムで示すと図4に示す通りになる。図中X軸、Y軸
は夫々左右方向と上下方向の座標軸であり、左下隅の照
射区域から右側にn番目、上方にm番目の照射区域の座
標値を(Xn、Ym)で表わすとして、孔軸がヘッドラ
イトBの左側の仮想光源a1を通る格子孔2に対応する
照射区域の座標値は(X1、Y2)、孔軸がヘッドライ
トBの右側の仮想光源a2を通る格子孔2に対応する照
射区域の座標値は(X5、Y2)であり、(X1、Y
2)、(X2、Y2)、(X3、Y2)、(X4、Y
2)、(X5、Y2)の5個の照射区域には夫々その全
面に亘って光線が照射され、これら照射面積の大きな照
射区域の分布中心(Xc、Yc)即ち(X3、Y2)が
実光源たるフィラメントaのスクリーン4上の位置にな
る。
Here, when the headlight B is a spot beam type as shown in FIG. 6A, the irradiation pattern for the screen 4 is shown by a histogram showing a three-dimensional illuminance distribution as shown in FIG. Become. In the figure, the X-axis and the Y-axis are the coordinate axes in the left-right direction and the vertical direction, respectively, and the coordinate values of the n-th irradiation area on the right side and the m-th irradiation area on the upper side from the irradiation area in the lower left corner are represented by (Xn, Ym) The coordinate value of the irradiation area corresponding to the grid hole 2 whose hole axis passes through the virtual light source a1 on the left side of the headlight B is (X1, Y2), and the hole axis is in the grid hole 2 passing through the virtual light source a2 on the right side of the headlight B. The coordinate value of the corresponding irradiation area is (X5, Y2), and (X1, Y
2), (X2, Y2), (X3, Y2), (X4, Y
2), the five irradiation areas of (X5, Y2) are respectively irradiated with light rays over the entire surface thereof, and the distribution centers (Xc, Yc) of the irradiation areas having a large irradiation area, that is, (X3, Y2) are actual. The light source filament a is located on the screen 4.

【0013】また、ヘッドライトBの向きが正規であれ
ば、図4(a)に示す如く、実光源に対し所定の位置関
係に存する照射区域(本実施例では実光源に合致する
(X3、Y2)の照射区域)を中心にしてそこから上
下、左右に離れるに従って照度が漸減するような照度分
布を示すが、光軸がずれると上記照射区域を中心にした
照度分布の対称性がくずれ、光軸が例えば右下にずれる
と図4(b)に示すようになる。
If the headlight B is oriented normally, as shown in FIG. 4 (a), an irradiation area having a predetermined positional relationship with the actual light source (in the present embodiment, coincides with the actual light source (X3, The illuminance distribution shows that the illuminance gradually decreases with increasing distance in the vertical and horizontal directions from the irradiation area (Y2)), but if the optical axis shifts, the symmetry of the illuminance distribution around the irradiation area collapses. When the optical axis shifts to the lower right, for example, it becomes as shown in FIG.

【0014】図6(b)に示す如きフラットビーム型ヘ
ッドライトの照射パターンは図5に示す通りであり、面
状仮想光源に正対する、X座標がX2〜X5、Y座標が
Y1〜Y3の照射区域で照射面積が最大になる。また、
ヘッドライトの向きが正規であれば、図5(a)に示す
如く、上記照射区域の照度がほぼ同程度に高くなるが、
光軸がずれるとこれら照射区域における照度の等分布性
がくずれ、光軸が例えば右下にずれると図5(b)に示
すようになる。尚、図示のもので照射面積の大きな照射
区域の分布中心(Xc、Yc)は照射区域間の間隙に位
置しているが、この場合には(Xc、Yc)に隣接する
片側例えば左側の照射区域を(Xc、Yc)として後記
する計測処理を行う。
The irradiation pattern of the flat beam type headlight as shown in FIG. 6B is as shown in FIG. 5, and the X-coordinates X2 to X5 and the Y-coordinates Y1 to Y3 face the planar virtual light source. The irradiation area is maximized in the irradiation area. Also,
If the orientation of the headlight is normal, as shown in FIG. 5 (a), the illuminance in the irradiation area is almost the same, but
If the optical axis shifts, the even distribution of illuminance in these irradiation areas collapses, and if the optical axis shifts to the lower right, for example, it will be as shown in FIG. 5 (b). Although the distribution center (Xc, Yc) of the irradiation area having a large irradiation area is located in the gap between the irradiation areas as shown in the figure, in this case, irradiation on one side adjacent to (Xc, Yc), for example, irradiation on the left side. A measurement process, which will be described later, is performed by setting the area as (Xc, Yc).

【0015】ヘッドライトBの光軸調整のフローは図3
に示す通りであり、先ずスクリーン4の照射パターンを
CCDカメラ5で撮像し(S1)、カメラ5のアイリス
量を調整して(S2)、照度の上下の閾値Lh、Llを
設定し(S3)、Llで2値化して各照射区域のLl以
上の照射面積を求め、この照射面積が最大となる照射区
域の分布中心座標(Xc、Yc)を計算すると共に(S
4)、Lhで2値化してLh以上の照度を持つ照射区域
の分布中心座標(Xp、Yp)を計算する(S5)。
The flow of adjusting the optical axis of the headlight B is shown in FIG.
First, the irradiation pattern of the screen 4 is imaged by the CCD camera 5 (S1), the iris amount of the camera 5 is adjusted (S2), and the upper and lower thresholds Lh and Ll of illuminance are set (S3). , Ll is binarized to obtain an irradiation area equal to or larger than Ll of each irradiation area, and the distribution center coordinates (Xc, Yc) of the irradiation area having the maximum irradiation area are calculated (S
4), Lh is binarized to calculate the distribution center coordinates (Xp, Yp) of the irradiation area having an illuminance of Lh or more (S5).

【0016】ここで、ヘッドライトBの反射鏡やレンズ
に歪み等がない限りLh以上の照度を持つ照射区域は特
定領域に集中するはずであり、高照度の照射区域が互い
に離れて散在しているときは、異常表示を行って処理を
中止する(S6、S7)。
Here, unless the reflecting mirror or lens of the headlight B is distorted, the irradiation areas having an illuminance of Lh or more should be concentrated in a specific area, and the irradiation areas having a high illuminance are scattered apart from each other. If so, an error is displayed and the process is stopped (S6, S7).

【0017】高照度の照射区域が散在していないとき
は、先ずヘッドライトBの上下方向の向きを合わせる上
下調整を行う。この調整に際しては、先ずYpとYcと
の偏位量を計算し(S8)、この偏位量を上下方向の調
整量に変換して上下調整を行い(S9、S10)、次に
X=Xcで上下走査してYcの上方の照射区域群の合計
照度と下方の照射区域群の合計照度との照度差を計算し
て(S11)、この照度差が基準値になったか否かを判
別し(S12)、照度差が基準値に減少するまで上下調
整を繰返し、照度差が基準値に減少したところでヘッド
ライトの左右方向の向きを合わせる左右調整を行う。
When the irradiation areas of high illuminance are not scattered, first, the vertical adjustment is performed to match the vertical direction of the headlight B. In this adjustment, first, the deviation amount between Yp and Yc is calculated (S8), this deviation amount is converted into an adjustment amount in the vertical direction, and vertical adjustment is performed (S9, S10), and then X = Xc. Is scanned up and down to calculate the illuminance difference between the total illuminance of the irradiation area group above Yc and the total illuminance of the irradiation area group below Yc (S11), and it is determined whether or not this illuminance difference has become a reference value. (S12), vertical adjustment is repeated until the illuminance difference decreases to the reference value, and when the illuminance difference decreases to the reference value, the left and right adjustments are performed to align the headlight in the left-right direction.

【0018】左右調整に際しては、Y=Ycで左右走査
してXcの左方の照射区域群の合計照度と右方の照射区
域群の合計照度との照度差を計算し(S13)、この照
度差を左右方向の調整量に変換して左右調整を行い(S
14、S15)、照度差が基準値になったか否かを判別
して(S16)、照度差が基準値に減少するまで左右調
整を繰返し、照度差が基準値に減少したところで光軸調
整を完了する。
In the left-right adjustment, Y = Yc is left-right scanned to calculate the illuminance difference between the total illuminance of the left irradiation area group and the total illuminance of the right irradiation area group of Xc (S13). The difference is converted into the amount of adjustment in the left-right direction and the left-right adjustment is performed (S
14, S15), it is determined whether or not the illuminance difference has reached the reference value (S16), and left and right adjustments are repeated until the illuminance difference decreases to the reference value. When the illuminance difference decreases to the reference value, the optical axis adjustment is performed. Complete.

【0019】尚、S9、S14のステップにおける調整
量変換の変換係数及びS12、S16のステップにおけ
る基準値はスポットビーム型とフラットビーム型とで異
なる値に設定する必要がある。ここで、照射面積が最大
となる照射区域の数はフラットビーム型の方が多く、こ
の数に基いてスポットビーム型かフラットビーム型かの
機種判別を行い、上記した変換係数や基準値を設定す
る。
It should be noted that the conversion coefficient of the adjustment amount conversion in steps S9 and S14 and the reference value in steps S12 and S16 must be set to different values for the spot beam type and the flat beam type. Here, the number of irradiation areas that maximize the irradiation area is greater in the flat beam type, and based on this number, the model determination of the spot beam type or the flat beam type is performed, and the above conversion coefficient and reference value are set. To do.

【0020】また、上記実施例では(Xc、Yc)の照
射区域の上下の照射区域群の照度分布と左右の照射区域
群の照度分布とを各照射区域の最高照度の合計値の差と
して計測したが、Lhの所定割合例えば70%の照度L
mで2値化して、各照射区域のLm以上の照射面積の合
計値の差として計測しても良く、更には図4及び図5に
示すヒストグラムの体積の合計値の差として計測しても
良い。
Further, in the above embodiment, the illuminance distribution of the upper and lower irradiation area groups and the illuminance distribution of the left and right irradiation area groups of the irradiation area of (Xc, Yc) are measured as a difference of the total value of the maximum illuminance of each irradiation area. However, a predetermined ratio of Lh, for example, an illuminance L of 70%
It may be binarized by m, and may be measured as a difference in the total value of the irradiation areas of Lm or more in each irradiation area, or may be measured as the difference in the total value of the volumes of the histograms shown in FIGS. 4 and 5. good.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
によれば、ヘッドライトの光源の位置を検出でき、光源
の位置がずれていても光源の実際の位置を基準にしてヘ
ッドライトの光軸を正確に調整できる。
As is apparent from the above description, according to the present invention, the position of the light source of the headlight can be detected, and even if the position of the light source is deviated, the headlight of the headlight can be detected with reference to the actual position of the light source. The optical axis can be adjusted accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法の実施に用いる装置の一例の概略
側面図
FIG. 1 is a schematic side view of an example of an apparatus used for carrying out the method of the present invention.

【図2】 格子体の一例の斜視図FIG. 2 is a perspective view of an example of a lattice.

【図3】 本発明方法の一例の光軸調整手順を示すフロ
ーチャート
FIG. 3 is a flowchart showing an optical axis adjustment procedure of an example of the method of the present invention.

【図4】 (a)(b)はスポットビーム型ヘッドライ
トの照射パターンを示すヒストグラム
4A and 4B are histograms showing irradiation patterns of a spot beam type headlight.

【図5】 (a)(b)はフラットビーム型ヘッドライ
トの照射パターンを示すヒストグラム
5A and 5B are histograms showing irradiation patterns of a flat beam headlight.

【図6】 (a)(b)は夫々スポットビーム型とフラ
ットビーム型ヘッドライトの光線の照射方向と配光パタ
ーンとを示す図
6 (a) and 6 (b) are diagrams showing a light beam irradiation direction and a light distribution pattern of a spot beam type and a flat beam type headlight, respectively.

【符号の説明】[Explanation of symbols]

B ヘッドライト a フィラメント(光
源) 2 格子孔 3 格子体 4 スクリーン 5 CCDカメラ 6 コンピュータ
B Headlight a Filament (light source) 2 Lattice hole 3 Lattice body 4 Screen 5 CCD camera 6 Computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ヘッドライトの前方に、前後方向に長手
の格子孔をマトリックス状に複数設けた格子体を配置
し、各格子孔によってマトリックス状に区分される各照
射区域における各格子孔の透過光の照射面積と照度とを
測定し、照射面積の大きな照射区域の分布に基いてヘッ
ドライトの光源の位置を割出し、この光源の位置に対し
所定の位置関係に存する照射区域を基準にしてその左右
の照射区域の照度分布と上下の照射区域の照度分布とが
夫々所定の分布になるようにヘッドライトの光軸を調整
することを特徴とするヘッドライトの光軸調整方法。
1. A grid body having a plurality of grid holes elongated in the front-rear direction arranged in a matrix is arranged in front of the headlight, and each grid hole is transmitted through each irradiation area divided into a matrix by each grid hole. The irradiation area and illuminance of the light are measured, the position of the light source of the headlight is indexed based on the distribution of the irradiation area having a large irradiation area, and the irradiation area existing in a predetermined positional relationship with respect to the position of this light source is used as a reference. An optical axis adjusting method for a headlight, wherein the optical axis of the headlight is adjusted so that the illuminance distributions of the left and right irradiation areas and the illuminance distributions of the upper and lower irradiation areas have respective predetermined distributions.
JP5002061A 1990-10-09 1993-01-08 Headlight optical axis adjustment method Expired - Fee Related JP3041557B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5002061A JP3041557B2 (en) 1993-01-08 1993-01-08 Headlight optical axis adjustment method
US08/031,468 US5392111A (en) 1990-10-09 1993-03-15 Method of measuring and adjusting optical axis of headlight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5002061A JP3041557B2 (en) 1993-01-08 1993-01-08 Headlight optical axis adjustment method

Publications (2)

Publication Number Publication Date
JPH06201522A true JPH06201522A (en) 1994-07-19
JP3041557B2 JP3041557B2 (en) 2000-05-15

Family

ID=11518834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002061A Expired - Fee Related JP3041557B2 (en) 1990-10-09 1993-01-08 Headlight optical axis adjustment method

Country Status (1)

Country Link
JP (1) JP3041557B2 (en)

Also Published As

Publication number Publication date
JP3041557B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
US5392111A (en) Method of measuring and adjusting optical axis of headlight
US5453606A (en) Apparatus for adjusting the optical axis of an optical system
US7599521B2 (en) Vehicle vicinity monitoring apparatus
AU711728B2 (en) Method and apparatus for determining the alignment of motor vehicle wheels
EP0238247B1 (en) Method for measuring dimensions of fine pattern
JP2008107194A (en) Wheel alignment measuring device for vehicle
US8434874B2 (en) Pattern projection light source and compound-eye distance measurement apparatus
CN1157078A (en) Intelligent sensor for optical wheel alignment
JP2004128887A (en) Tool for confirming characteristic of infrared camera
CN105467781B (en) A kind of mark and alignment methods with focusing and slant correction design
CN103493470A (en) Method for determining adjustment deviations of an image data capture chip of an optical camera and corresponding adjustment verification devices
US9797833B2 (en) Method for determining the refractive power of a transparent object, and corresponding device
CN112161565A (en) High-precision laser projection vision three-dimensional measurement system
CN114286079B (en) Enhanced pointing angle verification
CN104641287A (en) Apparatus for detecting position of image pickup element
CN114331924A (en) Large workpiece multi-camera vision measurement method
US3077139A (en) Apparatus for aiming headlamps
CN111008557A (en) Vehicle fine granularity identification method based on geometric constraint
JPH07234174A (en) Measuring instrument for adjusting optical axis of head light and optical axis adjustment method
JPH06201522A (en) Optical axis aligning method for headlight
CN111879261A (en) Camera assembly, wheel positioning system and wheel positioning method
US20210333097A1 (en) Non-contact vehicle orientation and alignment sensor and method
JP2681584B2 (en) Headlight optical axis adjustment method
JP3074423B2 (en) Model identification method for headlight optical axis adjustment
JP2566847B2 (en) Headlight optical axis measuring method, optical axis adjusting method, and headlight position measuring method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080310

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees