JP3035677B2 - Secondary battery with safety element - Google Patents

Secondary battery with safety element

Info

Publication number
JP3035677B2
JP3035677B2 JP3261297A JP26129791A JP3035677B2 JP 3035677 B2 JP3035677 B2 JP 3035677B2 JP 3261297 A JP3261297 A JP 3261297A JP 26129791 A JP26129791 A JP 26129791A JP 3035677 B2 JP3035677 B2 JP 3035677B2
Authority
JP
Japan
Prior art keywords
battery
temperature
current
secondary battery
ptc element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3261297A
Other languages
Japanese (ja)
Other versions
JPH0574493A (en
Inventor
吉野  彰
克彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17359843&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3035677(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP3261297A priority Critical patent/JP3035677B2/en
Publication of JPH0574493A publication Critical patent/JPH0574493A/en
Application granted granted Critical
Publication of JP3035677B2 publication Critical patent/JP3035677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は安全性に優れた新規な二
次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel secondary battery excellent in safety.

【0002】[0002]

【従来の技術】近年、従来の酸−鉛電池、ニッケル/カ
ドミウム電池に変わる小型,軽量二次電池として、種々
の非水系二次電池が提案されている。中でも、例えば特
開昭62−90,863号公報,特開昭63−121,
260号公報,特開平3−49,155号公報等におい
て開示されている正極にLi,Coを主成分とする複合
金属酸化物を用い、負極に炭素質材料を用いる新しい二
次電池系が注目されている。従来かかる非水系二次電池
として提案されているのは負極活物質として、金属L
i、もしくはLi合金を用いるものであった。かかる金
属Li等を負極に用いた二次電池は、小型,軽量という
観点からは満足されるものの、デンドライト析出に基
く、サイクル性,保存特性等の性能上の問題、又、同じ
くデンドライト析出によるセパレーターの突き破りから
内部短絡を引き起こすという寿命の問題、更には金属L
iの活性な化学反応性に基く安全上の問題、等実用化へ
の大きな障害を有していた。これに対し、前記の負極活
物質に炭素質材料を用いる新しい電池系は、このような
デンドライト析出を起こすことなく、優れたサイクル
性,保存特性を有すると共に、金属Liのような活性な
化学反応性を有していないことから、安全性が非常に優
れているという特徴を有しているものである。
2. Description of the Related Art In recent years, various non-aqueous secondary batteries have been proposed as small and lightweight secondary batteries replacing conventional acid-lead batteries and nickel / cadmium batteries. Above all, for example, JP-A-62-90,863, JP-A-63-121,
No. 260, Japanese Unexamined Patent Publication No. 3-49, 155, etc., a new secondary battery system using a composite metal oxide containing Li and Co as main components for the positive electrode and a carbonaceous material for the negative electrode attracts attention. Have been. Conventionally, as such a non-aqueous secondary battery, a metal L is used as a negative electrode active material.
i or Li alloy was used. A secondary battery using such a metal Li or the like as the negative electrode is satisfactory from the viewpoints of small size and light weight, but has problems in performance such as cycleability and storage characteristics based on dendrite deposition, and also has a problem of a separator due to dendrite deposition. Life problem that an internal short circuit is caused by breaking through the metal,
i had serious obstacles to practical use, such as safety problems based on the active chemical reactivity of i. On the other hand, a new battery system using a carbonaceous material as the negative electrode active material has excellent cycleability and storage characteristics without causing such dendrite precipitation, and has an active chemical reaction such as metallic Li. Since it does not have the property, it has a feature that the safety is very excellent.

【0003】特に、正極活物質としてLi,Coを主成
分とする複合金属酸化物と組合せた場合、高電圧,高容
量の電池ができるものとして期待されている。
In particular, when combined with a composite metal oxide containing Li and Co as main components as a positive electrode active material, it is expected that a high-voltage, high-capacity battery can be obtained.

【0004】[0004]

【発明が解決しようとする課題】ところで、かかるL
i,Coを主成分とする複合金属酸化物を正極活物質と
し、炭素質材料を負極活物質として用いた二次電池は、
高電圧,高容量,高出力といった電池特性として優れた
面を多く有すると共に安全性にも優れている。例えば短
絡時においても、前述の金属Liを負極に用いた金属L
i二次電池に見られるような破裂,発火等の現象も起こ
さない。又、適正電圧以上での充電、即ち過充電時にお
いても広い範囲で安全性が確認されている。
By the way, such L
A secondary battery using a composite metal oxide containing i and Co as main components as a positive electrode active material and a carbonaceous material as a negative electrode active material,
It has many aspects of battery characteristics such as high voltage, high capacity, and high output, and is also excellent in safety. For example, even during a short circuit, the metal L using the above-described metal Li for the negative electrode
No phenomena such as explosion or fire as seen in the secondary battery are caused. Further, safety has been confirmed in a wide range even when charging at an appropriate voltage or higher, that is, at the time of overcharging.

【0005】しかしながら、一定の電流値以上、即ち
0.5時間率(2C),0.1時間率(10C)といっ
た大電流条件下において電圧制御が故障したケースを想
定した場合には、やはり破裂に至るのは避けられない。
However, when a case where voltage control fails under a large current condition of a certain current value or more, that is, a 0.5 hour rate (2C) and a 0.1 hour rate (10C), it is also assumed that a burst occurs. Inevitable.

【0006】特に近年、急速充電、即ち10分,15分
といった短時間での充電が望まれてきており、このよう
な条件下での過充電に対し安全性を確保することは実用
上解決すべき大きな課題である。
In particular, in recent years, rapid charging, that is, charging in a short time such as 10 minutes or 15 minutes has been desired, and securing safety against overcharging under such conditions is practically solved. It is a big task to be done.

【0007】[0007]

【課題を解決するための手段及び作用】本発明者等は、
かかる大電流条件下での過充電現象を詳細に検討した結
果、破裂に至る過程において必ず発熱が伴うことを見出
し、特定の温度範囲に作動温度を有するPTC素子がこ
の温度上昇とうまくマッチングして作動することにより
過充電による破裂を事前に防止できることを見出した。
Means and Action for Solving the Problems The present inventors have
As a result of a detailed study of the overcharge phenomenon under such a large current condition, it was found that heat is always generated in the process of rupture, and a PTC element having an operating temperature in a specific temperature range matches well with this temperature rise. It has been found that the rupture due to overcharging can be prevented in advance by operating.

【0008】本発明の二次電池は、かかる知見に基いて
完成されたもので、Li,Coを主成分とする複合金属
酸化物を正極活物質とし、炭素質材料を負極活物質とす
る二次電池であって、該二次電池に作動温度が140℃
以下であり、感応温度係数が−10〜−130の範囲に
あるPTC素子を装着することを特徴とするものであ
る。
The secondary battery of the present invention has been completed on the basis of this finding, and comprises a composite metal oxide containing Li and Co as main components as a positive electrode active material and a carbonaceous material as a negative electrode active material. A secondary battery having an operating temperature of 140 ° C.
In the following, a PTC element having a sensitive temperature coefficient in a range of -10 to -130 is mounted.

【0009】本発明でいうLi,Coを主成分とする複
合金属酸化物とは、層状構造を有し電気化学的にLiイ
オンがインターカレート,ディインターカレートし得る
化合物であり、少なくともCoを金属成分の中で50重
量%以上含むものである。特に限定されないが、かかる
複合金属酸化物の一例を示せば、例えば特開昭55−1
36,131号公報で開示されるLiCoO2 ,特開昭
62−90,863号公報で開示されている一般式Li
x Coyz2 (但し、NはAl,In,Snの群か
ら選ばれた少なくとも一種を表わし、x,y,zは各々
0.05≦x≦1.10,0.85≦y≦1.00,
0.001≦z≦0.10の数を表わす。)、又、特開
平3−49,155号公報で開示されるLix Niy
(1-y)2 (但し、0<x≦1,0≦y<0.50)
等が挙げられる。
The composite metal oxide containing Li and Co as main components in the present invention is a compound having a layered structure and capable of electrochemically intercalating and deintercalating Li ions. Is contained in the metal component in an amount of 50% by weight or more. Although not particularly limited, an example of such a composite metal oxide is described in, for example, JP-A-55-1.
LiCoO 2 disclosed in JP-A-36,131 and the general formula Li disclosed in JP-A-62-90,863.
x Co y N z O 2 (where N represents at least one selected from the group consisting of Al, In, and Sn, and x, y, and z are respectively 0.05 ≦ x ≦ 1.10, 0.85 ≦ y ≦ 1.00,
Represents the number 0.001 ≦ z ≦ 0.10. ) And Li x Ni y C disclosed in JP-A-3-49,155.
o (1-y) O 2 (however, 0 <x ≦ 1, 0 ≦ y <0.50)
And the like.

【0010】かかる化合物を得るには、水酸化リチウ
ム,酸化リチウム,炭酸リチウム,硝酸リチウム等のL
i化合物と酸化コバルト,水酸化コバルト,炭酸コバル
ト,硝酸コバルト等のコバルト化合物と、更に要すれ
ば、他金属化合物との焼成反応により容易に得られるも
のである。
In order to obtain such a compound, a compound such as lithium hydroxide, lithium oxide, lithium carbonate, lithium nitrate or the like is used.
It can be easily obtained by a calcination reaction of the i compound, a cobalt compound such as cobalt oxide, cobalt hydroxide, cobalt carbonate, cobalt nitrate and, if necessary, another metal compound.

【0011】これらの複合酸化物は何れも正極活物質と
して、高電圧,高容量という他の活物質には見られない
優れた特性を有している。特に前記一般式Lix Coy
z2 (但し、NはAl,In,Snの群から選ばれ
た少なくとも一種を表わし、x,y,zは各々0.05
≦x≦1.10,0.85≦y≦1.00,0.001
≦z≦0.10の数を表わす。)は特にサイクル性等の
特性に優れており本発明で好ましく用いられる複合酸化
物である。
Each of these composite oxides has a high voltage and a high capacity, which are excellent characteristics not found in other active materials, as a positive electrode active material. In particular, the general formula Li x Co y
N z O 2 (where N represents at least one selected from the group consisting of Al, In and Sn, and x, y and z are each 0.05
≦ x ≦ 1.10, 0.85 ≦ y ≦ 1.00, 0.001
≤z≤0.10. ) Is a composite oxide which is particularly excellent in characteristics such as cycleability and is preferably used in the present invention.

【0012】又、本発明でいう炭素質材料とは、特に限
定されるものではないが、その一例を示せば特開昭58
−35,881号公報に記載の高表面積炭素材料、又特
開昭58−209,864号公報に記載のフェノール系
樹脂等の焼成炭化物、又特開昭61−111,907号
公報に記載の縮合多環炭化水素系化合物の焼成炭化物等
が挙げられる。中でも特開昭62−90,863号公報
で開示されるBET法比表面積A(m2 /g)が0.1
<A<100の範囲でX線回折における結晶厚みLc
(Å)と真密度ρ(g/cm3 )の値が下記条件1.7
0<ρ<2.18かつ10<Lc<120ρ−189を
満たす範囲にある炭素質材料は高容量かつ優れたサイク
ル特性を有しており、本発明において特に好ましく用い
られる。
Further, the carbonaceous material referred to in the present invention is not particularly limited.
JP-A-35-881, high surface area carbon materials, baked carbides such as phenolic resins described in JP-A-58-209,864, and JP-A 61-111,907. Examples include a calcined carbide of a condensed polycyclic hydrocarbon compound. Among them, the BET specific surface area A (m 2 / g) disclosed in JP-A-62-90,863 is 0.1.
Crystal thickness Lc in X-ray diffraction in the range of <A <100
(Å) and the value of true density ρ (g / cm 3 ) satisfy the following condition 1.7.
Carbonaceous materials in the range satisfying 0 <ρ <2.18 and 10 <Lc <120ρ-189 have high capacity and excellent cycle characteristics, and are particularly preferably used in the present invention.

【0013】本発明の非水系二次電池を組立てる場合の
基本構成要素として、前記本発明の活物質を用いた電
極、更にはセパレーター、非水電解液が挙げられる。セ
パレーターとしては特に限定されないが、織布,不織
布,ガラス織布,合成樹脂微多孔膜等が挙げられるが、
薄膜、大面積電極を用いる場合には、例えば特開昭58
−59072号に開示される合成樹脂微多孔膜、特にポ
リオレフィン系微多孔膜が、厚み、強度、膜抵抗の面で
好ましい。
The basic components for assembling the non-aqueous secondary battery of the present invention include an electrode using the active material of the present invention, a separator, and a non-aqueous electrolyte. Examples of the separator include, but are not particularly limited to, woven fabric, nonwoven fabric, glass woven fabric, and synthetic resin microporous membrane.
In the case of using a thin film and a large area electrode, for example, see
The microporous synthetic resin membrane disclosed in JP-A-59072, particularly a polyolefin-based microporous membrane, is preferred in terms of thickness, strength, and membrane resistance.

【0014】非水電解液の電解質としては特に限定され
ないが、一例を示せば、LiClO4 ,LiBF4 ,L
iAsF6 ,CF3 SO3 Li,LiPF6 ,LiI,
LiAlCl4 ,NaClO4 ,NaBF4 ,NaI,
(n−Bu)4+ ClO4,(n−Bu)4+ BF4
,KPF6 等が挙げられる。又、用いられる電解液の
有機溶媒としては、例えばエーテル類、ケトン類、ラク
トン類、ニトリル類、アミン類、アミド類、硫黄化合
物、塩素化炭化水素類、エステル類、カーボネート類、
ニトロ化合物、リン酸エステル系化合物、スルホラン系
化合物等を用いることができるが、これらのうちでもエ
ーテル類、ケトン類、ニトリル類、塩素化炭化水素類、
カーボネート類、スルホラン系化合物が好ましい。更に
好ましくは環状カーボネート類である。
The electrolyte of the non-aqueous electrolyte is not particularly limited. For example, LiClO 4 , LiBF 4 , L
iAsF 6 , CF 3 SO 3 Li, LiPF 6 , LiI,
LiAlCl 4 , NaClO 4 , NaBF 4 , NaI,
(N-Bu) 4 N + ClO 4, (n-Bu) 4 N + BF 4
, KPF 6 and the like. Further, as the organic solvent of the electrolytic solution used, for example, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates,
Nitro compounds, phosphate compounds, sulfolane compounds and the like can be used, and among them, ethers, ketones, nitriles, chlorinated hydrocarbons,
Carbonates and sulfolane compounds are preferred. More preferred are cyclic carbonates.

【0015】これらの代表例としては、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、1,4−ジオキ
サン、アニソール、モノグライム、アセトニトリル、プ
ロピオニトリル、4−メチル−2−ペンタノン、ブチロ
ニトリル、バレロニトリル、ベンゾニトリル、1,2−
ジクロロエタン、γ−ブチロラクトン、ジメトキシエタ
ン、メチルフォルメイト、プロピレンカーボネート、エ
チレンカーボネート、ビニレンカーボネート、ジメチル
ホルムアミド、ジメチルスルホキシド、ジメチルチオホ
ルムアミド、スルホラン、3−メチル−スルホラン、リ
ン酸トリメチル、リン酸トリエチルおよびこれらの混合
溶媒等をあげることができるが、必ずしもこれらに限定
されるものではない。
Representative examples of these are tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, , 2-
Dichloroethane, γ-butyrolactone, dimethoxyethane, methylformate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate and these ethyl salts Examples thereof include a mixed solvent, but are not necessarily limited thereto.

【0016】更に要すれば、集電体、端子、絶縁板等の
部品を用いて電池が構成される。又、電池の構造として
は、特に限定されるものではないが、正極、負極、更に
要すればセパレーターを単層又は複層としたペーパー型
電池、積層型電池、又は正極、負極、更に要すればセパ
レーターをロール状に巻いた円筒状電池等の形態が一例
として挙げられる。
If necessary, a battery is formed by using components such as a current collector, a terminal, and an insulating plate. In addition, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, and, if necessary, a paper type battery having a single or multiple layers of separators, a laminated type battery, or a positive electrode, a negative electrode, For example, a form of a cylindrical battery or the like in which a separator is wound in a roll shape is given as an example.

【0017】PTC素子としては、BaTiO3 セラミ
ックス系等従来より種々のものが知られているが、本発
明で定義するPTC素子とは、PTC特性(温度が上が
るにつれて抵抗が大きくなる特性)を持つ導電性ポリマ
ーによる過電流及び過熱保護素子のことである。例えば
(株)レイケムからPolyswitch(登録商標)
ポリスイッチの商品名で種々の保護素子として市販され
ているものが挙げられる。この素子は温度、電流の両方
に感応し一定上限を越えた場合に自動的に素子抵抗が上
昇し電流を遮断する機能を有しているものである。かか
るPTC素子を電池に装着することは既に公知である。
例えばリチウム一次電池に装着することにより、例えば
電池が外部回路経由で短絡した場合に該PTC素子が作
動し電流を遮断し、電池の安全性を確保することは既に
実用に供されている。
Various types of PTC elements such as BaTiO 3 ceramics are conventionally known, but the PTC element defined in the present invention has PTC characteristics (a characteristic in which the resistance increases as the temperature rises). An overcurrent and overheat protection element made of a conductive polymer. For example, Polyswitch (registered trademark) from Raychem Corporation
There are commercially available polyswitches under the trade name of various types of protection elements. This element has a function of responding to both temperature and current and automatically interrupting the current by increasing the element resistance automatically when a certain upper limit is exceeded. It is already known to mount such a PTC element on a battery.
For example, when the battery is mounted on a lithium primary battery, for example, when the battery is short-circuited via an external circuit, the PTC element operates to cut off the current, thereby ensuring the safety of the battery.

【0018】本発明者等が前記のLi,Coを主成分と
する複合金属酸化物を正極活物質とし、炭素質材料を負
極活物質とする二次電池の過充電過程を詳細に検討した
結果、下記の事実が明らかとなった。
The present inventors have studied in detail the overcharge process of a secondary battery using the above-described composite metal oxide containing Li and Co as main components as a positive electrode active material and a carbonaceous material as a negative electrode active material. The following facts became clear.

【0019】.過充電時破裂に至るまでに必ず発熱が
伴うこと。
[0019] Heat must be generated before rupture during overcharge.

【0020】.この発熱による電池の温度上昇は過充
電電流に比例依存していること。
[0020] The temperature rise of the battery due to this heat generation should be proportional to the overcharge current.

【0021】.破裂時の電池缶温度は過充電電流と相
関しており、過充電電流が大きい程、破裂時に実測され
る電池缶温度が低くなること。(これは温度上昇速度が
大きい為に温度分布が発生し、実際の電池缶内の温度よ
りも低い値が検知されているものと推察される。)以上
の事実より、本発明の二次電池の過充電時の安全性を確
保する手段として、単に温度のみで感応する温度ヒュー
ズを装着することは有効ではないことが判明した。
[0021] The battery can temperature at the time of rupture is correlated with the overcharge current, and the larger the overcharge current, the lower the measured battery can temperature at the time of rupture. (This is presumed to be due to the fact that a temperature distribution occurs due to the high rate of temperature rise and a value lower than the actual temperature inside the battery can is detected.) From the above facts, the secondary battery of the present invention is considered. It has been found that it is not effective to mount a thermal fuse that is sensitive only to temperature as a means for ensuring safety during overcharging.

【0022】又、同じく電流のみで感応する電流ヒュー
ズを装着した場合には、感応し得る電流精度が悪く、正
常電流と過充電電流との区別が不可能であり、同じく有
効な手段ではないことが判明した。
Also, if a current fuse sensitive to only the current is mounted, the sensitive current accuracy is poor, and it is impossible to distinguish between the normal current and the overcharge current, and it is not an effective means. There was found.

【0023】従って本発明の二次電池の過充電時におけ
る挙動は他の電池の挙動と大きく異なっており、これは
本発明の二次電池で用いる正,負両電極の活物質の組み
合わせに基く挙動と思われる。従って本発明の二次電池
の過充電時の安全性を確保する為には温度と電流の両方
に感応し、その感応温度係数が負の値であり、尚かつ一
定の範囲の感応温度係数を有していることが必要であ
る。ここでいう感応温度係数とは後述の測定方法により
測定され、感応温度の電流依存性を示すパラメータであ
る。又、本発明でいう作動温度とは電流値がゼロの時、
即ち温度のみで抵抗値が室温時の1,000倍に達する
時の温度をいう。
Therefore, the behavior of the secondary battery of the present invention at the time of overcharging is significantly different from the behavior of other batteries, which is based on the combination of the active materials of the positive and negative electrodes used in the secondary battery of the present invention. Seems to behave. Therefore, in order to ensure the safety at the time of overcharging of the secondary battery of the present invention, the secondary battery is sensitive to both temperature and current, and its sensitive temperature coefficient is a negative value. It is necessary to have. Here, the sensitive temperature coefficient is a parameter that is measured by a measuring method described later and indicates the current dependency of the sensitive temperature. Also, the operating temperature in the present invention, when the current value is zero,
In other words, it refers to the temperature at which the resistance value reaches 1,000 times the room temperature at the temperature alone.

【0024】本発明者等は上記の事実をもとに、特定の
特性を有するPTC素子が過充電に対し特に有効である
ことを見出した。
Based on the above facts, the present inventors have found that a PTC element having specific characteristics is particularly effective against overcharging.

【0025】本発明で用いるPTC素子の作動温度は1
40℃以下でなければならない。好ましくは75℃以上
140℃以下の範囲である。140℃を越す場合には例
え、PTC素子がその温度で作動しても、そのまま発熱
が続き破裂に至る。
The operating temperature of the PTC element used in the present invention is 1
It must be below 40 ° C. Preferably it is in the range of 75 ° C. or more and 140 ° C. or less. If the temperature exceeds 140 ° C., even if the PTC element operates at that temperature, heat generation continues and leads to rupture.

【0026】又、感応温度係数は−10〜−130の範
囲でなければならない。好ましくは−15〜−100の
範囲、更に好ましくは−25〜−80の範囲である。
The sensitive temperature coefficient must be in the range of -10 to -130. It is preferably in the range of -15 to -100, and more preferably in the range of -25 to -80.

【0027】感応温度係数が−10未満の場合は電流値
の大きい領域での過充電に対する防止が完全でなくなり
破裂するケースが発生する。又−130を越す場合には
実用領域、即ち室温付近で通電可能な電流値が小さくな
り実用上使用不可能となる。
If the temperature coefficient of sensitivity is less than -10, the protection against overcharging in a region where the current value is large is not perfect, and a case may occur in which the battery ruptures. On the other hand, if it exceeds -130, the current value that can be conducted in a practical area, that is, near room temperature, becomes small, making it practically unusable.

【0028】本発明のPTC素子を電池に装着する方法
は特に限定されないが、例えば電池缶内に装着する方
法、電池缶フタに装着する方法、電池缶壁に装着する方
法等が挙げられ、当然のことながら電池の温度をより正
確に検知できる個所に装着することが好ましい。
The method of mounting the PTC element of the present invention on a battery is not particularly limited, and examples thereof include a method of mounting it in a battery can, a method of mounting it on a battery can lid, and a method of mounting it on a battery can wall. However, it is preferable to mount the battery at a location where the temperature of the battery can be detected more accurately.

【0029】上記範囲の特性を有するPTC素子を装着
することにより全ての電流範囲において過充電に対する
安全性が確保される。
By mounting a PTC element having the characteristics in the above range, safety against overcharging is secured in all current ranges.

【0030】[0030]

【実施例】以下、実施例により本発明を更に詳しく説明
する。
The present invention will be described in more detail with reference to the following examples.

【0031】作動温度,感応温度係数の測定 PTC素子を定電流直流電源に接続し、一定電流(A)
を通電しながらオーブン内で昇温していく。PTC素子
の抵抗値が室温時の1,000倍になった時点の温度
(℃)を測定する。電流値を変えて再び同じ操作を行い
合計5点測定する。
Measurement of Operating Temperature and Sensitive Temperature Coefficient A PTC element is connected to a constant current DC power supply, and a constant current (A)
While the power is on, the temperature is raised in the oven. The temperature (° C.) at the time when the resistance value of the PTC element becomes 1,000 times that at room temperature is measured. Change the current value and repeat the same operation to measure a total of 5 points.

【0032】電流値を横軸に、温度を縦軸に5点の測定
値をプロットする。この直線の傾きを感応温度係数とす
る。又電流値がゼロの時の温度を作動温度とする。
The current value is plotted on the horizontal axis and the temperature is plotted on the vertical axis at five points. The slope of this straight line is defined as a sensitive temperature coefficient. The temperature when the current value is zero is defined as the operating temperature.

【0033】参考例1 Li1.03Co0.92Sn0.022 の組成を有するLi,C
o複合酸化物100重量部とグラファイト2.5重量
部、アセチレンブラック2.5重量部を混合した後、フ
ッ素ゴム2重量部を酢酸エチル/エチルセロソルブの
1:1(重量比)混合溶剤60重量部に溶解させた液を
混合しスラリー状塗工液を得た。
Reference Example 1 Li, C having a composition of Li 1.03 Co 0.92 Sn 0.02 O 2
o After 100 parts by weight of the composite oxide, 2.5 parts by weight of graphite and 2.5 parts by weight of acetylene black are mixed, 2 parts by weight of fluororubber is mixed with 60 parts by weight of a 1: 1 (weight ratio) mixed solvent of ethyl acetate / ethyl cellosolve. The liquids dissolved in the portions were mixed to obtain a slurry-like coating liquid.

【0034】ドクターブレードコーターヘッドを有する
塗工機を用い巾600mm厚さ15μのAl箔の両面に
上記塗工液を塗布した。両面塗工後の塗工厚は290μ
であった。
Using a coating machine having a doctor blade coater head, the above coating liquid was applied to both surfaces of an Al foil having a width of 600 mm and a thickness of 15 μm. Coating thickness after both-side coating is 290μ
Met.

【0035】ニードルコークス粉砕品100重量部とフ
ッ素ゴム5重量部を酢酸エチル/エチルセロソルブの
1:1(重量比)混合溶剤90重量部に溶解させた液を
混合しスラリー状塗工液を得た。
A solution obtained by dissolving 100 parts by weight of a needle coke pulverized product and 5 parts by weight of a fluororubber in 90 parts by weight of a 1: 1 (weight ratio) mixed solvent of ethyl acetate / ethyl cellosolve is mixed to obtain a slurry coating liquid. Was.

【0036】ドクターブレードコーターヘッドを有する
塗工機を用い巾600mm厚さ10μのCu箔の両面に
上記塗工液を塗布した。両面塗工後の塗工厚は350μ
であった。
Using a coating machine having a doctor blade coater head, the above coating solution was applied to both surfaces of a Cu foil having a width of 600 mm and a thickness of 10 μm. The coating thickness after both-side coating is 350μ
Met.

【0037】前記2種類の塗工品をカレンダーロールに
てプレス後、両者共にスリッターを用い41mm巾にス
リットした。Li1.03Co0.92Sn0.022 塗工品を正
極とし、ニードルコークス塗工品を負極とし、セパレー
ターとしてポリエチレン製微多孔膜(ハイポア4030
U旭化成社製)を用い、捲回機により外径14.9mm
のコイル状に捲回した。この捲回コイルを外径16mm
の電池缶に入れた後、プロピレンカーボネート/エチレ
ンカーボネート/γ−ブチロラクトンの1:1:2(重
量比)の混合溶剤にLiBF4 を1M濃度に溶かしたも
のを電解液として含浸した後封口し、図1に示す高さ5
0mmのAサイズの電池缶を試作した。
After pressing the two types of coated products with a calender roll, both of them were slit to a width of 41 mm using a slitter. A Li 1.03 Co 0.92 Sn 0.02 O 2 coated product is used as a positive electrode, a needle coke coated product is used as a negative electrode, and a polyethylene microporous membrane (Hypore 4030) is used as a separator.
U Asahi Kasei Corporation) and an outer diameter of 14.9 mm with a winding machine
In the form of a coil. The outer diameter of this wound coil is 16 mm.
After being put into a battery can, a mixture of propylene carbonate / ethylene carbonate / γ-butyrolactone in a ratio of 1: 1: 2 (weight ratio) in which LiBF 4 was dissolved at a concentration of 1 M was impregnated as an electrolyte, and then sealed. Height 5 shown in FIG.
A 0 mm A-size battery can was prototyped.

【0038】参考例2 参考例1の電池を用い種々の電流値において電圧無制限
の過充電試験を行った。この時の破裂直前の電池缶の側
壁温度を測定した。結果を図2に示す。
REFERENCE EXAMPLE 2 Using the battery of Reference Example 1, overcharge tests were performed at various current values without voltage limitation. The temperature of the side wall of the battery can immediately before the rupture was measured. The results are shown in FIG.

【0039】図2より本電池において大きな電流領域で
破裂を防止するには、過充電電流が大きいほど低い温度
で電流を遮断する必要のあることがわかる。
FIG. 2 shows that in order to prevent the battery from bursting in a large current range, it is necessary to interrupt the current at a lower temperature as the overcharge current increases.

【0040】実施例1 参考例1のAサイズの電池のフタ部分にPTC素子Po
lyswitch(登録商標)ポリスイッチ(PSR−
21820)を装着し、該素子を経由する回路で3A、
電圧無制限での過充電試験を行った。電圧が5.2Vに
到達した時点でPTC素子が作動し、破裂に至らなかっ
た。尚、PTC素子が作動した時の電池缶温度は83℃
であった。
Example 1 The PTC element Po was attached to the lid of the A-size battery of Reference Example 1.
lyswitch (registered trademark) polyswitch (PSR-
21820), and 3A,
An overcharge test was performed with unlimited voltage. When the voltage reached 5.2 V, the PTC element was activated and did not burst. The temperature of the battery can when the PTC element was activated was 83 ° C.
Met.

【0041】図3に本実施例で用いたPTC素子の作動
温度,感応温度係数の実測データを示す。
FIG. 3 shows measured data of the operating temperature and the responsive temperature coefficient of the PTC element used in this embodiment.

【0042】図3より本実施例で用いたPTC素子の作
動温度(0Aの時)は130℃であり、感応温度係数は
−40.0であることがわかる。
FIG. 3 shows that the operating temperature (at 0 A) of the PTC element used in this embodiment is 130 ° C. and the sensitive temperature coefficient is -40.0.

【0043】実施例2〜6,比較例1〜4 実施例1において、表1に示す種々の作動温度,感応温
度係数を有するPTC素子、並びに他の保護素子に変え
た以外は同じ操作を行い、2A〜6Aでの過充電試験を
行った。
Examples 2 to 6 and Comparative Examples 1 to 4 The same operation as in Example 1 was carried out except that the PTC elements having various operating temperatures and the responsive temperature coefficients shown in Table 1 and other protection elements were used. An overcharge test was performed at 2A to 6A.

【0044】結果を併せて表1に示す。Table 1 also shows the results.

【0045】[0045]

【表1】 比較例5 実施例1においてPTC素子を、作動温度115℃,感
応温度係数−135のPTC素子を用いた以外は同じ操
作を行ったが、1Aでの正常電流での正常充電が不可能
であった。
[Table 1] Comparative Example 5 The same operation as in Example 1 was performed except that the PTC element having an operating temperature of 115 ° C. and a sensitive temperature coefficient of −135 was used, but normal charging at a normal current of 1 A was impossible. Was.

【0046】[0046]

【発明の効果】以上の説明からも明らかなように、L
i,Co複合酸化物を正極活物質に用い、炭素質材料を
負極活物質に用いる二次電池において、特定の範囲の特
性を有するPTC素子を選択し、電池に装着することに
より、全ての電流範囲での過充電に対し安全性を確保す
ることができる。
As is clear from the above description, L
In a secondary battery using i, Co composite oxide as a positive electrode active material and a carbonaceous material as a negative electrode active material, selecting a PTC element having a specific range of characteristics and mounting it on the battery allows all currents to be increased. Safety against overcharging in the range can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電池の半裁断面図FIG. 1 is a half sectional view of a battery according to the present invention.

【図2】参考例2での過充電時の電流値と破裂直前の電
池缶温度の関係を示すグラフ
FIG. 2 is a graph showing a relationship between a current value at the time of overcharge and a battery can temperature immediately before rupture in Reference Example 2.

【図3】実施例1でのPTC素子が抵抗変化する時の温
度と通電電流との関係を示すグラフ
FIG. 3 is a graph showing a relationship between a temperature and a flowing current when the resistance of the PTC element changes in the first embodiment.

【符号の説明】[Explanation of symbols]

1 正極 2 セパレーター 3 負極 4 絶縁板 5 負極リード 6 正極リード 7 ガスケット 8 PTC素子 Reference Signs List 1 positive electrode 2 separator 3 negative electrode 4 insulating plate 5 negative electrode lead 6 positive electrode lead 7 gasket 8 PTC element

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 2/34 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/40 H01M 2/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Li,Coを主成分とする複合金属酸化
物を正極活物質とし、炭素質材料を負極活物質とする二
次電池であって、該二次電池に作動温度が140℃以下
であり、感応温度係数が−10〜−130の範囲にある
PTC素子を装着することを特徴とする安全素子付き二
次電池。
1. A secondary battery in which a composite metal oxide mainly composed of Li and Co is used as a positive electrode active material and a carbonaceous material is used as a negative electrode active material, wherein the secondary battery has an operating temperature of 140 ° C. or lower. And a PTC element having a temperature coefficient of sensitivity in a range of -10 to -130.
JP3261297A 1991-09-13 1991-09-13 Secondary battery with safety element Expired - Lifetime JP3035677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3261297A JP3035677B2 (en) 1991-09-13 1991-09-13 Secondary battery with safety element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3261297A JP3035677B2 (en) 1991-09-13 1991-09-13 Secondary battery with safety element

Publications (2)

Publication Number Publication Date
JPH0574493A JPH0574493A (en) 1993-03-26
JP3035677B2 true JP3035677B2 (en) 2000-04-24

Family

ID=17359843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3261297A Expired - Lifetime JP3035677B2 (en) 1991-09-13 1991-09-13 Secondary battery with safety element

Country Status (1)

Country Link
JP (1) JP3035677B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783326A (en) * 1996-03-14 1998-07-21 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
KR100321132B1 (en) * 1996-08-22 2002-03-08 모리시타 요이찌 Lithium ion secondary cell and its cathode
WO1999040639A1 (en) 1998-02-06 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Electrode, method for manufacturing thereof, and battery using the electrode
EP1104037A4 (en) * 1998-06-25 2001-09-12 Mitsubishi Electric Corp Cell and method of producing the same
EP1100135A4 (en) * 1998-06-25 2006-06-14 Mitsubishi Electric Corp Cell and method of producing the same
WO1999067836A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
EP1035605A1 (en) * 1998-06-25 2000-09-13 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067835A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999067834A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
US6677074B2 (en) 1998-06-25 2004-01-13 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
US6440608B1 (en) 1998-06-25 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
WO1999067842A1 (en) * 1998-06-25 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
EP1100136A4 (en) 1998-06-25 2006-09-06 Mitsubishi Electric Corp Cell and method of producing the same
US6235426B1 (en) 1998-09-21 2001-05-22 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cell wit PTC current collector tabs
US6462515B1 (en) 2000-03-15 2002-10-08 Mitsubishi Denki Kabushiki Kaisha Cell protective circuit
KR100959982B1 (en) 2004-05-19 2010-05-27 주식회사 엘지화학 Safety element for battery and battery with the same

Also Published As

Publication number Publication date
JPH0574493A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
EP1256995B1 (en) Nonaqueous electrolytic secondary battery
EP0582410B1 (en) Secondary battery
JP3035677B2 (en) Secondary battery with safety element
US6746799B2 (en) Lithium phosphate composite positive electrode and non-aqueous electrolyte cell
KR101241571B1 (en) Cathode material for lithium ion secondary battery and lithium ion secondary battery using it
JPH05226004A (en) Secondary battery
CN105990576B (en) Electrode, nonaqueous electrolyte battery, and battery pack
US8343666B2 (en) Nonaqueous electrolyte secondary battery
JP4746392B2 (en) Nonaqueous electrolyte secondary battery and battery pack
JP5781386B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
WO2002031904A1 (en) Electrolyte for non-aqueous cell and non-aqueous secondary cell
JPH0778635A (en) Safe secondary battery of non-aqueous group
KR20140085337A (en) Lithium secondary battery
JP2001006747A (en) Nonaqueous electrolyte secondary battery
JP4081833B2 (en) Sealed non-aqueous electrolyte secondary battery
JPH0422066A (en) Nonaqueous secondary battery
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JP3231813B2 (en) Organic electrolyte battery
KR100433592B1 (en) Positive plate active material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell containing the same
JP3091923B2 (en) Non-aqueous electrolyte secondary battery
JP3118655B2 (en) Non-aqueous secondary battery
JP3646519B2 (en) Non-aqueous secondary battery electrode sheet and non-aqueous secondary battery using them
KR970004141B1 (en) Secondary cell
JPH0574436A (en) Separator for battery
JP6585141B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12