JP3033371B2 - Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device - Google Patents

Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device

Info

Publication number
JP3033371B2
JP3033371B2 JP4310304A JP31030492A JP3033371B2 JP 3033371 B2 JP3033371 B2 JP 3033371B2 JP 4310304 A JP4310304 A JP 4310304A JP 31030492 A JP31030492 A JP 31030492A JP 3033371 B2 JP3033371 B2 JP 3033371B2
Authority
JP
Japan
Prior art keywords
seismic isolation
floor
force
horizontal
hydraulic jack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4310304A
Other languages
Japanese (ja)
Other versions
JPH06160249A (en
Inventor
幸男 奥田
恭司 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP4310304A priority Critical patent/JP3033371B2/en
Publication of JPH06160249A publication Critical patent/JPH06160249A/en
Application granted granted Critical
Publication of JP3033371B2 publication Critical patent/JP3033371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、現場組立を完了した免
震床システムの性能を確認する方法及びそのための免震
床水平加力試験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for confirming the performance of a base-isolated floor system that has been assembled on site, and a test apparatus for horizontal loading of the base-isolated floor.

【0002】[0002]

【従来の技術】一般に、免震床システム(ダイナミック
・フロア・システム;DFS)は、床組全体を建物躯体
から浮せて免震装置で支持しており、この装置によって
地震による振動を効果的に低減する構造となっている。
2. Description of the Related Art In general, a seismic isolation floor system (Dynamic Floor System; DFS) supports an entire floor set from a building frame and is supported by a seismic isolation device. The structure is reduced to

【0003】図8〜図11はその一例を示すもので、建
物自体の床面1の上方に上床2を構築した二重床構造と
され、床面1に複数の免震装置10を所定間隔で配列し
て上床を支持し、それら免震装置10により地震などの
振動を吸収する免震床3とされる。
FIG. 8 to FIG. 11 show an example of this, which has a double floor structure in which an upper floor 2 is constructed above a floor surface 1 of the building itself, and a plurality of seismic isolation devices 10 are provided on the floor surface 1 at predetermined intervals. The seismic isolation device 10 is used as a seismic isolation floor 3 that supports the upper floor and absorbs vibrations such as earthquakes.

【0004】免震装置10は実公昭57−25942号
公報に開示されたものと類似のものであり、地震に対す
る構造床の応答は、通常、入力地震波の数倍に増幅され
るという性質を考慮した構成となっている。即ち、この
床応答の性質を考慮して、上下方向、水平方向共に柔い
鉛直バネ11及び水平バネ12を設けて、構造体より長
い周期の振動系をつくり、更に、鉛直方向に設けた油圧
ダンパ13により上下方向の振動エネルギを吸収し、二
重床への伝達を低減するものである。この免震装置10
は設定値以上の地震力(加速度)が加わると水平方向に
滑りが生じるが、この水平方向については、当該免震装
置10の基台14と床面1上の滑り板15との間に介装
した摩擦材22による滑り摩擦がダンパ作用を発揮す
る。
The seismic isolation device 10 is similar to that disclosed in Japanese Utility Model Publication No. 57-25942, and takes into account the property that the response of a structural floor to an earthquake is usually amplified several times as large as an input seismic wave. The configuration is as follows. That is, in consideration of the nature of the floor response, the vertical spring 11 and the horizontal spring 12 which are soft in both the vertical and horizontal directions are provided to create a vibration system having a longer period than the structure, and further, the hydraulic system provided in the vertical direction The vibration energy in the vertical direction is absorbed by the damper 13 and transmission to the double floor is reduced. This seismic isolation device 10
When a seismic force (acceleration) greater than a set value is applied, slippage occurs in the horizontal direction. In this horizontal direction, an interposition occurs between the base 14 of the seismic isolation device 10 and the slide plate 15 on the floor 1. The sliding friction of the mounted friction material 22 exerts a damper action.

【0005】一方、上記のように免震床を弾性支持する
と、水平方向は摩擦力が作用するので平常時は滑動しな
いが、上下方向は運搬車等の走行で床が振動し、電算機
室としての環境振動が問題となる。このため、平常時の
居住環境の維持という面より、上下方向に対しては、平
常時は免震装置を機能させない固定機構を持たせてい
る。即ち、免震装置10は、上床2の積載荷重をその本
体16で受け、本体16が支承する荷重の90%を垂直
バネ11に、残の10%を本体16内の中央に配したシ
ャフト17にストッパ18を介して分担させておき、且
つ、そのストッパ18は引抜きバネ19により引張られ
た状態で介装させておく。そして、地震などによる上下
動が発生すると、これに伴い引抜きバネ19の引張り力
でストッパ18が外れて平常時固定機構が解除され、本
体16の支持が鉛直バネ11による弾発懸架ヘと移行さ
れ、免震効果が発揮されるようになっている。尚、20
は鉛直バネ11とシャフト17との荷重分担比を調整す
るため本体16の天板16aからねじ込んだセットボル
ト、21は鉛直バネ11の押え板であり、4は荷重分担
比の調整に用いる油圧シリンダである。
On the other hand, when the seismic isolation floor is elastically supported as described above, frictional force acts in the horizontal direction, so that the floor does not slide in normal times. Environmental vibration is a problem. For this reason, from the viewpoint of maintaining the living environment in normal times, a fixing mechanism that does not allow the seismic isolation device to function in the vertical direction in the vertical direction is provided. That is, the seismic isolation device 10 receives the load of the upper floor 2 by its main body 16, and 90% of the load supported by the main body 16 is placed on the vertical spring 11, and the remaining 10% is placed on the shaft 17 in the center of the main body 16. And the stopper 18 is interposed in a state where the stopper 18 is pulled by a pull-out spring 19. When vertical movement occurs due to an earthquake or the like, the stopper 18 is released by the pulling force of the extraction spring 19 to release the normal fixing mechanism, and the support of the main body 16 is shifted to the elastic suspension by the vertical spring 11. The seismic isolation effect is exhibited. In addition, 20
Is a set bolt screwed from the top plate 16a of the main body 16 to adjust the load sharing ratio between the vertical spring 11 and the shaft 17, 21 is a pressing plate of the vertical spring 11, and 4 is a hydraulic cylinder used for adjusting the load sharing ratio. It is.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記免震床
システムの免震装置は、工場において、装置単体のバネ
定数試験や、免震装置の滑り支承を構成する摩擦材と滑
り板の滑り摩擦試験を行って出荷している。
The seismic isolation device of the above-mentioned seismic isolation floor system is used at a factory in a spring constant test of a single device, a sliding friction between a friction material constituting a sliding bearing of the seismic isolation device and a sliding plate. Tested and shipped.

【0007】しかし、実際に免震床システムを構築する
場合には、複数台の免震装置が取り付けられるため、現
場での取り付け精度によりその性能が多少変わってくる
ことがある。また実際の免震床システムでは免震床周囲
に緩衝部があることが多いが、その摩擦の影響は設計時
に考慮されていない。例えば、図12に示すように、上
床2と柱等24との間隙に、下部が上部に比較して圧縮
が容易なるゴム等の充填物23を挿入して充填床とし、
地震が発生したとき、充填物23が、図の如く免震床1
2との接合部26より上方へせり上って柱等の水平動を
免震床に伝えない構造(特公昭57−23061号公
報)とすることあるが、このような緩衝部の影響は設計
時には考慮されていない。
However, when actually constructing a seismic isolation floor system, since a plurality of seismic isolation devices are installed, the performance may slightly change depending on the installation accuracy at the site. In actual seismic isolation floor systems, there are many shock absorbers around the seismic isolation floor, but the effect of friction is not taken into account when designing. For example, as shown in FIG. 12, a filler 23 made of rubber or the like whose lower part is easier to compress than the upper part is inserted into the gap between the upper floor 2 and the pillars 24 to form a packed floor.
When an earthquake occurs, the packing 23 is moved to the base-isolated floor 1 as shown in the figure.
The structure may be such that it does not transmit the horizontal movement of the columns and the like to the base-isolated floor by climbing upward from the joint 26 with the base 2 (Japanese Patent Publication No. 57-23061). Sometimes not considered.

【0008】そのため現場で免震床を組み上げた場合、
免震床システムの性能を再度確認しておくことが極めて
重要であるが、従来は、このような免震性能を再確認す
る手段をもたなかった。
For this reason, when a seismic isolation floor is assembled on site,
It is extremely important to reconfirm the performance of the seismic isolation floor system, but there has been no means to reconfirm such seismic isolation performance.

【0009】本発明は上記課題に鑑みてなされたもの
で、免震床組立現場の状況(取付け精度、周囲との取合
い等)を加味して、現場組立を完了した免震床システム
の性能を確認する方法及び免震床水平加力試験装置を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and takes into consideration the situation of the seismic isolation floor assembly site (mounting accuracy, connection with surroundings, etc.) and improves the performance of the seismic isolation floor system that has been completed on-site assembly. It is an object of the present invention to provide a checking method and a seismic isolation floor horizontal force test device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明による免震床システムの性能確認方法は、現
場組立を完了した免震床のほぼ中央部位置で、該免震床
と既設構造体に固定した反力受けとの間に加力手段を設
置し、該反力受けを介して該既設構造体に反力をとって
上記加力手段により上記免震床を水平に移動させ、その
水平加力及び水平方向への移動量をそれぞれセンサによ
り計測し、この計測データを演算処理して水平加力P
(ton )と移動量δ(cm)の関係をグラフ化し、そのグ
ラフから全体の摩擦係数μとバネ定数Σkを求めるもの
である(請求項1)。
In order to achieve the above object, a method for confirming the performance of a base-isolated floor system according to the present invention comprises the steps of:
A force applying means is installed between the
And place a reaction force on the existing structure through the reaction force receiver.
The seismic isolation floor is horizontally moved by the force means , the horizontal force and the amount of movement in the horizontal direction are measured by sensors, and the measured data is processed to calculate the horizontal force P.
(Ton) and the amount of movement δ (cm) are graphed, and the entire friction coefficient μ and spring constant Δk are determined from the graph (claim 1).

【0011】また本発明の免震床水平加力試験装置は、
現場組立を完了した免震床のほぼ中央部位置で、該免震
床と既設構造体に固定した複数の反力受けとの間にそれ
ぞれ設置され、該反力受けを介して該既設構造体に反力
をとって上記免震床に水平加力を与える複数の油圧ジャ
ッキと、これらの油圧ジャッキを同調させながら作動さ
せ免震床を水平に移動させるポンプユニットと、水平加
力を計測する荷重計及び水平方向への移動量を計測する
変位計と、これらの計測データを収集し演算処理して水
平加力P(ton )と移動量δ(cm)の関係をグラフ化す
る演算処理手段とを設けた構成のものである(請求項
2)。
[0011] Further, the seismic isolation floor horizontal force test apparatus of the present invention comprises:
Near the center of the base-isolated floor where field assembly was completed ,
Between the floor and the multiple reaction receivers fixed to the existing structure.
Respectively, and the reaction force is applied to the existing structure through the reaction force receiver.
A plurality of hydraulic jacks for applying horizontal force to the seismic isolation floor, a pump unit that operates while synchronizing these hydraulic jacks to move the seismic isolation floor horizontally, a load meter for measuring horizontal applied force, and Displacement meter for measuring the amount of movement in the horizontal direction, and arithmetic processing means for collecting and calculating these measurement data and graphing the relationship between the horizontal force P (ton) and the amount of movement δ (cm) are provided. (Claim 2).

【0012】本免震床水平加力試験装置においては、上
記油圧ジャッキの他に、復元用の油圧ジャッキと、その
ポンプユニットを設けてもよく(請求項3)、また上記
油圧ジャッキとして分離式両動型油圧ジャッキを用い、
水平加力用及び復元用の油圧ジャッキとして兼用するこ
ともできる(請求項4)。
In the seismic isolation floor horizontal force test apparatus, a restoring hydraulic jack and its pump unit may be provided in addition to the hydraulic jack (claim 3). Using a double-acting hydraulic jack,
It can also be used as a hydraulic jack for horizontal loading and for restoring (claim 4).

【0013】[0013]

【作用】免震床システムの性能の第1は、地震時免震装
置がどのくらいの力で動き出すか、即ち免震効果がいつ
得られるかであり、第2は震れをどのくらい減衰させる
ことができるかであるが、これらは(1)免震装置と滑
り板との間の摩擦係数μの大小、(2)水平方向バネの
強さ(バネ不定数k)の大小によって決まってくる。そ
こで、免震床全体を静的に横移動させて、その水平加力
P(ton )と移動量δ(ton )との関係を把握して、全
体の摩擦係数とバネ定数を求めることにより、その性能
を確認することができる。特に、現場設置後なので、免
震床の外側から加力することが困難であることを考慮
し、免震床の内部の位置で加力すること、並びに現場設
置後なので既設の構造体を加力する際の反力受けとして
利用することとし、すなわち現場組立を完了した免震床
のほぼ中央部位置で、免震床と既設構造体に固定した反
力受けとの間に加力手段を設置し、反力受けを介して既
設構造体に反力をとって加力手段により免震床を水平に
移動させるようにしていて、これにより免震床システム
の性能を、現場で免震床を組み上げた後であっても適切
に再確認することができる(請求項1)。
[Function] The first of the performances of the seismic isolation floor system is how much force the seismic isolation device starts to move in the event of an earthquake, that is, when the seismic isolation effect is obtained. Although possible, these are determined by (1) the magnitude of the friction coefficient μ between the seismic isolation device and the sliding plate, and (2) the magnitude of the strength of the horizontal spring (spring inconstant k). Therefore, the whole seismic isolation floor is moved laterally statically, the relationship between the horizontal force P (ton) and the movement amount δ (ton) is grasped, and the overall friction coefficient and spring constant are obtained. Its performance can be confirmed . Especially, since it is after installation on site,
Considering that it is difficult to apply force from outside the floor
And apply force at a position inside the seismic isolation floor.
After installation, as a reaction force receiving when applying the existing structure
Seismic isolation floor that has been completed
At approximately the center of the building, the anti-seismic floor and the
A force applying means is installed between the power receiver and the power receiver.
The seismic isolation floor is leveled by applying force to the installed structure
It is made to move, so that the seismic isolation floor system
Appropriate performance even after building a seismic isolation floor at the site
Can be confirmed again (claim 1).

【0014】現場組立を完了した免震床は、大きいもの
では1000m〜2000mの床面積があるが、複
数の油圧ジャッキにより現場組立を完了した免震床に水
平加力を与え、これらの油圧ジャッキを同調させながら
作動させると、免震床を水平に移動させて所望の水平加
力P(ton )と移動量δ(cm)のグラフを得ることが
きる。特に、現場設置後なので、免震床の外側から加力
することが困難であることを考慮し、免震床の内部の位
置で加力すること、並びに現場設置後なので既設の構造
体を加力する際の反力受けとして利用することとし、す
なわち現場組立を完了した免震床のほぼ中央部位置で、
免震床と既設構造体に固定した複数の反力受けとの間に
それぞれ油圧ジャッキを設置し、反力受けを介して既設
構造体に反力をとって油圧ジャッキにより免震床に水平
加力を与えるようにしていて、これにより免震床システ
ムの性能を、現場で免震床を組み上げた後であっても適
切に再確認することができる(請求項2)。
[0014] MenShinyuka completing the field assembly is intended greater is the floor area of 1000m 2 ~2000m 2, give a horizontal pressure force MenShinyuka completing the field assembly of a plurality of hydraulic jacks, these Upon actuation while tuning the hydraulic jack, you can move the MenShinyuka horizontally obtain a graph of amount of movement and a desired horizontal loading force P (ton) δ (cm)
Wear. Especially after installation on site, force is applied from outside the base-isolated floor
Considering that it is difficult to
And the existing structure after installation
It will be used as a reaction force receiver when applying force to the body.
In other words, almost at the center of the base-isolated floor where on-site assembly has been completed,
Between the base-isolated floor and the multiple reaction supports fixed to the existing structure
Hydraulic jacks are installed for each, and they are already installed via the reaction force receiver.
Takes a reaction force on the structure and is level with the seismic isolation floor by hydraulic jack
The system is designed to provide additional force, which
System performance, even after building the seismic isolation floor on site.
It can be confirmed again immediately (claim 2).

【0015】免震床水平加力試験装置においては、加力
用の油圧ジャッキの他に復元用の油圧ジャッキを設けて
原状態に復帰させるが(請求項3)、分離式両動型油圧
ジャッキを用いると水平加力用と復元用に兼用すること
ができ、設置上有利となる(請求項4)。
In the seismic isolation floor horizontal loading test apparatus, a restoring hydraulic jack is provided in addition to the loading hydraulic jack to restore the original state (claim 3). By using, it can be used for both horizontal application and restoration, which is advantageous in installation (Claim 4).

【0016】[0016]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。本実施例における免震床システムを構築している
免震装置は、既に図8〜図11で説明したものと同一で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. The seismic isolation device constructing the seismic isolation floor system in the present embodiment is the same as that already described with reference to FIGS.

【0017】免震床システムの性能の第1は、地震時に
免震装置10がどのくらいの力で動き出すか、即ち免震
効果がいつ得られるかである。第2は震れをどのくらい
減衰させることができるかである。これらは、(1)免
震装置10と滑り板15との間の摩擦係数μの大小、
(2)水平方向バネ12の強さ(バネ定数k)の大小に
よって決まってくる。そこで、免震床全体を静的に横移
動させて、その水平加力Pとしての荷重(ton )と、移
動量δとしての変位(cm)とを測定し、全体の摩擦係数
μとバネ定数Σkを求めることにより、システムの免震
性能を確認する。
The first performance of the seismic isolation floor system is how much force the seismic isolation device 10 starts to move during an earthquake, that is, when the seismic isolation effect is obtained. The second is how much tremor can be attenuated. These are (1) the magnitude of the friction coefficient μ between the seismic isolation device 10 and the sliding plate 15;
(2) It is determined by the strength of the horizontal spring 12 (spring constant k). Therefore, the whole seismic isolation floor is statically moved laterally, and the load (ton) as the horizontal force P and the displacement (cm) as the moving amount δ are measured, and the friction coefficient μ and the spring constant of the whole are measured. Confirm the seismic isolation performance of the system by determining Σk.

【0018】実際の現場では、大きいものでは1000
2 〜2000m2 の床面積があり、これを一体として
試験するには、免震床を水平に移動させる工夫が必要で
ある。そこで、図1に示す如く、水平に移動させる加力
手段として複数の油圧ジャッキ31を用い、これらの水
平加力用油圧ジャッキ31を同調させながらポンプユニ
ット30により作動させ、免震床を水平に移動させる。
そして、それと同時に油圧ジャッキ31による加力を荷
重計32により検出すると共に、免震床の水平方向への
移動量を変位計33により検出し、ディジタル動ひずみ
測定器34によってリアルタイムに計測する。この計測
データをパーソナルコンピュータ35で収集処理してモ
ニタ画面上で水平加力P(ton )と移動量δ(cm)の関
係をグラフ化し、そのグラフから全体のバネ定数Σkと
摩擦係数μとを求める。尚、復元用の油圧ジャッキ36
とそのポンプユニット30も設ける。
In an actual site, a large one is 1000
There are floor area m 2 ~2000m 2, which in testing as integral, it is necessary to devise to move the MenShinyuka horizontally. Therefore, as shown in FIG. 1, a plurality of hydraulic jacks 31 are used as force applying means for moving horizontally, and the hydraulic jacks 31 for horizontal force are operated by the pump unit 30 while synchronizing with each other, so that the seismic isolation floor is leveled. Move.
At the same time, the load exerted by the hydraulic jack 31 is detected by the load meter 32, and the amount of movement of the seismic isolation floor in the horizontal direction is detected by the displacement meter 33, and is measured in real time by the digital dynamic strain meter 34. The measured data is collected and processed by the personal computer 35, and the relationship between the horizontal force P (ton) and the movement amount δ (cm) is graphed on the monitor screen. From the graph, the overall spring constant Σk and friction coefficient μ are calculated. Ask. In addition, the hydraulic jack 36 for restoration
And its pump unit 30 are also provided.

【0019】図2及び図3に計算機室免震床へ具体的に
適用した免震床水平加力試験装置を示す。ここで対象と
した免震床の概要は、次の通りである。
FIGS. 2 and 3 show a seismic isolation floor horizontal force test apparatus specifically applied to a computer room seismic isolation floor. The outline of the seismic isolation floor targeted here is as follows.

【0020】免震床面積:665 m2 装置台数:フルユニット32台、ハーフユニット16台 固定荷重(鉄骨重量、装置重量、パネル重量、スタンド
重量他):58.74 t 積載荷重:0.60t 合計荷重:59.34 t 設計水平バネ定数(4本分):Σk=0.60t 設計摩擦係数:μ=0.06(設計荷重時、積載荷重=150
Kg/cm 2 ) 図中、A1〜A4は水平加力用の油圧ジャッキ31の配
置場所を示す。加力方法については、免震床の内部の位
置で加力すること、及び、既設の構造体を利用すること
を考慮に入れ、油圧ジャッキ31の設置場所は免震床の
ほぼ中央における4点加力とし、反力はスラブにホール
インアンカー止めした鉄骨ブラケット37にとった。ま
た、これらA1〜A4部には、上記ブラケット37を利
用し、加力用油圧ジャッキ31を転用して復元用の油圧
ジャッキ36とし、免震床復元時に使用した。即ち、こ
こでの加力用油圧ジャッキ31にはラムの上昇下降が油
圧ポンプの切替で操作できる分離式両動型油圧ジャッキ
を用い、これを加力用及び復元用として利用している。
また、ポンプユニット30には電動油圧ポンプユニット
を用いた。38はこれらの油圧ジャッキ31を同調させ
ながら作動させるポンプユニット30の制御スイッチで
ある。
Seismic isolation floor area: 665 m 2 Number of units: 32 full units, 16 half units Fixed load (steel frame weight, equipment weight, panel weight, stand weight, etc.): 58.74 t Loading load: 0.60 t Total load: 59.34 t Designed horizontal spring constant (for 4 pieces): = k = 0.60t Designed friction coefficient: μ = 0.06 (At design load, loading load = 150
Kg / cm 2 ) In the figure, A1 to A4 indicate locations where the hydraulic jacks 31 for horizontal force are arranged. Regarding the loading method, taking into account that loading is applied at the position inside the base-isolated floor and that the existing structure is used, the hydraulic jacks 31 are installed at four points approximately in the center of the base-isolated floor. The force was applied and the reaction force was applied to the steel frame bracket 37 anchored to the slab by hole-in. The brackets 37 were used for these A1 to A4 portions, and the hydraulic jacks 31 for applying force were diverted into hydraulic jacks 36 for restoration, which were used at the time of restoring the base-isolated floor. That is, a separate-type double-acting hydraulic jack in which the raising and lowering of the ram can be operated by switching the hydraulic pump is used for the hydraulic jack 31 for loading, and this is used for loading and restoring.
Further, an electric hydraulic pump unit was used as the pump unit 30. Reference numeral 38 denotes a control switch of the pump unit 30 that operates while synchronizing the hydraulic jacks 31.

【0021】尚、上記水平加力による最大変形量δmax
は、油圧ジャッキ31の使用、納まり、変位計の性能等
を考慮して15cmとした。δmax =15cmとしてΣPma
x =12.4t、従って1ケ所当たりの反力は、最大
3.1tと計算される。
The maximum deformation δmax due to the horizontal force
Was set to 15 cm in consideration of the use and fitting of the hydraulic jack 31, the performance of the displacement meter, and the like. ΣPma with δmax = 15cm
x = 12.4t, and therefore the reaction force per location is calculated to be a maximum of 3.1t.

【0022】次に、計測方法については、荷重計(ロー
ドセル)32を上記A1〜A4部にL1〜L4として設
けると共に、変位計33を上記A1〜A4部と免震床終
端部の2箇所にD1〜D6として設けた。そして、水平
加力の荷重P(ton )はロードセルL1〜L4により、
変形移動量δ(cm)は変位計D1〜D6により、動ひず
み測定器34を経由して同時計測し、パーソナルコンピ
ュータ35によりデータ処理を施し、荷重−変位(P−
δ)特性を得た。
Next, regarding the measuring method, a load cell (load cell) 32 is provided as L1 to L4 in the above A1 to A4 parts, and a displacement meter 33 is provided at two places of the above A1 to A4 parts and the terminal end of the base isolation floor. D1 to D6 were provided. The load P (ton) of the horizontal force is calculated by the load cells L1 to L4.
The deformation movement amount δ (cm) is simultaneously measured by the displacement meters D1 to D6 via the dynamic strain measuring device 34, subjected to data processing by the personal computer 35, and subjected to the load-displacement (P−
δ) Characteristics were obtained.

【0023】図4、図5に得られた「荷重−変位」グラ
フの一部を、また図6にこのような「荷重−変位」グラ
フより摩擦係数μとバネ定数Σkを求めた結果を示す。
図6中、テストNo1〜No3は図12で説明した緩衝部の
ある場合を示す。
FIGS. 4 and 5 show a part of the obtained “load-displacement” graph, and FIG. 6 shows the results of obtaining the friction coefficient μ and the spring constant Δk from such a “load-displacement” graph. .
In FIG. 6, tests No. 1 to No. 3 show the case where the buffer unit described with reference to FIG. 12 is provided.

【0024】図7は、出荷時における上記設計水平バネ
定数Σk=0.60tと設計摩擦係数μ=0.06(設計荷重
時、積載荷重=150Kg/cm2 )から予想された荷重−変位
(P−δ)特性を示す。この予想荷重−変位特性と実測
荷重−変位特性との比較から、本試験の結果として、下
記のことが言える。
FIG. 7 shows the load-displacement (P-δ) predicted from the design horizontal spring constant Δk = 0.60 t and the design friction coefficient μ = 0.06 (loading load = 150 kg / cm 2 at design load) at the time of shipment. ) Show characteristics. From the comparison between the expected load-displacement characteristics and the actually measured load-displacement characteristics, the following can be said as the result of this test.

【0025】(1)みかけの摩擦係数はμ=0.07〜0.07
5 程度であり、設計荷重時の設計値より若干大きい値を
示しているが、その理由として、(a)静摩擦係数は動
摩擦係数より大きいため、この影響がみかけ摩擦係数に
含まれている、(b)摩擦係数は、面圧に対する依存性
があり、本試験時は積載荷重がほとんどない状態である
ため、摩擦係数が設計荷重時より大きい、ということが
考えられるため、結果としては概ね満足できる値と言え
る。
(1) The apparent friction coefficient is μ = 0.07 to 0.07
5, which is slightly larger than the design value under the design load. The reason is that (a) the static friction coefficient is larger than the kinetic friction coefficient, and this effect is included in the apparent friction coefficient. b) The coefficient of friction depends on the surface pressure, and since there is almost no load during the test, it is considered that the coefficient of friction is larger than that at the time of the design load. A value.

【0026】(2)みかけのバネ定数は、設計値より若
干小さい値となっているが、バネ定数が小さくなるの
は、免震床の周期を長周期にする方に作用するため、免
震の性能に対しては有利に働くと考えてよい。従って、
結果としては十分満足できると言える。
(2) The apparent spring constant is slightly smaller than the design value. However, the decrease in the spring constant is due to the effect of increasing the period of the base-isolated floor to a longer period. It may be considered that it works favorably for the performance of. Therefore,
As a result, it can be said that it is satisfactory enough.

【0027】(3)緩衝部の有り・無しの比較(例えば
図4と図5)では、緩衝部ありの影響が変形の初期で見
えるが、荷重としての影響もせいぜい1〜2tであり、
緩衝部の抜出しは、概ね良好と言える。
(3) In the comparison between the presence and absence of the buffer (for example, FIGS. 4 and 5), the effect of the presence of the buffer can be seen at the beginning of the deformation, but the effect as the load is at most 1 to 2t.
It can be said that extraction of the buffer is generally good.

【0028】(4)実測荷重−変位特性のうち、最大変
形時から復元する過程で、荷重がゼロに近いところで勾
配が小さくなるのは、バネの復元力による慣性力の影響
によるものと思われる。
(4) Among the actually measured load-displacement characteristics, in the process of restoring from the time of maximum deformation, it is considered that the gradient becomes small where the load is close to zero due to the effect of the inertia force due to the restoring force of the spring. .

【0029】(5)上記(1)〜(4)のことから、本
試験はスムースな加力により、十分満足できる結果が得
られたと判断でき、免震床の性能として十分であること
が確認できたと言える。
(5) From the above (1) to (4), it can be judged that the present test has obtained sufficiently satisfactory results by the smooth loading, and it has been confirmed that the performance of the base-isolated floor is sufficient. It can be said that it was done.

【0030】このようにして、実際に組み上がった免震
床システムの性能を確認することが可能になり、地震力
を実際に入力せずにシュミレーションを行うことができ
る。また、コンピュータ等の積載が行われた後にも、実
験が可能である。
In this way, it is possible to confirm the performance of an actually assembled seismic isolation floor system, and to perform a simulation without actually inputting seismic force. Further, an experiment can be performed even after loading of a computer or the like.

【0031】[0031]

【発明の効果】以上述べたように、本発明の方法又は装
置によれば、次のような優れた効果が得られる。
As described above, according to the method or apparatus of the present invention, the following excellent effects can be obtained.

【0032】(1)免震床全体を静的に横移動させてそ
の水平加力P(ton )と移動量δ(cm)との関係を把握
し、全体の摩擦係数とバネ定数を求めることにより、実
際に組み上がった免震床システムの性能を確認すること
可能になる。特に、現場設置後なので、免震床の外側
から加力することが困難であることを考慮し、免震床の
内部の位置で加力すること、並びに現場設置後なので既
設の構造体を加力する際の反力受けとして利用するよう
にしていて、これにより免震床システムの性能を、現場
で免震床を組み上げた後であっても適切に再確認するこ
とができる(請求項1、2)。従って、地震力を実際に
入力せずにシュミレーションを行うことができる。ま
た、コンピュータ等の積載が行われた後においても、実
験が可能である。
(1) The whole seismic isolation floor is statically moved laterally, and the relationship between the horizontal force P (ton) and the movement amount δ (cm) is grasped, and the friction coefficient and spring constant of the whole are determined. This makes it possible to confirm the performance of the actually constructed seismic isolation floor system . Especially after installation on the site, outside the seismic isolation floor
Considering that it is difficult to apply force from
Apply force at the internal position and after installation
To use as a reaction force receiver when applying force to
And the performance of the seismic isolation floor system can be
Even after assembling the seismic isolation floor in
Doo can (claim 1). Therefore, the simulation can be performed without actually inputting the seismic force. Further, an experiment can be performed even after loading of a computer or the like.

【0033】(2)特に、請求項2の免震床水平加力試
験装置においては、複数の油圧ジャッキにより現場組立
を完了した免震床に水平加力を与え、これらの油圧ジャ
ッキを同調させながら作動させるため、大きな床面積の
免震床についても、これを水平に正しく移動させて所望
の水平加力P(ton )と移動量δ(cm)のグラフを得る
ことができる。
[0033] (2) In particular, in MenShinyuka Horizontal loading test apparatus according to claim 2 gives a horizontal pressure force MenShinyuka completing the field assembly of a plurality of hydraulic jacks, to tune these hydraulic jack Therefore, even for a base-isolated floor having a large floor area, the floor can be correctly and horizontally moved to obtain a graph of a desired horizontal force P (ton) and a movement amount δ (cm).

【0034】(3)また請求項3又は4の構成によれ
ば、復元用の油圧ジャッキ又は水平加力用及び復元用に
共用できる分離式両動型油圧ジャッキにより、免震床を
原状態に復帰させることができる。
(3) According to the third or fourth aspect of the present invention, the seismic isolation floor can be restored to its original state by using a hydraulic jack for restoration or a separate-type double-acting hydraulic jack that can be shared for horizontal loading and restoration. Can be restored.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による免震床システムの性能確認方法の
基本構成を示す図である。
FIG. 1 is a diagram showing a basic configuration of a method for confirming the performance of a base-isolated floor system according to the present invention.

【図2】本発明の一実施例における免震床水平加力試験
装置の油圧ジャッキ及び変位計の配置関係を示す図であ
る。
FIG. 2 is a diagram showing an arrangement relationship between a hydraulic jack and a displacement meter of the seismic isolation floor horizontal force test apparatus according to one embodiment of the present invention.

【図3】本発明の一実施例における免震床水平加力試験
装置の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a seismic isolation floor horizontal load test apparatus according to an embodiment of the present invention.

【図4】試験装置の計測値より得られた「荷重−変位」
グラフの例を示す図である。
[Fig. 4] "Load-displacement" obtained from the measurement value of the test device
It is a figure showing the example of a graph.

【図5】同じく、計測値より得られた「荷重−変位」グ
ラフの例を示す図である。
FIG. 5 is a diagram showing an example of a “load-displacement” graph obtained from measurement values.

【図6】「荷重−変位」グラフより摩擦係数μとバネ定
数Σkを求めた結果を示す図である。
FIG. 6 is a diagram showing a result of obtaining a friction coefficient μ and a spring constant Δk from a “load-displacement” graph.

【図7】出荷時に予想された荷重−変位(P−δ)特性
を示す図である。
FIG. 7 is a diagram showing load-displacement (P-δ) characteristics expected at the time of shipping.

【図8】従来の免震床システムの概要を示す図である。FIG. 8 is a diagram showing an outline of a conventional seismic isolation floor system.

【図9】図8の免震床システムを構成する免震装置を示
す図である。
FIG. 9 is a view showing a seismic isolation device constituting the seismic isolation floor system of FIG.

【図10】図9の免震装置を示す断面図である。FIG. 10 is a sectional view showing the seismic isolation device of FIG. 9;

【図11】図9の免震装置を示す上面図である。FIG. 11 is a top view showing the seismic isolation device of FIG. 9;

【図12】従来の免震床周囲の緩衝部を説明する図であ
る。
FIG. 12 is a view for explaining a conventional buffer around a base-isolated floor.

【符号の説明】[Explanation of symbols]

10 免震装置 12 水平方向バネ 15 滑り板 22 摩擦材 30 ポンプユニット 31 加力用の油圧ジャッキ 32 荷重計 33 変位計 34 ディジタル動ひずみ測定器 35 パーソナルコンピュータ 36 復元用の油圧ジャッキ 37 鉄骨ブラケット 38 制御スイッチ DESCRIPTION OF SYMBOLS 10 Seismic isolation device 12 Horizontal spring 15 Sliding plate 22 Friction material 30 Pump unit 31 Hydraulic jack for load 32 Load cell 33 Displacement meter 34 Digital dynamic strain gauge 35 Personal computer 36 Hydraulic jack for restoration 37 Steel bracket 38 Control switch

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01M 19/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) G01M 19/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 現場組立を完了した免震床のほぼ中央部
位置で、該免震床と既設構造体に固定した反力受けとの
間に加力手段を設置し、該反力受けを介して該既設構造
体に反力をとって上記加力手段により上記免震床を水平
に移動させ、その水平加力及び水平方向への移動量をそ
れぞれセンサにより計測し、この計測データを演算処理
して水平加力と移動量の関係をグラフ化し、そのグラフ
から全体の摩擦係数とバネ定数を求めることを特徴とす
る免震床システムの性能確認方法。
1. Nearly the center of the base- isolated floor where field assembly has been completed
Between the seismic isolation floor and the reaction force receiver fixed to the existing structure.
A force applying means is provided between the existing structure and the reaction force receiver.
The seismic isolation floor is horizontally moved by the force means by applying a reaction force to the body, and the horizontal force and the amount of movement in the horizontal direction are measured by sensors, and the measured data is arithmetically processed to calculate the horizontal force. A method for confirming the performance of a base-isolated floor system, which graphs the relationship between the force and the amount of movement and calculates the overall friction coefficient and spring constant from the graph.
【請求項2】 現場組立を完了した免震床のほぼ中央部
位置で、該免震床と既設構造体に固定した複数の反力受
けとの間にそれぞれ設置され、該反力受けを介して該既
設構造体に反力をとって上記免震床に水平加力を与える
複数の油圧ジャッキと、これらの油圧ジャッキを同調さ
せながら作動させ免震床を水平に移動させるポンプユニ
ットと、水平加力を計測する荷重計及び水平方向への移
動量を計測する変位計と、これらの計測データを収集し
演算処理して水平加力と移動量の関係をグラフ化する演
算処理手段とを設けたことを特徴とする免震床水平加力
試験装置。
2. A substantially central portion of the base-isolated floor where field assembly has been completed.
A plurality of reaction force receiving members fixed to the seismic isolation floor and the existing structure at the position.
And installed between them, and the existing
A plurality of hydraulic jacks for applying a horizontal force to the seismic isolation floor by taking a reaction force on the installed structure, a pump unit for operating the hydraulic jacks in synchronization and moving the seismic isolation floor horizontally, And a displacement meter for measuring the amount of movement in the horizontal direction, and arithmetic processing means for collecting and calculating these measurement data and graphing the relationship between the horizontal force and the amount of movement. A seismic isolation floor horizontal force test device.
【請求項3】 上記油圧ジャッキの他に、復元用の油圧
ジャッキと、そのポンプユニットを設けたことを特徴と
する請求項2に記載の免震床水平加力試験装置。
3. The seismic isolation floor horizontal force test device according to claim 2, wherein a restoring hydraulic jack and a pump unit thereof are provided in addition to the hydraulic jack.
【請求項4】 上記油圧ジャッキとして分離式両動型油
圧ジャッキを用い、水平加力用及び復元用の油圧ジャッ
キとして兼用することを特徴とする請求項2に記載の免
震床水平加力試験装置。
4. The horizontal loading test of a seismic isolated floor according to claim 2, wherein a separate-type double-acting hydraulic jack is used as said hydraulic jack, and is also used as a hydraulic jack for horizontal loading and a restoring hydraulic jack. apparatus.
JP4310304A 1992-11-19 1992-11-19 Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device Expired - Lifetime JP3033371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4310304A JP3033371B2 (en) 1992-11-19 1992-11-19 Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4310304A JP3033371B2 (en) 1992-11-19 1992-11-19 Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device

Publications (2)

Publication Number Publication Date
JPH06160249A JPH06160249A (en) 1994-06-07
JP3033371B2 true JP3033371B2 (en) 2000-04-17

Family

ID=18003614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4310304A Expired - Lifetime JP3033371B2 (en) 1992-11-19 1992-11-19 Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device

Country Status (1)

Country Link
JP (1) JP3033371B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637415B2 (en) * 2001-08-22 2011-02-23 トステム株式会社 Floor magnification test method for building structural elements
CN107063673A (en) * 2017-06-03 2017-08-18 福州大学 Isolation structure dynamic characteristics horizontal translocation test device and its method of testing
CN114254463B (en) * 2021-12-31 2024-05-14 中船双瑞(洛阳)特种装备股份有限公司 Method for evaluating performances of friction pendulum type shock insulation support for bridge and building

Also Published As

Publication number Publication date
JPH06160249A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
US8127904B2 (en) System and method for tuning the resonance frequency of an energy absorbing device for a structure in response to a disruptive force
Gueraud et al. Seismic isolation using sliding-elastomer bearing pads
Pham et al. Experimental study on dynamic responses of reinforced concrete frames under sudden column removal applying concentrated loading
Ventura et al. Dynamic characteristics of a base isolated building from ambient vibration measurements and low level earthquake shaking
Kannan et al. Active control of building seismic response by energy dissipation
Kelly et al. A friction damped base isolation system with fail‐safe characteristics
Quaglini et al. Experimental investigation of the re‐centring capability of curved surface sliders
KR100853564B1 (en) A device for damping movements of structural elements and a bracing system
Lu et al. Investigation of the seismic response of high‐rise buildings supported on tension‐resistant elastomeric isolation bearings
JPS6242192Y2 (en)
Setareh et al. Tuned mass dampers for balcony vibration control
US6412348B1 (en) Dynamic loading test equipment for a real-size vibration-controlling damper
Samali et al. Shake table tests on a mass eccentric model with base isolation
Zhang et al. Seismic isolation research on a double-layer lattice structure using shaking table tests
Clemente et al. Seismic behavior of base isolated civil protection operative center in Foligno, Italy
Li et al. Shaking table test and numerical simulation on a mega-sub isolation system under near-fault ground motions with velocity pulses
JP3033371B2 (en) Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device
JP2003042892A (en) Method of evaluating dynamic earthquake resistance of building
Zhang et al. Explicit modeling of damping of a single-layer latticed dome with an isolation system subjected to earthquake ground motions
Paulson et al. Shaking-table study of base isolation for masonry buildings
Ribakov et al. Experimental methods for selecting base isolation parameters for public buildings
Charng Base isolation for multistorey building structures.
Fritzen et al. Model-Based Damage Identification from Changes of Model Data-A Comparison of Different Methods
JPS62268478A (en) Earthquakeproof method of building
Choun et al. Seismic and vibration isolation of an emergency diesel generator by using a spring-viscous damper system