JP3031448B2 - Crystal growth method for oxide superconductor - Google Patents

Crystal growth method for oxide superconductor

Info

Publication number
JP3031448B2
JP3031448B2 JP5208715A JP20871593A JP3031448B2 JP 3031448 B2 JP3031448 B2 JP 3031448B2 JP 5208715 A JP5208715 A JP 5208715A JP 20871593 A JP20871593 A JP 20871593A JP 3031448 B2 JP3031448 B2 JP 3031448B2
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
phase
sample
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5208715A
Other languages
Japanese (ja)
Other versions
JPH0741381A (en
Inventor
雄一 石川
桂三 竹内
重夫 長屋
直樹 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Dowa Holdings Co Ltd
Chubu Electric Power Co Inc
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Chubu Electric Power Co Inc, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP5208715A priority Critical patent/JP3031448B2/en
Publication of JPH0741381A publication Critical patent/JPH0741381A/en
Application granted granted Critical
Publication of JP3031448B2 publication Critical patent/JP3031448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超電導体を用いた磁気
軸受けや強磁場シールド体に用いるための酸化物超電導
体の大型結晶育成方法に関し、さらに詳しくは、所定条
件下において種結晶と同一方向の配向性を有する酸化物
超電導体結晶を育成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a large crystal of an oxide superconductor for use in a magnetic bearing or a high magnetic field shield using a superconductor. The present invention relates to a method for growing an oxide superconductor crystal having a directional orientation.

【0002】[0002]

【従来の技術】従来、酸化物超電導体の結晶の育成方法
としては、自己フラックス法やフラックス法、TSFZ
法、FZ法、ブリッヂマン法等が知られ、これらの方法
で123相酸化物超電導体結晶の育成を行うことが実験
的に研究されてきた。
2. Description of the Related Art Conventionally, methods for growing oxide superconductor crystals include self-flux method, flux method, and TSFZ.
Methods, the FZ method, the Bridgeman method, and the like are known, and it has been experimentally studied to grow a 123-phase oxide superconductor crystal by these methods.

【0003】これらの方法のうちフラックス法において
は、123相に不純物がない単結晶が育成され、数mm角
の結晶が報告されている他、該フラックス法をさらに改
良して、溶液中に種結晶を保持して液と接触させ、その
種結晶方位に結晶を成長させながら結晶成長段階で溶液
中に結晶組成の原料を随時補充することにより、1cm角
程度の結晶育成に成功した例も知られている。その他の
方法では今のところ123相の単結晶が育成された例は
少ない。
[0003] Among these methods, in the flux method, a single crystal having no impurities in the 123 phase is grown, and a crystal of several mm square has been reported. There is also known an example in which a crystal of about 1 cm square was successfully grown by holding a crystal and bringing it into contact with a liquid, growing a crystal in its seed crystal orientation, and replenishing a raw material having a crystal composition into the solution as needed during the crystal growth stage. Have been. At present, there are few examples in which a 123-phase single crystal has been grown by other methods.

【0004】上記方法によって育成された結晶では、1
23相中に不純物相を含まないために、応用上必要とな
るピンニングサイトがないので、磁気軸受けや磁気シー
ルド体として用いることができなかった。これは、これ
らの応用物においては外部磁場の侵入がピンニングサイ
トになる不純物相で磁束が止められることによりシール
ドされることが基本的な特性のメカニズムになっている
ことに起因する。
In the crystal grown by the above method, 1
Since the 23 phases do not contain an impurity phase, there are no pinning sites required for application, and thus they cannot be used as a magnetic bearing or a magnetic shield. This is because in these applications, the basic characteristic mechanism is that the invasion of the external magnetic field is shielded by stopping the magnetic flux in the impurity phase that becomes the pinning site, thereby shielding the magnetic field.

【0005】したがって、上記手法で123相の単結晶
を作製しても、目的とする結晶は得られず、このためこ
れらの問題を解決する方法として部分溶融法を用い、2
11相が微細分散した123相の結晶を育成する手法が
一般的に用いられるようになった。
[0005] Therefore, even if a 123-phase single crystal is produced by the above method, the desired crystal cannot be obtained. Therefore, a partial melting method is used as a method for solving these problems.
A method of growing crystals of 123 phases in which 11 phases are finely dispersed has come to be generally used.

【0006】この方法は、211相と液相成分の包晶反
応から123相を生成しながら結晶育成を制御すること
によって、大型の結晶や結晶配向の試料を作製するもの
である。
According to this method, a large crystal or a crystal oriented sample is prepared by controlling crystal growth while generating a 123 phase from a peritectic reaction of a 211 phase and a liquid phase component.

【0007】この方法で作製した組織は、包晶反応の未
反応物として残存する211相が123相中に1〜10
ミクロン程度の大きさで分散したものになっているが、
一般的にこの試料の組成は、211相が123相に対し
て数10mol %添加されたものとなっている。
[0007] The structure produced by this method is such that 211 phases remaining as unreacted substances of the peritectic reaction have 1 to 10
It is dispersed in a size of about a micron,
In general, the composition of this sample is such that 211 phases are added by several tens mol% to 123 phases.

【0008】この方法で作製した試料の超電導特性とし
て、1T(テスラ)の印加磁場で、磁界電流密度は2×
104 A/cm2 以上あり、また反発力も1Kgf /cm2
以上あり、十分実用性がある範囲に特性が近づいてい
る。
[0008] The superconducting characteristics of the sample produced by this method are as follows. At an applied magnetic field of 1 T (tesla), the magnetic field current density is 2 ×
More than 10 4 A / cm 2 and repulsion force is also 1 kgf / cm 2
As described above, the characteristics are approaching the range in which practicality is sufficient.

【0009】一方、問題点として磁気軸受けや磁気シー
ルド体への応用では、試料全体としての特性の均一性が
求められており、通常の製法では、結晶サイズが1cm
角のものが凝集した組織になっており、各結晶の粒界で
は、弱結合もしくは非超電導相になっているために、特
性の均一性がなかった。
On the other hand, as a problem, application to a magnetic bearing or a magnetic shield requires uniformity of the characteristics of the entire sample. In a normal manufacturing method, the crystal size is 1 cm.
The corners had an agglomerated structure, and the grain boundaries of each crystal were weakly bound or in a non-superconducting phase.

【0010】これらの問題を解決するため従来開発され
てきた方法としては、種結晶を置き、2ゾーン炉や1ゾ
ーン炉等の温度勾配炉を用いて結晶の配向性を改善した
製法が取られてきた。しかしながらこれらの方法におい
ても、3〜4インチ径と結晶の径が大きくなるに従い、
試料の端部での未配向組織の発生は抑えられなかった。
As a method conventionally developed to solve these problems, a production method in which a seed crystal is placed and the orientation of the crystal is improved using a temperature gradient furnace such as a two-zone furnace or a one-zone furnace is employed. Have been. However, even in these methods, as the diameter of the crystal increases to 3 to 4 inches,
The generation of unoriented structure at the edge of the sample was not suppressed.

【0011】[0011]

【発明が解決しようとする課題】上述のように従来の作
製法には211相の不純物相を分散した123相の結晶
の配向試料の大型化に適した製法や、大型配向試料の量
産化に適した製法がなかった。
As described above, the conventional manufacturing methods include a method suitable for increasing the size of an oriented sample of a 123-phase crystal in which 211 impurity phases are dispersed and a method for mass-producing a large-oriented sample. There was no suitable recipe.

【0012】したがって本発明では、配向試料の大型化
と量産化とが併せて行なえる新規な作製法の開発を目的
とするものである。
Therefore, an object of the present invention is to develop a novel manufacturing method capable of simultaneously increasing the size of an oriented sample and mass-producing it.

【0013】[0013]

【課題を解決するための手段】本発明者たちはかかる課
題を解決するために鋭意研究したところ、種結晶を順次
大型化していき、その種結晶を用いて、結晶配向試料を
作製していくことにより、種結晶サイズよりも大きい、
あるいは同等サイズの試料を安定して作製できることを
見出し、本発明を提供することができた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to solve the above-mentioned problems. As a result, the seed crystal is sequentially enlarged, and a crystal orientation sample is produced using the seed crystal. By this, larger than the seed crystal size,
Alternatively, they have found that a sample of the same size can be produced stably, and have provided the present invention.

【0014】 すなわち、本発明は、一般式RE1RA2
Cu3x(REは希土類元素からなる群より選ばれる1
種または2種以上の元素の混合物であり、RAはアルカ
リ土類元素からなる群より選ばれる1種または2種以上
の元素の混合物である)で表わされる結晶構造を有し、
かつ211相を含む123相の結晶の育成方法におい
て、予め上記一般式の結晶構造を有する123相の種結
晶を作製すると共に、該種結晶より寸法の大きい123
相結晶構造を有する結晶を製造するための成形体を作製
し、次いで、該成形体を1050〜1200℃に保持し
て半溶融状態にした後、上記種結晶を接触させて123
相結晶を成長させながら、0.5〜2℃/hrの割合で
徐冷する熱処理工程によって種結晶と同一の結晶配向を
有する結晶体を得、次ぎに、得られた結晶体をスライス
し、得られたスライス片を種結晶として用いることによ
り上記熱処理工程を繰り返して最初の種結晶より寸法の
大きい第2の種結晶を作製し、さらに、順次上記と同じ
ことを繰り返して次第に大型の結晶体となす方法であっ
て、123相結晶製造のための上記成形体は、接触する
上記種結晶に対する大きさの比が72.6/5未満であ
ることを特徴とする酸化物超伝導体の結晶育成方法に関
するものである。
That is, the present invention provides a compound represented by the general formula RE 1 RA 2
Cu 3 O x (RE is 1 selected from the group consisting of rare earth elements)
Or a mixture of two or more elements, and RA is a mixture of one or more elements selected from the group consisting of alkaline earth elements).
In the method for growing a 123-phase crystal including the 211 phase, a 123-phase seed crystal having a crystal structure of the above general formula is prepared in advance, and a 123-phase seed crystal having a size larger than the seed crystal is formed.
A molded body for producing a crystal having a phase crystal structure is produced, and then the molded body is maintained at 1050 to 1200 ° C. to be in a semi-molten state.
A crystal having the same crystal orientation as the seed crystal is obtained by a heat treatment step of gradually cooling at a rate of 0.5 to 2 ° C./hr while growing the phase crystal, and then the obtained crystal is sliced, By using the obtained sliced piece as a seed crystal, the above-described heat treatment step is repeated to produce a second seed crystal having a size larger than that of the first seed crystal. Wherein said shaped body for producing a 123 phase crystal has a size ratio of less than 72.6 / 5 to said seed crystal in contact with said shaped body. It relates to the breeding method.

【0015】[0015]

【作用】本発明においては、211相を含んだ123相
の結晶を単結晶(正式には疑似単結晶という)と称する
が、本発明のようにこの123相の単結晶もしくは結晶
方位が揃った結晶配向体の大型化では、種結晶を起点に
した結晶育成プロセスが必要となる。
In the present invention, a 123-phase crystal including 211 phases is called a single crystal (formally referred to as a pseudo-single crystal). As in the present invention, the 123 phase single crystal or crystal orientation is uniform. Increasing the size of a crystal oriented body requires a crystal growing process starting from a seed crystal.

【0016】この場合種結晶としては、Y、Sm、Nd
等の希土類元素で123相構造の結晶では融点の高いも
のを用いる。また種結晶の作製条件として、123相の
化学量論組成では、液相のしみだしが多すぎるために、
これに代わって部分溶融法によって211相を多少含ん
だ組成として用いることが望ましい。これは種結晶をフ
ラックス法等の他の結晶育成方法で作製する場合も同様
である。
In this case, the seed crystals are Y, Sm, Nd
A rare earth element such as that having a 123 phase structure and having a high melting point is used. Also, as the seed crystal production conditions, the stoichiometric composition of the 123 phase causes too much liquid phase seepage,
Instead, it is desirable to use a composition containing a small amount of 211 phase by a partial melting method. This is the same when the seed crystal is produced by another crystal growing method such as a flux method.

【0017】上述の部分溶融法での具体的作製方法とし
てSm1+2XBa2+x Cu3+x Y の種結晶を作製する場
合には、Sm2 3 、BaO2 、CuO等の酸化物原料
を混合し、950〜900℃で焼成して成形用の粉を作
製する。
When a seed crystal of Sm 1 + 2X Ba 2 + x Cu 3 + x O Y is prepared as a specific preparation method in the above partial melting method, Sm 2 O 3 , BaO 2 , CuO or the like is used. The oxide raw materials are mixed and fired at 950 to 900 ° C. to produce a molding powder.

【0018】この場合、硝酸塩、炭酸塩等の原料粉を用
いても同様の効果を得ることもできる他、上記成形粉と
して単純に酸化物原料粉の混合粉として用いてもよい。
In this case, the same effect can be obtained by using a raw material powder such as a nitrate or a carbonate. In addition, the molding powder may be used simply as a mixed powder of an oxide raw material powder.

【0019】その他の方法として、先にBa2+x Cu
3+x 2 の粉末を合成し、この粉にSm2 3 の粉を混
合することによって成形用の粉とする方法もある。この
場合のSm粉末のSmをY、Ndなど他の希土類元素に
置き換えても同様の結果が得られる。
As another method, Ba 2 + x Cu
There is also a method of synthesizing a powder of 3 + x O 2 and mixing it with a powder of Sm 2 O 3 to obtain a powder for molding. In this case, the same result can be obtained by replacing Sm of the Sm powder with another rare earth element such as Y or Nd.

【0020】次いでこれらの成形粉を用いて適当な大き
さの成形体をプレスで作製する。この場合、成形体の大
きさは、数mm角の種結晶を容易に切り出せる大きさであ
ることが必要で、1インチ以上が望ましい。
Next, using these molding powders, a compact having an appropriate size is produced by pressing. In this case, the size of the formed body needs to be a size that can easily cut out a seed crystal of several mm square, and is desirably 1 inch or more.

【0021】次いで作製した成形体を1050〜120
0℃に昇温し保持した後、Sm、Y、Nd、Yb等希土
類の種類に応じたそれぞれの123相の結晶育成温度よ
りもやや高めの温度に冷却し、その後0.5〜2℃/hr
で徐冷する。この結果、試料全体が数mm角以上の結晶と
して成長する。これを切り出して種結晶とする。
Next, the formed product was subjected to 1050 to 120
After the temperature was raised to 0 ° C. and held, it was cooled to a temperature slightly higher than the crystal growth temperature of each of the 123 phases according to the type of rare earth such as Sm, Y, Nd, and Yb, and then 0.5 to 2 ° C. / hr
Cool slowly. As a result, the entire sample grows as a crystal of several mm square or more. This is cut out to form a seed crystal.

【0022】この種結晶を用いる場合には、結晶の大型
化を行なうための成形体の結晶分解温度と種結晶の結晶
分解温度とが同等かあるいは後者のほうが高いことが望
ましい。これは、もしそうでないと種結晶の方が成形体
(以下、前駆体)の結晶育成段階で先に溶融分解し、種
結晶としての役割を果たさなくなるためである。
When this seed crystal is used, it is desirable that the crystal decomposition temperature of the compact for enlarging the crystal is equal to or higher than the crystal decomposition temperature of the seed crystal. This is because, if not so, the seed crystal is melted and decomposed first in the crystal growth stage of the formed body (hereinafter, referred to as a precursor), and does not serve as a seed crystal.

【0023】例えばY系123相の大型結晶を作製する
場合には、Sm系123相を種結晶として用いる。Yb
系123相の大型結晶の場合には、Y系123相の種結
晶が好ましい。さらに、Y系123相の大型結晶の場合
には、同一組成であるY系123相の種結晶を用いるこ
ともできる。
For example, when producing a large crystal of the Y-based 123 phase, the Sm-based 123 phase is used as a seed crystal. Yb
In the case of a large crystal of the system 123 phase, a seed crystal of the Y system 123 phase is preferable. Furthermore, in the case of a large crystal of the Y-based 123 phase, a seed crystal of the Y-based 123 phase having the same composition can be used.

【0024】次に結晶育成したい前駆体を1ゾーンある
いは2ゾーンの温度勾配炉中にセットし、部分溶融温度
1000〜1200℃まで昇温し、部分溶融状態の21
1相と液相状態とを生成させる。生成後、炉内温度を結
晶育成温度もしくは結晶育成温度よりも高くなるよう下
げ、上述のように作製した種結晶を接触させて、0.5
〜2mm/hrで移動させる。この場合、炉内の温度勾配と
しては、100℃/cm以下で、好ましくは数10℃/cm
が望ましい。
Next, the precursor to be grown is set in a one-zone or two-zone temperature gradient furnace, heated to a partial melting temperature of 1000 to 1200 ° C.
One phase and a liquid phase state are generated. After the generation, the furnace temperature is lowered to a temperature higher than the crystal growth temperature or the crystal growth temperature, and the seed crystal prepared as described above is brought into contact with the furnace so as to have a temperature of 0.5%.
Move at ~ 2 mm / hr. In this case, the temperature gradient in the furnace is 100 ° C./cm or less, preferably several tens ° C./cm.
Is desirable.

【0025】移動方法としては、炉内の中心温度を一定
にして試料自体を移動させていく場合と試料を移動させ
ないで固定し炉内の温度勾配を利用して、試料に温度勾
配を加えて結晶成長させる方法とがあり、どちらの方法
でも同等の結果が得られる。
As a moving method, the sample itself is moved while the center temperature in the furnace is kept constant, or the temperature gradient is added to the sample by using the temperature gradient in the furnace by fixing the sample without moving it. There is a method of growing crystals, and equivalent results can be obtained by either method.

【0026】このようにして得た結晶育成試料を基に、
新たに大型の種結晶として用いて、上記と同様の工程を
繰り返すことによってより大型の結晶や、結晶配向性を
有する試料を作製することができた。
Based on the crystal growth sample thus obtained,
By using the same as a new large seed crystal and repeating the same steps as above, a larger crystal and a sample having crystal orientation could be produced.

【0027】さらに製造の量産性を上げる方法として、
一旦作製した結晶をスライスして多数の種結晶として用
い、上記工程によって量産性が促進できるものである。
As a method of further increasing the mass productivity of the production,
The crystal once produced is sliced and used as a large number of seed crystals, and mass production can be promoted by the above steps.

【0028】以下、実施例をもって詳細に本発明を説明
するが、本発明範囲はこれらに限定されるものではな
い。
Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited thereto.

【0029】[0029]

【実施例1】先ずY2 3 とBaO2 、CuOの原料粉
をY:Ba:Cu=1.8:2.4:3.4のモル比で
混合した後、900℃で20時間焼成した。次いで、該
焼成物を自動乳鉢で十分に粉砕し、さらにアセトン溶媒
を用いてボールミルで粉砕し、平均粒径3ミクロン程度
の粉末を作製した。
EXAMPLE 1 First, raw material powders of Y 2 O 3 , BaO 2 , and CuO were mixed at a molar ratio of Y: Ba: Cu = 1.8: 2.4: 3.4, and then fired at 900 ° C. for 20 hours. did. Next, the fired product was sufficiently pulverized with an automatic mortar, and further pulverized with a ball mill using an acetone solvent to prepare a powder having an average particle diameter of about 3 μm.

【0030】次いで、得られた粉末を用いて1ton /cm
2 の加圧でプレスし、2インチ径で厚さ1cmの成形体を
作製して、炉内において1100℃にて1時間保持した
後、徐冷し1000℃から900℃まで1℃/hrで冷却
して結晶化を行ない、その後炉冷して2インチ径の試料
を得、次いで該試料から5mm角の結晶を取り出して種結
晶とした。
Next, 1 ton / cm 2 was obtained using the obtained powder.
Pressed at 2 of pressure, to prepare a molded product having a thickness of 1cm in 2 inch diameter was held for one hour at 1100 ° C. in a furnace, at 1 ° C. / hr from gradually cooled 1000 ° C. to 900 ° C. After cooling, crystallization was carried out, followed by furnace cooling to obtain a sample having a diameter of 2 inches, and then a 5 mm square crystal was taken out from the sample and used as a seed crystal.

【0031】次に上述の種結晶と同一の組成からなる2
インチ径の成形体を作製して、これを前駆体として1ゾ
ーンの温度勾配炉の中心にセットし、炉内の中心温度を
1100℃にした後、試料を1時間程度保持してから、
1000℃程度の温度領域に試料を移動し、ここで上記
の種結晶を該前駆体上にセットした。
Next, 2 having the same composition as the seed crystal described above
After preparing a molded body having an inch diameter, using the precursor as a precursor and setting it at the center of a one-zone temperature gradient furnace, setting the center temperature in the furnace to 1100 ° C., holding the sample for about one hour,
The sample was moved to a temperature range of about 1000 ° C., where the seed crystal was set on the precursor.

【0032】次いで種結晶を置いてある方から炉外の方
へ1mm/hrの速度で移動させたところ、2インチ径全体
が種結晶の結晶方位に揃った試料が作製できたが、さら
にこの試料から厚さ1cmの種結晶を切り取った。
Next, when the seed crystal was moved from the side where the seed crystal was placed to the outside of the furnace at a speed of 1 mm / hr, a sample having the entire 2-inch diameter aligned with the crystal orientation of the seed crystal was produced. A 1 cm thick seed crystal was cut from the sample.

【0033】次いで上述の方法により3インチ径の成形
体を別途作製して前駆体として用い、前記2インチ径の
試料から得た種結晶を同一条件でセットして同様な処理
を行なったところ、種結晶と同一の結晶方位を有する3
インチ径の試料を得、さらにこの試料から厚さ1cmの種
結晶を切り取った。
Next, a molded product having a diameter of 3 inches was separately prepared by the above-mentioned method and used as a precursor. A seed crystal obtained from the sample having a diameter of 2 inches was set under the same conditions and subjected to the same treatment. 3 having the same crystal orientation as the seed crystal
An inch diameter sample was obtained, and a 1 cm thick seed crystal was cut from the sample.

【0034】次いで上述の方法により4インチ径の成形
体を別途作製して前駆体として用い、前記3インチ径の
試料から得た種結晶を同一条件でセットして同様な処理
を行なったところ、種結晶と同一の結晶方位を有する4
インチ径の試料を得た。
Next, a molded article having a diameter of 4 inches was separately prepared by the above-mentioned method and used as a precursor. A seed crystal obtained from the sample having a diameter of 3 inches was set under the same conditions and subjected to the same treatment. 4 having the same crystal orientation as the seed crystal
An inch diameter sample was obtained.

【0035】[0035]

【実施例2】先ずSm2 3 とBaO2 、CuOの原料
粉をSm:Ba:Cu=1:2:3のモル比で混合した
後、900℃で20時間焼成した。次いで、該焼成物を
自動乳鉢で十分に粉砕し、さらにアセトン溶媒を用いて
ボールミルで粉砕し、平均粒径3ミクロン程度の粉末を
作製した。
Example 2 First, raw material powders of Sm 2 O 3 , BaO 2 and CuO were mixed at a molar ratio of Sm: Ba: Cu = 1: 2: 3, and then fired at 900 ° C. for 20 hours. Next, the fired product was sufficiently pulverized with an automatic mortar, and further pulverized with a ball mill using an acetone solvent to prepare a powder having an average particle diameter of about 3 μm.

【0036】次いで、得られた粉末を用いて1ton /cm
2 の加圧でプレスし、2インチ径で厚さ1cmの成形体を
作製して、炉内において1150℃にて1時間保持した
後、徐冷し1080℃から900℃まで1℃/hrで冷却
して結晶化を行ない、その後炉冷して2インチ径の試料
を得、次いで該試料から5mm角の結晶を取り出して種結
晶とした。
Then, 1 ton / cm
Pressed at 2 of pressure, to prepare a molded product having a thickness of 1cm in 2 inch diameter was held for one hour at 1150 ° C. in a furnace, at 1 ° C. / hr from gradually cooled 1080 ° C. to 900 ° C. After cooling, crystallization was carried out, followed by furnace cooling to obtain a sample having a diameter of 2 inches, and then a 5 mm square crystal was taken out from the sample and used as a seed crystal.

【0037】次いで別途Y2 3 とBaO2 、CuOの
原料粉をY:Ba:Cu=1.8:2.4:3.4のモ
ル比で混合した後、900℃で20時間焼成した。次い
で、該焼成物を自動乳鉢で十分に粉砕し、さらにアセト
ン溶媒を用いてボールミルで粉砕し、平均粒径3ミクロ
ン程度の粉を作製した。
Then, Y 2 O 3 , BaO 2 , and CuO raw material powders were separately mixed at a molar ratio of Y: Ba: Cu = 1.8: 2.4: 3.4, and then fired at 900 ° C. for 20 hours. . Next, the fired product was sufficiently pulverized with an automatic mortar, and further pulverized with a ball mill using an acetone solvent to prepare a powder having an average particle size of about 3 μm.

【0038】次いで、得られた粉末を用いて1ton /cm
2 の加圧でプレスし、2インチ径で厚さ1cmの成形体を
作製して前駆体とし、1ゾーンの温度勾配炉の中心にセ
ットし、炉内の中心温度を1100℃にした後、試料を
1時間程度保持してから、1000℃程度の温度領域に
試料を移動し、ここで上記の種結晶を該前駆体上にセッ
トした。
Next, 1 ton / cm 2 was obtained using the obtained powder.
Pressed at 2 of pressure, to prepare a molded product having a thickness of 1cm in 2 inch diameter and a precursor was set in the center of the temperature gradient furnace zone 1, after the central temperature in the furnace to 1100 ° C., After holding the sample for about 1 hour, the sample was moved to a temperature range of about 1000 ° C., where the seed crystal was set on the precursor.

【0039】次いで種結晶を置いてある方から炉外の方
へ1mm/hrの速度で移動させたところ、2インチ径全体
が種結晶の結晶方位に揃った試料が作製できた。さらに
この試料から厚さ1cmの種結晶を切り取った。
Next, when the seed crystal was moved from the side where the seed crystal was placed to the outside of the furnace at a speed of 1 mm / hr, a sample having an entire 2-inch diameter aligned with the crystal orientation of the seed crystal was produced. Further, a seed crystal having a thickness of 1 cm was cut out from this sample.

【0040】次いで上述の方法により3インチ径の成形
体を別途作製して前駆体として用い、前記2インチ径の
試料から得た種結晶を同一条件でセットして同様な処理
を行なったところ、種結晶と同一の結晶方位を有する3
インチ径の試料を得た。
Next, a molded product having a diameter of 3 inches was separately prepared by the above-mentioned method and used as a precursor. A seed crystal obtained from the sample having a diameter of 2 inches was set under the same conditions and subjected to the same treatment. 3 having the same crystal orientation as the seed crystal
An inch diameter sample was obtained.

【0041】[0041]

【実施例3】先ずSm2 3 とBaO2 、CuOの原料
粉をSm:Ba:Cu=1.4:2.2:3.2のモル
比で混合した後、900℃で20時間焼成した。次い
で、該焼成物を自動乳鉢で十分に粉砕し、さらにアセト
ン溶媒を用いてボールミルで粉砕し、平均粒径3ミクロ
ン程度の粉末を作製した。
Example 3 First, raw material powders of Sm 2 O 3 , BaO 2 and CuO were mixed at a molar ratio of Sm: Ba: Cu = 1.4: 2.2: 3.2 and then fired at 900 ° C. for 20 hours. did. Next, the fired product was sufficiently pulverized with an automatic mortar, and further pulverized with a ball mill using an acetone solvent to prepare a powder having an average particle diameter of about 3 μm.

【0042】次いで、得られた粉末を1ton /cm2 の加
圧でプレスし、2インチ径で厚さ1cmの成形体を作製し
て、炉内において1150℃にて1時間保持した後、徐
冷し1080℃から900℃まで1℃/hrで冷却して結
晶化を行ない、その後炉冷して2インチ径の試料を得、
次いで該試料から5mm角の結晶を取り出して種結晶とし
た。
Next, the obtained powder was pressed under a pressure of 1 ton / cm 2 to form a molded body having a diameter of 2 cm and a thickness of 1 cm, and was kept in a furnace at 1150 ° C. for 1 hour. It was cooled and cooled at a rate of 1 ° C./hr from 1080 ° C. to 900 ° C. to perform crystallization, and then cooled in a furnace to obtain a sample having a diameter of 2 inches.
Next, a 5 mm square crystal was taken out from the sample and used as a seed crystal.

【0043】次いで別途Y2 3 とBaO2 、CuOの
原料粉をY:Ba:Cu=1.8:2.4:3.4のモ
ル比で混合した後、900℃で20時間焼成した。得ら
れた焼成物を自動乳鉢で十分に粉砕し、さらにアセトン
溶媒を用いてボールミルで粉砕し、平均径3ミクロン程
度の粉末を作製した。
Next, raw material powders of Y 2 O 3 , BaO 2 , and CuO were separately mixed in a molar ratio of Y: Ba: Cu = 1.8: 2.4: 3.4, and then fired at 900 ° C. for 20 hours. . The obtained calcined product was sufficiently pulverized with an automatic mortar, and further pulverized with a ball mill using an acetone solvent to prepare a powder having an average diameter of about 3 μm.

【0044】次いで得られた粉末を1ton /cm2 の加圧
でプレスして、2インチ径の成形体を作製して前駆体と
なし、1ゾーンの温度勾配炉の中心にセットし、炉内の
中心温度を1100℃にした後、試料を1時間程度保持
してから、1000℃程度の温度領域に試料を移動し、
ここで上記種結晶を該前駆体上にセットした。
Then, the obtained powder was pressed under a pressure of 1 ton / cm 2 to form a 2 inch-diameter compact, which was used as a precursor, and was set at the center of a one-zone temperature gradient furnace. After setting the center temperature of the sample to 1100 ° C., holding the sample for about 1 hour, moving the sample to a temperature range of about 1000 ° C.
Here, the seed crystal was set on the precursor.

【0045】次いで種結晶を置いてある方から炉外の方
へ1mm/hrの速度で移動させたところ、2インチ径全体
が種結晶の結晶方位に揃った試料が作製でき、さらにこ
の試料から厚さ5mmの種結晶を切取った。
Next, when the seed crystal was moved from the side where the seed crystal was placed to the outside of the furnace at a speed of 1 mm / hr, a sample in which the entire 2-inch diameter was aligned with the crystal orientation of the seed crystal was produced. A seed crystal having a thickness of 5 mm was cut out.

【0046】次いで別途Yb2 3 とBaO2 、CuO
の原料粉をYb:Ba:Cu=1.8:2.4:3.4
のモル比で混合した後、900℃で20時間焼成して、
上述の方法により得た平均粒径3ミクロン程度の粉末を
用いて作製した3インチ径の成形体を前駆体として、1
ゾーンの温度勾配炉の中心にセットした。
Next, Yb 2 O 3 , BaO 2 , CuO
Of the raw material powder of Yb: Ba: Cu = 1.8: 2.4: 3.4
And then calcined at 900 ° C for 20 hours,
A 3 inch diameter molded body produced using the powder having an average particle diameter of about 3 μm obtained by the above method was used as a precursor,
The zone was set at the center of the temperature gradient furnace.

【0047】炉内の中心温度を1100℃にした後、試
料を1時間程度保持してから、980℃程度の温度領域
に試料を移動し、ここで上記の種結晶を該前駆体上にセ
ットした後、種結晶を置いてある方から炉外の方へ1mm
/hrの速度で移動させたところ、3インチ径全体が種結
晶の結晶方位に揃った試料が作製できた。
After the central temperature in the furnace was set at 1100 ° C., the sample was held for about 1 hour, and then moved to a temperature range of about 980 ° C. where the seed crystal was set on the precursor. 1 mm from the side where the seed crystal is placed to the outside of the furnace
When the sample was moved at a speed of / hr, a sample having the entire 3-inch diameter aligned with the crystal orientation of the seed crystal was produced.

【0048】[0048]

【比較例1】実施例1に示す方法で得た5mm角の種結晶
を用いたが、この場合、種結晶を置く前駆体として、Y
2 3 とBaO2 、CuOの原料粉をY:Ba:Cu=
1.8:2.4:3.4のモル比で混合したものから得
た平均径3ミクロン程度の粉末を用いて2インチ径でな
く直接3インチ径の成形体を作製したものを前駆体とし
た。
Comparative Example 1 A 5 mm square seed crystal obtained by the method shown in Example 1 was used. In this case, Y was used as a precursor for depositing the seed crystal.
The raw material powder of 2 O 3 , BaO 2 , and CuO is Y: Ba: Cu =
Using a powder having an average diameter of about 3 μm obtained from a mixture of 1.8: 2.4: 3.4 in a molar ratio of 1.8: 2.4: 3.4, a molded body having a diameter of 3 inches instead of a diameter of 2 inches was directly used as a precursor. And

【0049】次いで、この前駆体を1ゾーンの温度勾配
炉の中心にセットし、炉内の中心温度を1100℃にし
た後、試料を1時間程度保持してから、1000℃程度
の温度領域に試料を移動して、上記5mm角の種結晶をセ
ットした後、種結晶を置いてある方から炉外の方へ1mm
/hrの速度で移動させたところ、種結晶が置かれている
ところから離れている縁の部分では種結晶の方位とは違
う方位で種結晶が成長しており、3インチ径全体が種結
晶の結晶方位に揃った試料が作製できなかった。
Next, the precursor was set in the center of a one-zone temperature gradient furnace, the center temperature in the furnace was set to 1100 ° C., and the sample was held for about 1 hour. After moving the sample and setting the above 5 mm square seed crystal, move 1 mm from the side where the seed crystal is placed to the outside of the furnace.
When the seed crystal is moved at a speed of / hr, the seed crystal grows in a direction different from the seed crystal direction at the edge part away from the place where the seed crystal is placed. A sample having the same crystal orientation could not be produced.

【0050】同様に上記粉末を用いて4インチ径の成形
体を作製したものを前駆体となし、種結晶として5mm角
のものを用いて同様に処理したが、3インチ径と同じく
試料全体を種結晶の結晶方位と同じ方位で育成すること
はできなかった。
Similarly, a molded product having a diameter of 4 inches was prepared using the above-mentioned powder as a precursor, and a 5 mm square seed crystal was treated in the same manner. It was not possible to grow in the same orientation as the seed crystal.

【0051】この結果、種結晶と前駆体の接触において
種結晶を順次大きくすることと、結晶分解温度の調整を
行なうことによって所望のサイズの酸化物超電導体を得
ることが可能であることが判明した。
As a result, it was found that it is possible to obtain an oxide superconductor having a desired size by sequentially increasing the size of the seed crystal in contact between the seed crystal and the precursor and adjusting the crystal decomposition temperature. did.

【0052】[0052]

【発明の効果】上述のように本発明は、種結晶のサイズ
を前駆体のサイズと調和させることによって、順次サイ
ズ径の大きい結晶体と成すことができるという原理を利
用した方法であり、該種結晶をスライスして使用できる
ことから量産性が高く、製造コストを下げることができ
る等の効果を有するものである。
As described above, the present invention is a method utilizing the principle that the size of a seed crystal can be adjusted to the size of a precursor so that crystals having successively larger diameters can be formed. Since the seed crystal can be sliced and used, the mass productivity is high and the production cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】種結晶の置き方の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of how to place a seed crystal.

【図2】種結晶の置き方の別の一例を示す概略図であ
る。
FIG. 2 is a schematic diagram showing another example of how to place a seed crystal.

【符号の説明】[Explanation of symbols]

1 種結晶 2 前駆体 1 seed crystal 2 precursor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 桂三 東京都千代田区丸の内1丁目8番2号 同和鉱業株式会社内 (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番 地の1 中部電力株式会社 電力技術研 究所内 (72)発明者 平野 直樹 愛知県名古屋市緑区大高町字北関山20番 地の1 中部電力株式会社 電力技術研 究所内 (56)参考文献 特開 平5−170598(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keizo Takeuchi 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Shigeo Nagaya 20 Kita-Sekiyama, Otakacho, Midori-ku, Nagoya-shi, Aichi Prefecture Address No. 1 Chubu Electric Power Co., Inc. Power Technology Research Institute (72) Inventor Naoki Hirano 20-1 Kita-Sekiyama, Odaka-cho, Midori-ku, Nagoya-shi, Aichi Prefecture No. 1 Chubu Electric Power Co. Power Technology Research Institute (56) Reference Document JP-A-5-170598 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式RE1RA2Cu3x(REは希土
類元素からなる群より選ばれる1種または2種以上の元
素の混合物であり、RAはアルカリ土類元素からなる群
より選ばれる1種または2種以上の元素の混合物であ
る)で表わされる結晶構造を有し、かつ211相を含む
123相の結晶の育成方法において、予め上記一般式の
結晶構造を有する123相の種結晶を作製すると共に、
該種結晶より寸法の大きい123相結晶構造を有する
晶を製造するための成形体を作製し、次いで、該成形体
1050〜1200℃に保持して半溶融状態にした
後、上記種結晶を接触させて123相結晶を成長させな
がら、0.5〜2℃/hrの割合で徐冷する熱処理工程
によって種結晶と同一の結晶配向を有する結晶体を得、
次に、得られた結晶体をスライスし、得られたスライス
を種結晶として用いることにより上記熱処理工程を繰
り返して最初の種結晶より寸法の大きい第2の種結晶を
作製し、さらに、順次上記と同じことを繰り返して次第
に大型の結晶体となす方法であって、123相結晶製造
のための上記成形体は、接触する上記種結晶に対する大
きさの比が72.6/5未満であることを特徴とする酸
化物超伝導体の育成方法。
1. The general formula RE 1 RA 2 Cu 3 O x (RE is a mixture of one or more elements selected from the group consisting of rare earth elements, and RA is selected from the group consisting of alkaline earth elements. in one or has a crystal structure represented by a mixture of two or more elements in a), and method for growing a 123 phase crystal containing 211 phases, in advance of the general formula
While producing a seed crystal of 123 phase having a crystal structure ,
To prepare a molded body for producing a sintered <br/> crystal having a 123 phase crystal structure larger dimensions than seed crystals, then, the molded article
After the semi-molten state maintained at 1050 to 1200 ° C., while growing the seed crystals the contacted with 123 phase crystal, a heat treatment step of gradually cooling at a rate of 0.5~2 ℃ / hr <br / To obtain a crystal having the same crystal orientation as the seed crystal,
Next, the obtained crystal is sliced, and the obtained slice is
By repeating the previous heat treatment step by using a single as seed crystals to prepare large second seed crystal dimensions than the initial seed crystals, further method for accomplishing the same thing increasingly large crystals by repeating sequentially the A, 123 phase crystal production
The molded body for
A method for growing an oxide superconductor, wherein the ratio of the size is less than 72.6 / 5 .
JP5208715A 1993-07-30 1993-07-30 Crystal growth method for oxide superconductor Expired - Fee Related JP3031448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5208715A JP3031448B2 (en) 1993-07-30 1993-07-30 Crystal growth method for oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5208715A JP3031448B2 (en) 1993-07-30 1993-07-30 Crystal growth method for oxide superconductor

Publications (2)

Publication Number Publication Date
JPH0741381A JPH0741381A (en) 1995-02-10
JP3031448B2 true JP3031448B2 (en) 2000-04-10

Family

ID=16560890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5208715A Expired - Fee Related JP3031448B2 (en) 1993-07-30 1993-07-30 Crystal growth method for oxide superconductor

Country Status (1)

Country Link
JP (1) JP3031448B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614775B (en) * 2013-11-29 2015-11-25 上海交通大学 The method of the accurate single crystal of a kind of embedded seeded growth REBCO

Also Published As

Publication number Publication date
JPH0741381A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
JP3031448B2 (en) Crystal growth method for oxide superconductor
JP2556401B2 (en) Oxide superconductor and method for manufacturing the same
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP3034378B2 (en) Method for producing Y-based oxide superconductor crystal
US5545610A (en) Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same
JP3471443B2 (en) Manufacturing method of oxide superconductor material
JP3623829B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP2828396B2 (en) Oxide superconductor and manufacturing method thereof
US7008906B2 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
JP3123893B2 (en) Method for producing RE-Ba-Cu-O-based oxide superconductor
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JPH10245223A (en) Oxide superconductor and its production
JP2540639B2 (en) Method for manufacturing bismuth-based superconductor
JPH05279033A (en) Production of oxide superconductor having high critical current density
JP3411048B2 (en) Manufacturing method of oxide superconductor
JP3157183B2 (en) Manufacturing method of oxide superconductor
JPH05301797A (en) Production of oxide high-temperature superconductor
JPH04243917A (en) Preparation of oxide superconducting sintered compact
JP2004161504A (en) Re-barium-copper-oxygen-based superconductive material precursor, re-barium-copper-oxygen-based superconductive material and method of manufacturing the same
JPH10265221A (en) Production of oxide superconductor
JPH02133320A (en) Production of superconducting thin film
JP3213955B2 (en) Manufacturing method of ceramic superconductor
JPH07187671A (en) Oxide superconductor and its production
JP2004269309A (en) Oxide superconductor and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees