JPH06160249A - Performance determining method for earthquake isolating floor system and horizontal shaking test equipment therefor - Google Patents

Performance determining method for earthquake isolating floor system and horizontal shaking test equipment therefor

Info

Publication number
JPH06160249A
JPH06160249A JP31030492A JP31030492A JPH06160249A JP H06160249 A JPH06160249 A JP H06160249A JP 31030492 A JP31030492 A JP 31030492A JP 31030492 A JP31030492 A JP 31030492A JP H06160249 A JPH06160249 A JP H06160249A
Authority
JP
Japan
Prior art keywords
horizontal
floor
seismic isolation
force
hydraulic jack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31030492A
Other languages
Japanese (ja)
Other versions
JP3033371B2 (en
Inventor
Yukio Okuda
幸男 奥田
Kyoji Yoshino
恭司 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP4310304A priority Critical patent/JP3033371B2/en
Publication of JPH06160249A publication Critical patent/JPH06160249A/en
Application granted granted Critical
Publication of JP3033371B2 publication Critical patent/JP3033371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To allow redetermination of the performance of an earthquake isolating floor system assembled at site. CONSTITUTION:An earthquake isolating floor assembled at site is moved horizontally by means of a plurality of hydraulic jacks 31, horizontal shaking force and moving amount are detected by means of a load gauge 32 and a displacement gauge 33, respectively, and measured in real time by means by a digital dynamic distortion gauge 34 and the measurement data is processed by means of a computer 35. Relationship between horizontal shaking force P(ton) and moving amount delta(cm) is displayed graphically on a monitor screen and overall frictional coefficient mu and spring constant SIGMAk are determined from the graph thus evaluating the performance of earthquake isolating floor system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、現場組立を完了した免
震床システムの性能を確認する方法及びそのための免震
床水平加力試験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for confirming the performance of a seismic isolated floor system which has been assembled on site, and a seismic isolated floor horizontal load test device for the method.

【0002】[0002]

【従来の技術】一般に、免震床システム(ダイナミック
・フロア・システム;DFS)は、床組全体を建物躯体
から浮せて免震装置で支持しており、この装置によって
地震による振動を効果的に低減する構造となっている。
2. Description of the Related Art In general, a seismic isolation floor system (Dynamic Floor System; DFS) floats the entire floor assembly from the building frame and supports it with seismic isolation devices. It has a structure that reduces to.

【0003】図8〜図11はその一例を示すもので、建
物自体の床面1の上方に上床2を構築した二重床構造と
され、床面1に複数の免震装置10を所定間隔で配列し
て上床を支持し、それら免震装置10により地震などの
振動を吸収する免震床3とされる。
FIG. 8 to FIG. 11 show an example thereof, which has a double floor structure in which an upper floor 2 is constructed above a floor surface 1 of the building itself, and a plurality of seismic isolation devices 10 are arranged on the floor surface 1 at predetermined intervals. Are arranged to support the upper floor, and the seismic isolation device 10 serves as a seismic isolation floor 3 that absorbs vibrations such as an earthquake.

【0004】免震装置10は実公昭57−25942号
公報に開示されたものと類似のものであり、地震に対す
る構造床の応答は、通常、入力地震波の数倍に増幅され
るという性質を考慮した構成となっている。即ち、この
床応答の性質を考慮して、上下方向、水平方向共に柔い
鉛直バネ11及び水平バネ12を設けて、構造体より長
い周期の振動系をつくり、更に、鉛直方向に設けた油圧
ダンパ13により上下方向の振動エネルギを吸収し、二
重床への伝達を低減するものである。この免震装置10
は設定値以上の地震力(加速度)が加わると水平方向に
滑りが生じるが、この水平方向については、当該免震装
置10の基台14と床面1上の滑り板15との間に介装
した摩擦材22による滑り摩擦がダンパ作用を発揮す
る。
The seismic isolation device 10 is similar to that disclosed in Japanese Utility Model Publication No. 57-25942, and takes into consideration the property that the response of a structural floor to an earthquake is usually amplified by several times the input seismic wave. It has been configured. That is, in consideration of the property of the floor response, the vertical spring 11 and the horizontal spring 12 which are soft in the vertical and horizontal directions are provided to create a vibration system having a longer cycle than that of the structure. The damper 13 absorbs the vibration energy in the vertical direction and reduces the transmission to the double floor. This seismic isolation device 10
Slips in the horizontal direction when a seismic force (acceleration) of a set value or more is applied. In this horizontal direction, there is a gap between the base 14 of the seismic isolation device 10 and the sliding plate 15 on the floor 1. Sliding friction by the mounted friction material 22 exerts a damper action.

【0005】一方、上記のように免震床を弾性支持する
と、水平方向は摩擦力が作用するので平常時は滑動しな
いが、上下方向は運搬車等の走行で床が振動し、電算機
室としての環境振動が問題となる。このため、平常時の
居住環境の維持という面より、上下方向に対しては、平
常時は免震装置を機能させない固定機構を持たせてい
る。即ち、免震装置10は、上床2の積載荷重をその本
体16で受け、本体16が支承する荷重の90%を垂直
バネ11に、残の10%を本体16内の中央に配したシ
ャフト17にストッパ18を介して分担させておき、且
つ、そのストッパ18は引抜きバネ19により引張られ
た状態で介装させておく。そして、地震などによる上下
動が発生すると、これに伴い引抜きバネ19の引張り力
でストッパ18が外れて平常時固定機構が解除され、本
体16の支持が鉛直バネ11による弾発懸架ヘと移行さ
れ、免震効果が発揮されるようになっている。尚、20
は鉛直バネ11とシャフト17との荷重分担比を調整す
るため本体16の天板16aからねじ込んだセットボル
ト、21は鉛直バネ11の押え板であり、4は荷重分担
比の調整に用いる油圧シリンダである。
On the other hand, when the seismic isolation floor is elastically supported as described above, frictional force acts in the horizontal direction, so that the seismic isolation floor does not slide normally, but the floor vibrates in the vertical direction due to traveling of a carrier, etc. Environmental vibration as a problem. For this reason, in order to maintain the living environment in normal times, a fixing mechanism is provided in the vertical direction so that the seismic isolation device does not function in normal times. That is, the seismic isolation device 10 receives the loading load of the upper floor 2 by its main body 16, and 90% of the load supported by the main body 16 is placed on the vertical spring 11, and the remaining 10% is placed in the center of the main body 16 of the shaft 17. The stopper 18 and the stopper 18, and the stopper 18 is inserted in a state of being pulled by the extraction spring 19. When an up-and-down motion occurs due to an earthquake or the like, the stopper 18 is disengaged by the pulling force of the extraction spring 19 to release the normal fixing mechanism, and the support of the main body 16 is transferred to the elastic suspension by the vertical spring 11. , The seismic isolation effect is being demonstrated. 20
Is a set bolt screwed from the top plate 16a of the main body 16 to adjust the load sharing ratio between the vertical spring 11 and the shaft 17, 21 is a holding plate of the vertical spring 11, and 4 is a hydraulic cylinder used for adjusting the load sharing ratio. Is.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記免震床
システムの免震装置は、工場において、装置単体のバネ
定数試験や、免震装置の滑り支承を構成する摩擦材と滑
り板の滑り摩擦試験を行って出荷している。
By the way, the seismic isolation device of the seismic isolation floor system described above is used in a factory for a spring constant test of a single device, and a sliding friction between a friction material and a sliding plate which constitutes a sliding bearing of the seismic isolation device. Tested and shipped.

【0007】しかし、実際に免震床システムを構築する
場合には、複数台の免震装置が取り付けられるため、現
場での取り付け精度によりその性能が多少変わってくる
ことがある。また実際の免震床システムでは免震床周囲
に緩衝部があることが多いが、その摩擦の影響は設計時
に考慮されていない。例えば、図12に示すように、上
床2と柱等24との間隙に、下部が上部に比較して圧縮
が容易なるゴム等の充填物23を挿入して充填床とし、
地震が発生したとき、充填物23が、図の如く免震床1
2との接合部26より上方へせり上って柱等の水平動を
免震床に伝えない構造(特公昭57−23061号公
報)とすることあるが、このような緩衝部の影響は設計
時には考慮されていない。
However, when a seismic isolation floor system is actually constructed, since a plurality of seismic isolation devices are attached, the performance may change slightly depending on the installation accuracy on site. In actual seismic isolation floor systems, there are often cushioning parts around the seismic isolation floor, but the effect of friction is not taken into consideration during design. For example, as shown in FIG. 12, a filling material 23 such as rubber, whose lower portion is easier to compress than the upper portion, is inserted into a gap between the upper floor 2 and the pillars 24 to form a filling floor,
When an earthquake occurs, the filling material 23 becomes
The structure which does not transmit the horizontal motion of the column or the like to the seismic isolated floor by going up from the joint portion 26 with 2 (Japanese Patent Publication No. 57-23061) may be designed by the influence of such a buffer portion. Sometimes not considered.

【0008】そのため現場で免震床を組み上げた場合、
免震床システムの性能を再度確認しておくことが極めて
重要であるが、従来は、このような免震性能を再確認す
る手段をもたなかった。
Therefore, when the seismic isolation floor is assembled on site,
It is extremely important to reconfirm the performance of the seismic isolation floor system, but conventionally, there was no means to reconfirm such seismic isolation performance.

【0009】本発明は上記課題に鑑みてなされたもの
で、免震床組立現場の状況(取付け精度、周囲との取合
い等)を加味して、現場組立を完了した免震床システム
の性能を確認する方法及び免震床水平加力試験装置を提
供することにある。
The present invention has been made in view of the above problems, and takes into consideration the situation of the base-isolated floor assembly site (installation accuracy, engagement with the surroundings, etc.), the performance of the base-isolated floor system completed on-site assembly. It is to provide a method for confirming and a seismic isolation floor horizontal loading test device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明による免震床システムの性能確認方法は、現
場組立を完了した免震床を加力手段により水平に移動さ
せ、その水平加力及び水平方向への移動量をそれぞれセ
ンサにより計測し、この計測データを演算処理して水平
加力P(ton )と移動量δ(cm)の関係をグラフ化し、
そのグラフから全体の摩擦係数μとバネ定数Σkを求め
るものである(請求項1)。
In order to achieve the above object, a method for confirming the performance of a seismic isolation floor system according to the present invention is such that a seismic isolation floor that has been assembled on site is moved horizontally by a force applying means and the The force and the amount of movement in the horizontal direction are measured by sensors, and the measured data is arithmetically processed to graph the relationship between the horizontal force P (ton) and the amount of movement δ (cm).
The overall friction coefficient μ and spring constant Σk are determined from the graph (claim 1).

【0011】また本発明の免震床水平加力試験装置は、
現場組立を完了した免震床に水平加力を与える複数の油
圧ジャッキと、これらの油圧ジャッキを同調させながら
作動させ免震床を水平に移動させるポンプユニットと、
水平加力を計測する荷重計及び水平方向への移動量を計
測する変位計と、これらの計測データを収集し演算処理
して水平加力P(ton )と移動量δ(cm)の関係をグラ
フ化する演算処理手段とを設けた構成のものである(請
求項2)。
Further, the seismic isolation floor horizontal loading test apparatus of the present invention is
A plurality of hydraulic jacks that apply horizontal force to the seismic isolated floor that has completed on-site assembly, and a pump unit that moves the seismic isolated floor horizontally by operating these hydraulic jacks in synchronization.
A load meter that measures horizontal force and a displacement meter that measures the amount of movement in the horizontal direction, and the relationship between the horizontal force P (ton) and the amount of movement δ (cm) by collecting and processing these measurement data The calculation processing means for graphing is provided (Claim 2).

【0012】本免震床水平加力試験装置においては、上
記油圧ジャッキの他に、復元用の油圧ジャッキと、その
ポンプユニットを設けてもよく(請求項3)、また上記
油圧ジャッキとして分離式両動型油圧ジャッキを用い、
水平加力用及び復元用の油圧ジャッキとして兼用するこ
ともできる(請求項4)。
In the seismic isolated floor horizontal load test apparatus, a hydraulic jack for restoration and a pump unit thereof may be provided in addition to the hydraulic jack (claim 3), and the hydraulic jack is a separate type. Using a double-acting hydraulic jack,
It can also be used as a hydraulic jack for horizontal force application and restoration (claim 4).

【0013】[0013]

【作用】免震床システムの性能の第1は、地震時免震装
置がどのくらいの力で動き出すか、即ち免震効果がいつ
得られるかであり、第2は震れをどのくらい減衰させる
ことができるかであるが、これらは(1)免震装置と滑
り板との間の摩擦係数μの大小、(2)水平方向バネの
強さ(バネ不定数k)の大小によって決まってくる。そ
こで、免震床全体を静的に横移動させて、その水平加力
P(ton )と移動量δ(ton )との関係を把握して、全
体の摩擦係数とバネ定数を求めることにより、その性能
を確認することができる(請求項1)。
[Function] The first performance of the seismic isolation floor system is how much force the seismic isolation device starts to move during an earthquake, that is, when the seismic isolation effect is obtained, and the second is how much the vibration can be damped. It depends on (1) the magnitude of the friction coefficient μ between the seismic isolation device and the sliding plate, and (2) the magnitude of the horizontal spring strength (spring constant k). Therefore, by statically laterally moving the entire seismic isolation floor, grasping the relationship between the horizontal force P (ton) and the movement amount δ (ton), and obtaining the overall friction coefficient and spring constant, The performance can be confirmed (Claim 1).

【0014】現場組立を完了した免震床は、大きいもの
では1000m2 〜2000m2 の床面積があるが、複
数の油圧ジャッキにより現場組立を完了した免震床に水
平加力を与え、これらの油圧ジャッキを同調させながら
作動させると、免震床を水平に移動させて所望の水平加
力P(ton )と移動量δ(cm)のグラフを得ることがで
きる(請求項2)。
[0014] MenShinyuka completing the field assembly is intended greater is the floor area of 1000m 2 ~2000m 2, give a horizontal pressure force MenShinyuka completing the field assembly of a plurality of hydraulic jacks, these When the hydraulic jacks are operated in synchronism with each other, the seismic isolation floor is moved horizontally to obtain a desired horizontal force P (ton) and a movement amount δ (cm) (claim 2).

【0015】免震床水平加力試験装置においては、加力
用の油圧ジャッキの他に復元用の油圧ジャッキを設けて
原状態に復帰させるが(請求項3)、分離式両動型油圧
ジャッキを用いると水平加力用と復元用に兼用すること
ができ、設置上有利となる(請求項4)。
In the seismic isolated floor horizontal load test device, a restoring hydraulic jack is provided in addition to the hydraulic jack for applying force to restore the original state (Claim 3). When used, it can be used for both horizontal application and restoration, which is advantageous in installation (claim 4).

【0016】[0016]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。本実施例における免震床システムを構築している
免震装置は、既に図8〜図11で説明したものと同一で
ある。
The present invention will be described below with reference to the illustrated embodiments. The seismic isolation device constructing the seismic isolation floor system in the present embodiment is the same as that described with reference to FIGS. 8 to 11.

【0017】免震床システムの性能の第1は、地震時に
免震装置10がどのくらいの力で動き出すか、即ち免震
効果がいつ得られるかである。第2は震れをどのくらい
減衰させることができるかである。これらは、(1)免
震装置10と滑り板15との間の摩擦係数μの大小、
(2)水平方向バネ12の強さ(バネ定数k)の大小に
よって決まってくる。そこで、免震床全体を静的に横移
動させて、その水平加力Pとしての荷重(ton )と、移
動量δとしての変位(cm)とを測定し、全体の摩擦係数
μとバネ定数Σkを求めることにより、システムの免震
性能を確認する。
The first performance of the seismic isolation floor system is how much force the seismic isolation device 10 starts to move during an earthquake, that is, when the seismic isolation effect is obtained. The second is how much vibration can be damped. These are (1) the magnitude of the friction coefficient μ between the seismic isolation device 10 and the sliding plate 15,
(2) It depends on the strength of the horizontal spring 12 (spring constant k). Therefore, the entire seismic isolation floor is statically moved laterally, the load (ton) as the horizontal force P and the displacement (cm) as the movement amount δ are measured, and the overall friction coefficient μ and spring constant are measured. Confirm the seismic isolation performance of the system by obtaining Σk.

【0018】実際の現場では、大きいものでは1000
2 〜2000m2 の床面積があり、これを一体として
試験するには、免震床を水平に移動させる工夫が必要で
ある。そこで、図1に示す如く、水平に移動させる加力
手段として複数の油圧ジャッキ31を用い、これらの水
平加力用油圧ジャッキ31を同調させながらポンプユニ
ット30により作動させ、免震床を水平に移動させる。
そして、それと同時に油圧ジャッキ31による加力を荷
重計32により検出すると共に、免震床の水平方向への
移動量を変位計33により検出し、ディジタル動ひずみ
測定器34によってリアルタイムに計測する。この計測
データをパーソナルコンピュータ35で収集処理してモ
ニタ画面上で水平加力P(ton )と移動量δ(cm)の関
係をグラフ化し、そのグラフから全体のバネ定数Σkと
摩擦係数μとを求める。尚、復元用の油圧ジャッキ36
とそのポンプユニット30も設ける。
At the actual site, the largest one is 1000
There are floor area m 2 ~2000m 2, which in testing as integral, it is necessary to devise to move the MenShinyuka horizontally. Therefore, as shown in FIG. 1, a plurality of hydraulic jacks 31 are used as the force applying means for moving horizontally, and these horizontal force applying hydraulic jacks 31 are operated by the pump unit 30 while synchronizing with each other, so that the seismic isolated floor is made horizontal. To move.
At the same time, the load applied by the hydraulic jack 31 is detected by the load meter 32, the horizontal movement amount of the seismic isolation floor is detected by the displacement meter 33, and the digital dynamic strain measuring instrument 34 measures in real time. The measurement data is collected and processed by the personal computer 35, and the relationship between the horizontal force P (ton) and the movement amount δ (cm) is graphed on the monitor screen, and the overall spring constant Σk and friction coefficient μ are plotted from the graph. Ask. In addition, the hydraulic jack 36 for restoration
And its pump unit 30 are also provided.

【0019】図2及び図3に計算機室免震床へ具体的に
適用した免震床水平加力試験装置を示す。ここで対象と
した免震床の概要は、次の通りである。
FIG. 2 and FIG. 3 show a seismic isolated floor horizontal loading test device specifically applied to a computer room seismic isolated floor. The outline of the seismic isolation floor targeted here is as follows.

【0020】免震床面積:665 m2 装置台数:フルユニット32台、ハーフユニット16台 固定荷重(鉄骨重量、装置重量、パネル重量、スタンド
重量他):58.74 t 積載荷重:0.60t 合計荷重:59.34 t 設計水平バネ定数(4本分):Σk=0.60t 設計摩擦係数:μ=0.06(設計荷重時、積載荷重=150
Kg/cm 2 ) 図中、A1〜A4は水平加力用の油圧ジャッキ31の配
置場所を示す。加力方法については、免震床の内部の位
置で加力すること、及び、既設の構造体を利用すること
を考慮に入れ、油圧ジャッキ31の設置場所は免震床の
ほぼ中央における4点加力とし、反力はスラブにホール
インアンカー止めした鉄骨ブラケット37にとった。ま
た、これらA1〜A4部には、上記ブラケット37を利
用し、加力用油圧ジャッキ31を転用して復元用の油圧
ジャッキ36とし、免震床復元時に使用した。即ち、こ
こでの加力用油圧ジャッキ31にはラムの上昇下降が油
圧ポンプの切替で操作できる分離式両動型油圧ジャッキ
を用い、これを加力用及び復元用として利用している。
また、ポンプユニット30には電動油圧ポンプユニット
を用いた。38はこれらの油圧ジャッキ31を同調させ
ながら作動させるポンプユニット30の制御スイッチで
ある。
Seismic isolation floor area: 665 m 2 Number of devices: 32 full units, 16 half units Fixed load (steel frame weight, device weight, panel weight, stand weight, etc.): 58.74 t Loading load: 0.60 t Total load: 59.34 t Design horizontal spring constant (for 4): Σk = 0.60 t Design friction coefficient: μ = 0.06 (At design load, load = 150
Kg / cm 2 ) In the figure, A1 to A4 indicate the locations of the hydraulic jacks 31 for horizontal force application. Regarding the force application method, considering that the force is applied at a position inside the seismic isolation floor and that the existing structure is used, the installation location of the hydraulic jack 31 is four points at approximately the center of the seismic isolation floor. The force was applied, and the reaction force was applied to the steel frame bracket 37 fixed to the slab by the hole-in anchor. Further, the bracket 37 is used for these A1 to A4 parts, and the hydraulic jack 31 for force is diverted into a hydraulic jack 36 for restoration, which is used when the seismic isolated floor is restored. That is, as the force applying hydraulic jack 31, a separation type double-acting type hydraulic jack in which the raising and lowering of the ram can be operated by switching the hydraulic pump is used and is used for force applying and restoring.
An electric hydraulic pump unit was used as the pump unit 30. Reference numeral 38 is a control switch of the pump unit 30 which operates the hydraulic jacks 31 while synchronizing them.

【0021】尚、上記水平加力による最大変形量δmax
は、油圧ジャッキ31の使用、納まり、変位計の性能等
を考慮して15cmとした。δmax =15cmとしてΣPma
x =12.4t、従って1ケ所当たりの反力は、最大
3.1tと計算される。
The maximum amount of deformation δmax due to the horizontal force mentioned above.
Was set to 15 cm in consideration of the use and installation of the hydraulic jack 31 and the performance of the displacement gauge. ΣPma with δmax = 15 cm
x = 12.4t, so the reaction force per location is calculated to be 3.1t at maximum.

【0022】次に、計測方法については、荷重計(ロー
ドセル)32を上記A1〜A4部にL1〜L4として設
けると共に、変位計33を上記A1〜A4部と免震床終
端部の2箇所にD1〜D6として設けた。そして、水平
加力の荷重P(ton )はロードセルL1〜L4により、
変形移動量δ(cm)は変位計D1〜D6により、動ひず
み測定器34を経由して同時計測し、パーソナルコンピ
ュータ35によりデータ処理を施し、荷重−変位(P−
δ)特性を得た。
Next, regarding the measuring method, a load meter (load cell) 32 is provided as L1 to L4 at the above A1 to A4 portions, and displacement gauges 33 are provided at two locations at the above A1 to A4 portion and the seismic isolation floor end portion. It was provided as D1 to D6. Then, the load P (ton) of horizontal force is given by the load cells L1 to L4.
The amount of deformation movement δ (cm) is simultaneously measured by the displacement gauges D1 to D6 via the dynamic strain measuring device 34, data processing is performed by the personal computer 35, and the load-displacement (P-
δ) The characteristics were obtained.

【0023】図4、図5に得られた「荷重−変位」グラ
フの一部を、また図6にこのような「荷重−変位」グラ
フより摩擦係数μとバネ定数Σkを求めた結果を示す。
図6中、テストNo1〜No3は図12で説明した緩衝部の
ある場合を示す。
FIG. 4 and FIG. 5 show a part of the obtained “load-displacement” graphs, and FIG. 6 shows the results of the friction coefficient μ and the spring constant Σk obtained from such “load-displacement” graphs. .
In FIG. 6, tests No1 to No3 show the case where the buffer section described in FIG. 12 is provided.

【0024】図7は、出荷時における上記設計水平バネ
定数Σk=0.60tと設計摩擦係数μ=0.06(設計荷重
時、積載荷重=150Kg/cm2 )から予想された荷重−変位
(P−δ)特性を示す。この予想荷重−変位特性と実測
荷重−変位特性との比較から、本試験の結果として、下
記のことが言える。
FIG. 7 shows the load-displacement (P-δ) predicted from the design horizontal spring constant Σk = 0.60t and the design friction coefficient μ = 0.06 (shipping load = 150Kg / cm 2 at design load) at the time of shipment. ) Shows characteristics. From the comparison between this predicted load-displacement characteristic and the measured load-displacement characteristic, the following can be said as the result of this test.

【0025】(1)みかけの摩擦係数はμ=0.07〜0.07
5 程度であり、設計荷重時の設計値より若干大きい値を
示しているが、その理由として、(a)静摩擦係数は動
摩擦係数より大きいため、この影響がみかけ摩擦係数に
含まれている、(b)摩擦係数は、面圧に対する依存性
があり、本試験時は積載荷重がほとんどない状態である
ため、摩擦係数が設計荷重時より大きい、ということが
考えられるため、結果としては概ね満足できる値と言え
る。
(1) The apparent friction coefficient is μ = 0.07 to 0.07
It is about 5, which is slightly larger than the design value under design load. The reason is that (a) the static friction coefficient is larger than the dynamic friction coefficient, so this effect is included in the apparent friction coefficient. b) The friction coefficient depends on the surface pressure, and it is considered that the friction coefficient is larger than that under the design load because there is almost no loading load in this test. Therefore, the result is generally satisfactory. It can be called a value.

【0026】(2)みかけのバネ定数は、設計値より若
干小さい値となっているが、バネ定数が小さくなるの
は、免震床の周期を長周期にする方に作用するため、免
震の性能に対しては有利に働くと考えてよい。従って、
結果としては十分満足できると言える。
(2) The apparent spring constant is a little smaller than the design value, but the smaller spring constant is because it acts to make the period of the seismic isolation floor longer. It can be considered that it has an advantageous effect on the performance of. Therefore,
As a result, it can be said that they are fully satisfied.

【0027】(3)緩衝部の有り・無しの比較(例えば
図4と図5)では、緩衝部ありの影響が変形の初期で見
えるが、荷重としての影響もせいぜい1〜2tであり、
緩衝部の抜出しは、概ね良好と言える。
(3) In the comparison of the presence / absence of the cushioning portion (for example, FIGS. 4 and 5), the influence of the presence of the cushioning portion can be seen at the initial stage of deformation, but the influence as the load is at most 1 to 2 t,
It can be said that the extraction of the buffer portion is generally good.

【0028】(4)実測荷重−変位特性のうち、最大変
形時から復元する過程で、荷重がゼロに近いところで勾
配が小さくなるのは、バネの復元力による慣性力の影響
によるものと思われる。
(4) Among the measured load-displacement characteristics, the reason why the gradient becomes smaller when the load is close to zero in the process of restoring from the maximum deformation is considered to be due to the influence of the inertial force due to the restoring force of the spring. .

【0029】(5)上記(1)〜(4)のことから、本
試験はスムースな加力により、十分満足できる結果が得
られたと判断でき、免震床の性能として十分であること
が確認できたと言える。
(5) From the above (1) to (4), it can be judged that the test was sufficiently satisfactory due to the smooth application of force, and it was confirmed that the performance of the seismic isolation floor was sufficient. It can be said that it was done.

【0030】このようにして、実際に組み上がった免震
床システムの性能を確認することが可能になり、地震力
を実際に入力せずにシュミレーションを行うことができ
る。また、コンピュータ等の積載が行われた後にも、実
験が可能である。
In this way, it is possible to confirm the performance of the seismically isolated floor system that has actually been assembled, and it is possible to perform a simulation without actually inputting the seismic force. In addition, the experiment can be performed even after the computer or the like is loaded.

【0031】[0031]

【発明の効果】以上述べたように、本発明の方法又は装
置によれば、次のような優れた効果が得られる。
As described above, according to the method or apparatus of the present invention, the following excellent effects can be obtained.

【0032】(1)免震床全体を静的に横移動させてそ
の水平加力P(ton )と移動量δ(cm)との関係を把握
し、全体の摩擦係数とバネ定数を求めることにより、実
際に組み上がった免震床システムの性能を確認すること
が可能になる(請求項1、2)。従って、地震力を実際
に入力せずにシュミレーションを行うことができる。ま
た、コンピュータ等の積載が行われた後においても、実
験が可能である。
(1) Statically laterally move the whole seismic isolation floor to grasp the relationship between the horizontal force P (ton) and the movement amount δ (cm), and obtain the overall friction coefficient and spring constant. This makes it possible to confirm the performance of the seismically isolated floor system that has actually been assembled (claims 1 and 2). Therefore, the simulation can be performed without actually inputting the seismic force. Further, the experiment can be performed even after the computer is loaded.

【0033】(2)特に、請求項3の免震床水平加力試
験装置においては、複数の油圧ジャッキにより現場組立
を完了した免震床に水平加力を与え、これらの油圧ジャ
ッキを同調させながら作動させるため、大きな床面積の
免震床についても、これを水平に正しく移動させて所望
の水平加力P(ton )と移動量δ(cm)のグラフを得る
ことができる。
(2) In particular, in the seismic isolated floor horizontal loading test apparatus of claim 3, a horizontal loading is applied to the seismic isolated floor which has been assembled on site by a plurality of hydraulic jacks, and these hydraulic jacks are synchronized. However, since the seismic isolated floor having a large floor area is correctly moved horizontally, a desired horizontal force P (ton) and a movement amount δ (cm) can be obtained.

【0034】(3)また請求項3又は4の構成によれ
ば、復元用の油圧ジャッキ又は水平加力用及び復元用に
共用できる分離式両動型油圧ジャッキにより、免震床を
原状態に復帰させることができる。
(3) According to the third or fourth aspect of the invention, the seismic isolation floor is brought into the original state by the hydraulic jack for restoration or the split type double-acting hydraulic jack which can be shared for horizontal force application and restoration. Can be restored.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による免震床システムの性能確認方法の
基本構成を示す図である。
FIG. 1 is a diagram showing a basic configuration of a performance confirmation method of a base-isolated floor system according to the present invention.

【図2】本発明の一実施例における免震床水平加力試験
装置の油圧ジャッキ及び変位計の配置関係を示す図であ
る。
FIG. 2 is a diagram showing a positional relationship between a hydraulic jack and a displacement gauge of a seismic isolated floor horizontal load test apparatus according to an embodiment of the present invention.

【図3】本発明の一実施例における免震床水平加力試験
装置の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a seismic isolated floor horizontal loading test apparatus according to an embodiment of the present invention.

【図4】試験装置の計測値より得られた「荷重−変位」
グラフの例を示す図である。
[Fig. 4] "Load-displacement" obtained from the measurement values of the test equipment
It is a figure which shows the example of a graph.

【図5】同じく、計測値より得られた「荷重−変位」グ
ラフの例を示す図である。
FIG. 5 is a diagram similarly showing an example of a “load-displacement” graph obtained from measured values.

【図6】「荷重−変位」グラフより摩擦係数μとバネ定
数Σkを求めた結果を示す図である。
FIG. 6 is a diagram showing a result of obtaining a friction coefficient μ and a spring constant Σk from a “load-displacement” graph.

【図7】出荷時に予想された荷重−変位(P−δ)特性
を示す図である。
FIG. 7 is a diagram showing load-displacement (P-δ) characteristics predicted at the time of shipping.

【図8】従来の免震床システムの概要を示す図である。FIG. 8 is a diagram showing an outline of a conventional seismic isolation floor system.

【図9】図8の免震床システムを構成する免震装置を示
す図である。
9 is a diagram showing a seismic isolation device that constitutes the seismic isolation floor system of FIG. 8. FIG.

【図10】図9の免震装置を示す断面図である。10 is a cross-sectional view showing the seismic isolation device of FIG.

【図11】図9の免震装置を示す上面図である。FIG. 11 is a top view showing the seismic isolation device of FIG. 9.

【図12】従来の免震床周囲の緩衝部を説明する図であ
る。
FIG. 12 is a diagram illustrating a conventional cushioning portion around a base isolation floor.

【符号の説明】[Explanation of symbols]

10 免震装置 12 水平方向バネ 15 滑り板 22 摩擦材 30 ポンプユニット 31 加力用の油圧ジャッキ 32 荷重計 33 変位計 34 ディジタル動ひずみ測定器 35 パーソナルコンピュータ 36 復元用の油圧ジャッキ 37 鉄骨ブラケット 38 制御スイッチ 10 Seismic Isolation Device 12 Horizontal Spring 15 Sliding Plate 22 Friction Material 30 Pump Unit 31 Hydraulic Jack for Applying 32 Load Meter 33 Displacement Meter 34 Digital Dynamic Strain Measuring Instrument 35 Personal Computer 36 Hydraulic Jack for Restoration 37 Steel Bracket 38 Control switch

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 現場組立を完了した免震床を加力手段に
より水平に移動させ、その水平加力及び水平方向への移
動量をそれぞれセンサにより計測し、この計測データを
演算処理して水平加力と移動量の関係をグラフ化し、そ
のグラフから全体の摩擦係数とバネ定数を求めることを
特徴とする免震床システムの性能確認方法。
1. A seismic isolated floor, which has been assembled on site, is horizontally moved by a force applying means, and the horizontal force and the amount of movement in the horizontal direction are respectively measured by sensors, and the measured data is arithmetically processed to make it horizontal. A method of confirming the performance of a base-isolated floor system, characterized in that the relationship between the applied force and the amount of movement is graphed, and the overall friction coefficient and spring constant are obtained from the graph.
【請求項2】 現場組立を完了した免震床に水平加力を
与える複数の油圧ジャッキと、これらの油圧ジャッキを
同調させながら作動させ免震床を水平に移動させるポン
プユニットと、水平加力を計測する荷重計及び水平方向
への移動量を計測する変位計と、これらの計測データを
収集し演算処理して水平加力と移動量の関係をグラフ化
する演算処理手段とを設けたことを特徴とする免震床水
平加力試験装置。
2. A plurality of hydraulic jacks that apply a horizontal force to the seismic isolation floor that has been assembled on site, a pump unit that moves the seismic isolation floor horizontally by operating these hydraulic jacks in synchronization, and a horizontal force And a displacement meter for measuring the amount of movement in the horizontal direction and an arithmetic processing means for collecting and processing the measurement data of these to graph the relationship between the horizontal force and the amount of movement. Seismic isolation floor horizontal loading test equipment.
【請求項3】 上記油圧ジャッキの他に、復元用の油圧
ジャッキと、そのポンプユニットを設けたことを特徴と
する請求項2に記載の免震床水平加力試験装置。
3. The seismic isolated floor horizontal load test apparatus according to claim 2, further comprising a restoring hydraulic jack and a pump unit for the restoring, in addition to the hydraulic jack.
【請求項4】 上記油圧ジャッキとして分離式両動型油
圧ジャッキを用い、水平加力用及び復元用の油圧ジャッ
キとして兼用することを特徴とする請求項2に記載の免
震床水平加力試験装置。
4. The seismic isolated floor horizontal force test according to claim 2, wherein a separate double-acting hydraulic jack is used as the hydraulic jack, and the hydraulic jack is also used as a horizontal force restoring and restoring hydraulic jack. apparatus.
JP4310304A 1992-11-19 1992-11-19 Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device Expired - Lifetime JP3033371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4310304A JP3033371B2 (en) 1992-11-19 1992-11-19 Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4310304A JP3033371B2 (en) 1992-11-19 1992-11-19 Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device

Publications (2)

Publication Number Publication Date
JPH06160249A true JPH06160249A (en) 1994-06-07
JP3033371B2 JP3033371B2 (en) 2000-04-17

Family

ID=18003614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4310304A Expired - Lifetime JP3033371B2 (en) 1992-11-19 1992-11-19 Performance confirmation method of seismic isolated floor system and seismic isolated floor horizontal force test device

Country Status (1)

Country Link
JP (1) JP3033371B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065902A (en) * 2001-08-22 2003-03-05 Tostem Corp Floor magnification testing method for building structural element
CN107063673A (en) * 2017-06-03 2017-08-18 福州大学 Isolation structure dynamic characteristics horizontal translocation test device and its method of testing
CN114254463A (en) * 2021-12-31 2022-03-29 洛阳双瑞特种装备有限公司武汉分公司 Method for evaluating performance of friction pendulum type shock insulation support for bridge and building

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065902A (en) * 2001-08-22 2003-03-05 Tostem Corp Floor magnification testing method for building structural element
CN107063673A (en) * 2017-06-03 2017-08-18 福州大学 Isolation structure dynamic characteristics horizontal translocation test device and its method of testing
CN114254463A (en) * 2021-12-31 2022-03-29 洛阳双瑞特种装备有限公司武汉分公司 Method for evaluating performance of friction pendulum type shock insulation support for bridge and building
CN114254463B (en) * 2021-12-31 2024-05-14 中船双瑞(洛阳)特种装备股份有限公司 Method for evaluating performances of friction pendulum type shock insulation support for bridge and building

Also Published As

Publication number Publication date
JP3033371B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
Hussien et al. Soil-pile-structure kinematic and inertial interaction observed in geotechnical centrifuge experiments
US8127904B2 (en) System and method for tuning the resonance frequency of an energy absorbing device for a structure in response to a disruptive force
Ventura et al. Dynamic characteristics of a base isolated building from ambient vibration measurements and low level earthquake shaking
Lee et al. Real-time substructuring technique for the shaking table test of upper substructures
De Luca et al. Base isolation for retrofitting historic buildings: Evaluation of seismic performance through experimental investigation
Maddaloni et al. Shake table investigation of a structure isolated by recycled rubber devices and magnetorheological dampers
RU2654339C1 (en) Vibration stand for testing building constructions for seismic load
US9732516B2 (en) Object, such as a building, provided with a system for preventing damage from earthquakes to the object
US6412348B1 (en) Dynamic loading test equipment for a real-size vibration-controlling damper
Samali et al. Shake table tests on a mass eccentric model with base isolation
Moehle et al. Earthquake simulation tests of a ten-story reinforced concrete frame with a discontinued first-level beam
Kelly et al. Earthquake simulator testing of a base isolated bridge deck
Braga et al. Nonlinear dynamic response of HDRB and hybrid HDRB-friction sliders base isolation systems
JPH06160249A (en) Performance determining method for earthquake isolating floor system and horizontal shaking test equipment therefor
Shelley et al. Active-control and forced-vibration studies on highway bridge
Kang et al. Comparison between experimental and analytical results for seesaw energy dissipation systems using fluid viscous dampers
JPH07113721A (en) Vibration testing device, vibration testing method, and vibration testing jig for structure
JP3767324B2 (en) Large bedrock testing equipment
De-la-Colina et al. Experiments to study the effect of foundation rotation on the seismic building torsional, response of a reinforced concrete space frame
JPH05126704A (en) Two-axis force application device
Hwang et al. Shaking table tests of pinned-base steel gable frame
JP3843108B2 (en) Specimen reaction force estimation device
Cao et al. Experimental implementation of the nonstructural element simulator on shake table (NEST) for an archetype tall building
Vargas Real-Time Hybrid Simulation Study of a Rolling Pendulum Equipment Isolation System
RU133025U1 (en) INSTALLATION FOR TESTS FOR STATIC AND DYNAMIC LOAD OF THE MODEL OF THE BEARING STRUCTURES OF THE FRAME BUILDING