JP3025710B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP3025710B2
JP3025710B2 JP3092034A JP9203491A JP3025710B2 JP 3025710 B2 JP3025710 B2 JP 3025710B2 JP 3092034 A JP3092034 A JP 3092034A JP 9203491 A JP9203491 A JP 9203491A JP 3025710 B2 JP3025710 B2 JP 3025710B2
Authority
JP
Japan
Prior art keywords
battery
transition metal
alkaline
hydrogen
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3092034A
Other languages
Japanese (ja)
Other versions
JPH04322067A (en
Inventor
勢 忠 司 伊
川 修 弘 古
江 正 夫 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3092034A priority Critical patent/JP3025710B2/en
Publication of JPH04322067A publication Critical patent/JPH04322067A/en
Application granted granted Critical
Publication of JP3025710B2 publication Critical patent/JP3025710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電池缶内に、正極と、
負極と、アルカリ電解液とが備えられたアルカリ蓄電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery
The present invention relates to an alkaline storage battery provided with a negative electrode and an alkaline electrolyte.

【0002】[0002]

【従来の技術】近年、アルカリ蓄電池としては、ニッケ
ル−カドミウム電池等の他、この電池より軽量で且つ高
容量となる可能性がある金属−水素アルカリ蓄電池が提
案されている。この電池の負極活物質としては、特に低
圧で水素を可逆的に吸蔵及び放出することのできる水素
吸蔵合金が用いられる一方、正極活物質としては、水酸
化ニッケルなどの金属酸化物が用いられる。
2. Description of the Related Art In recent years, as alkaline storage batteries, metal-hydrogen alkaline storage batteries which are lighter and may have higher capacity than nickel-cadmium batteries have been proposed in addition to nickel-cadmium batteries. As a negative electrode active material of this battery, a hydrogen storage alloy capable of reversibly storing and releasing hydrogen at a low pressure is used, while a metal oxide such as nickel hydroxide is used as a positive electrode active material.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記アルカ
リ蓄電池を長期間保存すると、電池内ガスや電解液中の
遷移金属イオンが充電状態の正極及び負極と反応するこ
とにより、自己放電を生じ、保存後の電池容量が低下す
るという課題を有していた。特に、上記金属−水素アル
カリ蓄電池では、合金中の不純物から成る遷移金属イオ
ンや、合金の溶出による遷移金属イオンが多量に存在す
るため、保存特性が著しく悪化するという課題を有して
いた。
By the way, when the alkaline storage battery is stored for a long period of time, the gas in the battery and the transition metal ions in the electrolyte react with the charged positive and negative electrodes to cause self-discharge, and There was a problem that the battery capacity later decreased. In particular, the metal-hydrogen alkaline storage battery has a problem that storage characteristics are significantly deteriorated because a large amount of transition metal ions formed of impurities in the alloy and transition metal ions due to elution of the alloy are present.

【0004】本発明は係る現状を考慮してなされたもの
であって、遷移金属イオンが充電状態の正極及び負極と
反応するのを抑制して、保存特性を飛躍的に向上させる
ことができるアルカリ蓄電池の提供を目的としている。
[0004] The present invention has been made in view of the current situation, and is an alkali which can suppress the transition metal ions from reacting with the positive electrode and the negative electrode in a charged state and can greatly improve storage characteristics. It aims to provide storage batteries.

【0005】[0005]

【発明を解決するための手段】本発明は上記目的を達成
するために、電池缶内に、正極と、水素吸蔵合金からな
る負極と、アルカリ電解液とを有する金属−水素アルカ
リ蓄電池において、アルカリ性雰囲気で遷移金属イオン
を選択的に取り込む錯化剤を溶解させた有機溶媒と酸性
溶媒とから成る油中水滴型の乳化液を、前記電池缶内に
含有させることを特徴とする。
In order to achieve the above object, the present invention provides a metal-hydrogen alkaline storage battery having a positive electrode, a negative electrode made of a hydrogen storage alloy, and an alkaline electrolyte in a battery can. A water-in-oil type emulsion comprising an organic solvent in which a complexing agent which selectively takes in transition metal ions in an atmosphere is dissolved and an acidic solvent is contained in the battery can.

【0006】具体的には、例えば、以下のような構成と
することができる。上記錯化剤を溶解させた有機溶媒
と酸性溶液とから成る油中水滴型の乳化液を、電解液中
に分散させる。上記の乳化液をセパレータの一部に
含浸させる。上記の乳化液を短冊状に切断したセパ
レータに含浸させ、これを電池の巻芯部に挿入する。
上記の乳化液を中空糸に含浸させ、これを電池缶内に
挿入する。
Specifically, for example, the following configuration can be adopted. A water-in-oil type emulsion comprising an organic solvent in which the complexing agent is dissolved and an acidic solution is dispersed in the electrolyte. Part of the separator is impregnated with the above emulsion. The above-mentioned emulsion is impregnated into a strip-shaped separator and inserted into the core of the battery.
The above-mentioned emulsion is impregnated into a hollow fiber and inserted into a battery can.

【0007】[0007]

【作用】上記構成であれば、アルカリ電解液に溶出した
遷移金属イオンが選択的に錯化剤に取り込まれることに
なる。したがって、遷移金属イオンが、充電状態にある
正極若しくは負極と反応するのを防止することが可能と
なる。また、遷移金属イオンのみが取り込まれ、ナトリ
ウム等のアルカリイオンは取り込まれないので、電池特
性が低下するようなことはない。
With the above arrangement, the transition metal ion eluted in the alkaline electrolyte is selectively incorporated into the complexing agent. Therefore, it is possible to prevent the transition metal ion from reacting with the positive electrode or the negative electrode in a charged state. Also, since only transition metal ions are taken in and alkali ions such as sodium are not taken in, battery characteristics do not deteriorate.

【0008】特に、前記〜のように、錯化剤を溶解
させた有機溶媒と酸性溶媒とからなる油中水滴型の乳化
液の形で含まれているため、上記作用が顕著に発揮され
る。これは電解液中に錯化剤を溶解させただけでは、錯
化剤が一度遷移金属イオンを取り込むと再度遷移金属イ
オンを取り込むことはできない。これに対して、前記
〜のような構成であれば、錯化剤が遷移金属イオンを
取り込んだ後に遷移金属イオンを酸性液中に放出するの
で、再度遷移金属イオンを取り込むことができるという
理由による。具体的に、図4に基づいて説明する。先
ず、有機溶媒相内にある錯化剤(図中X)は、電解液相
(アルカリ性)から選択的に遷移金属イオン(図中
+)を取り込んで、MXとなる(図中I及びII参
照)。次に、遷移金属イオンを取り込んだ錯化剤MX
が水溶液相と接すると、水溶液相は酸性であるというこ
とに起因して、遷移金属イオンを水溶液相に放出する
(図中III参照)と共に、水溶液相から水素イオンを
取り込んで、HXとなる(図中IV及びV参照)。次
いで、水素イオンを取り込んだ錯化剤HXが有機溶媒相
と接すると、電解液相はアルカリ性であるということに
起因して、水素イオンを有機溶媒相に放出する(図中V
I)と共に、再度電解液相から選択的に遷移金属イオン
を取り込む。
In particular, as described above, the above-mentioned effect is remarkably exerted because it is contained in the form of a water-in-oil emulsion comprising an organic solvent in which a complexing agent is dissolved and an acidic solvent. . This is because, simply dissolving the complexing agent in the electrolytic solution, once the complexing agent takes in the transition metal ion, cannot take in the transition metal ion again. On the other hand, with the above-described configuration, since the complexing agent releases the transition metal ion into the acidic liquid after taking in the transition metal ion, the transition metal ion can be taken in again. . This will be described specifically with reference to FIG. First, the complexing agent (X in the figure) in the organic solvent phase selectively takes in a transition metal ion (M + in the figure) from the electrolytic solution phase (alkaline) to become MX (I and II in the figure). reference). Next, a complexing agent MX incorporating a transition metal ion
Is in contact with the aqueous phase, the aqueous phase is acidic, so that the transition metal ions are released into the aqueous phase (see III in the figure) and hydrogen ions are taken in from the aqueous phase to become HX ( IV and V in the figure). Next, when the complexing agent HX incorporating the hydrogen ions comes into contact with the organic solvent phase, hydrogen ions are released to the organic solvent phase due to the fact that the electrolyte phase is alkaline (V in the figure).
Along with I), transition metal ions are selectively taken in again from the electrolyte solution phase.

【0009】上記〜のサイクルが繰り返されて、水
溶液相内に遷移金属イオンが濃縮されるので、錯化剤の
量が少なくとも、電解液相内の遷移金属イオンを大量に
抽出することが可能となる。
[0009] Since the above-described cycle is repeated and the transition metal ion is concentrated in the aqueous solution phase, it is possible to extract at least a large amount of the transition metal ion in the electrolyte solution phase with the amount of the complexing agent. Become.

【0010】[0010]

〔参考例1〕[Reference Example 1]

図1は本発明の一例に係る単三型ニッケル−水素アルカ
リ蓄電池(容量:1000mAh )の断面図であり、焼結
式ニッケルから成る正極1と、水素吸蔵合金を含む負極
2と、これら正負両極1・2間に介挿されたセパレータ
3とから成る電極群4は渦巻状に巻回されている。この
電極群4は負極端子兼用の外装缶6内に配置されてお
り、この外装缶6と上記負極2とは負極用導電タブ5に
より接続されている。上記外装缶6の上部開口にはパッ
キング7を介して封口体8が装着されており、この封口
体8の内部にはコイルスプリング9が設けられている。
このコイルスプリング9は電池内部の内圧が異常上昇し
たときに矢印A方向に押圧されて内部のガスが大気中に
放出されるように構成されている。また、上記封口体8
と前記正極1とは正極用導電タブ10にて接続されてい
る。
FIG. 1 is a cross-sectional view of an AA nickel-hydrogen alkaline storage battery (capacity: 1000 mAh) according to an example of the present invention. A positive electrode 1 made of sintered nickel, a negative electrode 2 containing a hydrogen storage alloy, and both positive and negative electrodes The electrode group 4 including the separator 3 inserted between the first and second electrodes 2 is spirally wound. The electrode group 4 is disposed in an outer can 6 serving also as a negative electrode terminal. The outer can 6 and the negative electrode 2 are connected by a negative electrode conductive tab 5. A sealing body 8 is attached to the upper opening of the outer can 6 via a packing 7, and a coil spring 9 is provided inside the sealing body 8.
The coil spring 9 is configured such that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere. In addition, the sealing body 8
And the positive electrode 1 are connected by a conductive tab 10 for the positive electrode.

【0011】ここで、上記構造の単三型ニッケル−水素
アルカリ蓄電池を、以下のようにして作製した。先ず、
市販のMm(ミッシュメタル:希土類元素の混合物)、
Ni、Co、Al及びMnを元素比で1:3.2:1:
0.2:0.6の割合となるように秤量した後、高周波
溶解炉内で溶解して溶湯を作成し、更にこの溶湯を冷却
することにより、MmNi3.2 CoAl0.2 Mn0.6
示される合金のインゴットを作成した。次に、上記イン
ゴットを、窒素雰囲気中で、粒径50μm以下となるよ
うに粉砕した。
Here, an AA nickel-hydrogen alkaline storage battery having the above structure was manufactured as follows. First,
Commercially available Mm (Misch metal: mixture of rare earth elements),
Ni, Co, Al and Mn in an element ratio of 1: 3.2: 1:
After weighing so as to have a ratio of 0.2: 0.6, the molten metal is melted in a high-frequency melting furnace to prepare a molten metal, and the molten metal is cooled to obtain an alloy represented by MmNi 3.2 CoAl 0.2 Mn 0.6. Ingot created. Next, the ingot was pulverized in a nitrogen atmosphere to a particle size of 50 μm or less.

【0012】この後、上記水素吸蔵合金粉末に、結着剤
としてのPTFE(ポリテトラフルオロエチレン)粉末
を5wt%加えて混練してペーストを作成し、更に、この
ペーストをパンチングメタルから成る集電体の両面に圧
着することにより負極2を作製した。次いで、上記負極
2と、焼結式ニッケル正極1とを、不織布からなるセパ
レータ3を介して巻回し、電極群4を作製した。しかる
後、この電極群4を外装缶6内に挿入し、更にキレート
剤としての8−キノリノールを含有するアルカリ電解液
(30重量%のKOH水溶液から成る)を上記外装缶6
内に注液した後、外装缶6を密閉することにより円筒型
ニッケル−水素蓄電池を作製した。
Thereafter, 5 wt% of PTFE (polytetrafluoroethylene) powder as a binder is added to the hydrogen storage alloy powder, and the mixture is kneaded to form a paste. Negative electrode 2 was produced by pressure bonding to both surfaces of the body. Next, the negative electrode 2 and the sintered nickel positive electrode 1 were wound through a separator 3 made of a non-woven fabric, thereby producing an electrode group 4. Thereafter, the electrode group 4 is inserted into the outer can 6, and an alkaline electrolyte (comprising a 30% by weight KOH aqueous solution) containing 8-quinolinol as a chelating agent is further added to the outer can 6.
After the liquid was injected into the inside, the outer can 6 was sealed to produce a cylindrical nickel-hydrogen storage battery.

【0013】このようにして作製した電池を、以下(A
1 )電池と称する。 〔実施例1〕 以下のようにして作成したアルカリ電解液を用いる他
は、上記参考例1と同様にして電池を作成した。HCl
溶液(pH3)と、8−キノリノールを溶解させた四塩
化炭素(CCl4 )とをホモジナイザーで乳化させて油
中水滴型の乳化液を作成した後、この乳化液と30重量
%のKOH水溶液とをミキサーで混合することにより作
成した。
The battery fabricated in this manner is referred to as (A)
1) Called a battery. Example 1 A battery was prepared in the same manner as in Reference Example 1 except that the alkaline electrolyte prepared as described below was used. HCl
A solution (pH 3) and carbon tetrachloride (CCl 4 ) in which 8-quinolinol is dissolved are emulsified by a homogenizer to form a water-in-oil type emulsion, and this emulsion and a 30% by weight KOH aqueous solution are mixed. Was prepared by mixing with a mixer.

【0014】このようにして作製した電池を、以下(A
2 )電池と称する。尚、上記アルカリ電解液を模式的に
表すと、図2に示すように、アルカリ電解液20内に、
8−キノリノールが溶解された四塩化炭素(有機溶媒)
21が散在し、この四塩化炭素内にHCl溶液(酸性水
溶液)22が存在するような構造となっている。 〔実施例2〕 アルカリ電解液自体には8−キノリノールを溶解させ
ず、且つ上記実施例1の乳化液をセパレータ3の一部に
含浸させた構造とする他は、上記参考例1と同様にして
電池を作製した。
The battery fabricated in this manner is referred to as (A)
2 ) Called a battery. In addition, if the said alkaline electrolyte is represented schematically, as shown in FIG.
8-Quinolinol dissolved carbon tetrachloride (organic solvent)
21 are scattered, and the structure is such that an HCl solution (acidic aqueous solution) 22 exists in the carbon tetrachloride. Example 2 The same procedure as in Reference Example 1 was performed except that 8-quinolinol was not dissolved in the alkaline electrolyte itself and the emulsion of Example 1 was impregnated in a part of the separator 3. To produce a battery.

【0015】このようにして作製した電池を、以下(A
3 )電池と称する。尚、上記セパレータ3を模式的に表
すと、図3に示すように、セパレータ3内に、8−キノ
リノールが溶解された四塩化炭素21が散在し、この四
塩化炭素内にHCl溶液22が存在するような構造とな
っている。 〔実施例3〕 アルカリ電解液自体には8−キノリノールを溶解させ
ず、且つ上記実施例2の乳化液を短冊状に切断した多孔
体に含浸させ、この多孔体を巻芯部11(図1参照)に
挿入する構造とする他は、上記参考例1と同様にして電
池を作製した。
The battery fabricated in this manner is referred to as (A)
3 ) Called a battery. When the separator 3 is schematically shown, as shown in FIG. 3, carbon tetrachloride 21 in which 8-quinolinol is dissolved is scattered in the separator 3, and the HCl solution 22 exists in the carbon tetrachloride. The structure is as follows. Example 3 The 8-quinolinol was not dissolved in the alkaline electrolyte itself, and the emulsified solution of Example 2 was impregnated into a strip-shaped porous body, and this porous body was wound into the core 11 (FIG. 1). (See Reference Example 1) except that the battery was inserted into the battery.

【0016】このようにして作製した電池を、以下(A
4 )電池と称する。 〔参考例2、実施例4〜6〕 キレート剤として、8−キノリノールの代わりにジエチ
ルジチオカルバシン酸ナトリウムを用いる他は、それぞ
れ上記参考例1及び実施例1〜3と同様にして電池を作
製した。
The battery fabricated in this manner is referred to as (A)
4 ) Called a battery. [Reference Example 2, Examples 4 to 6] A battery was prepared in the same manner as in Reference Example 1 and Examples 1 to 3 except that sodium diethyldithiocarbamate was used instead of 8-quinolinol as a chelating agent. did.

【0017】このようにして作製した電池を、以下それ
ぞれ(A5 )電池〜(A8 )電池と称する。 〔参考例3、実施例7〜9〕 キレート剤として、8−キノリノールの代わりにモノチ
オジベンゾイルメタンを用いる他は、それぞれ上記参考
例1及び実施例1〜3と同様にして電池を作製した。
The batteries fabricated in this manner are hereinafter referred to as (A 5 ) battery to (A 8 ) battery, respectively. [Reference Example 3, Examples 7 to 9] Batteries were produced in the same manner as in Reference Example 1 and Examples 1 to 3, respectively, except that monothiodibenzoylmethane was used instead of 8-quinolinol as a chelating agent. .

【0018】このようにして作製した電池を、以下それ
ぞれ(A9 )電池〜(A12)電池と称する。 〔比較例〕 アルカリ電解液として8−キノリノールを含有しないも
のを用いる他は、上記参考例と同様にして電池を作製し
た。
The batteries fabricated in this manner are hereinafter referred to as batteries (A 9 ) to (A 12 ), respectively. Comparative Example A battery was produced in the same manner as in the above reference example, except that an alkaline electrolyte containing no 8-quinolinol was used.

【0019】このようにして作製した電池を、以下
(X)電池と称する。 〔実験〕 上記(A1 )電池〜(A12)電池及び比較例の(X)電
池の自己放電率を測定したので、その結果を下記表1に
示す。尚、実験条件及び自己放電率の計算方法は以下の
通りである。充電電流0.3Cで4時間充電した後、
放電電流0.3Cで放電終止電圧1.0Vまで放電す
る。このような充放電を5サイクル繰り返し、5サイク
ル目の放電容量(C1 )を測定する。充電電流0.3
Cで4時間充電した後、25℃で30日間放置する。
放電電流0.3Cで放電終止電圧1.0Vまで放電さ
せ、このときの放電容量(C2 )を測定する。上記C
1 及びC2 から、下記数1に示す自己放電率(S)を測
定する。
The battery fabricated in this manner is hereinafter referred to as (X) battery. [Experiment] The self-discharge rates of the batteries (A 1 ) to (A 12 ) and the battery (X) of the comparative example were measured. The results are shown in Table 1 below. The experimental conditions and the method of calculating the self-discharge rate are as follows. After charging at a charging current of 0.3 C for 4 hours,
Discharge is performed to a discharge end voltage of 1.0 V at a discharge current of 0.3 C. Such charging / discharging is repeated for 5 cycles, and the discharge capacity (C 1 ) at the 5th cycle is measured. Charge current 0.3
After charging at C for 4 hours, it is left at 25 ° C. for 30 days.
Discharge to a discharge end voltage of 1.0 V at a discharge current of 0.3 C, and measure a discharge capacity (C 2 ) at this time. The above C
1 and C 2, to measure the self-discharge rate (S) represented by the following equation (1).

【0020】[0020]

【数1】 (Equation 1)

【0021】[0021]

【表1】 [Table 1]

【0022】上記表1から明らかなように、(A1 )電
池〜(A12)電池は比較例の(X)電池に比べて、自己
放電率が低減していることが認められる。これは、アル
カリ電解液に溶出した遷移金属イオンが選択的にキレー
ト剤に取り込まれるので、遷移金属イオンが充電状態に
ある正極若しくは負極と反応するのを防止することがで
きるという理由による。
As is evident from Table 1, the batteries (A 1 ) to (A 12 ) have a lower self-discharge rate than the battery (X) of the comparative example. This is because the transition metal ion eluted in the alkaline electrolyte is selectively taken into the chelating agent, so that the transition metal ion can be prevented from reacting with the charged positive electrode or negative electrode.

【0023】特に、(A2 )電池〜(A4 )電池,(A
6 )電池〜(A8 )電池,(A10)電池〜(A12)電池
の自己放電率が格段に低減するのは、これら電池のキレ
ート剤は遷移金属イオンを取り込んだ後にこのイオンを
HCl溶液に放出するので、何回でも遷移金属イオンを
取り込むことができる。したがって、錯化剤の量が少な
くても、電解液相内の遷移金属イオンを大量に抽出する
ことが可能になるという理由による。 〔その他の事項〕上記実施例では錯化剤としてキレー
ト剤を用いたが、これに限定するものではなく、例えば
NH基やCO基を有するその他の錯化剤を用いても上記
と同様の効果を奏する。乳化剤を電池缶内に挿入する
方法としては、上記実施例で示す方法の他、乳化液を中
空糸に含浸し、これを電池缶内に配置するような方法が
ある。水素吸蔵合金としては上記実施例に示すものに
限定するものではなく、LaNi5 等であっても良い
し、また適用電池としては金属−水素アルカリ蓄電池に
限定するものではなく、ニッケル−カドミウム蓄電池
等、その他のアルカリ蓄電池にも適用しうることは勿論
である。
In particular, (A 2 ) battery to (A 4 ) battery, (A 2 )
6 ) The self-discharge rate of the battery to the (A 8 ) battery and the (A 10 ) battery to the (A 12 ) battery is remarkably reduced because the chelating agent of these batteries takes in the transition metal ion and converts this ion to HCl. Since it is released into the solution, the transition metal ion can be taken up any number of times. Therefore, even if the amount of the complexing agent is small, it is possible to extract a large amount of transition metal ions in the electrolyte solution phase. [Other Matters] In the above embodiment, a chelating agent was used as a complexing agent. However, the present invention is not limited to this. For example, the same effect as described above can be obtained by using another complexing agent having an NH group or a CO group. To play. As a method of inserting the emulsifier into the battery can, there is a method of impregnating the hollow fiber with the emulsified liquid and placing the emulsifier in the battery can, in addition to the method described in the above embodiment. The hydrogen storage alloy is not limited to the one shown in the above embodiment, but may be LaNi 5 or the like, and the applicable battery is not limited to a metal-hydrogen alkaline storage battery, but may be a nickel-cadmium storage battery or the like. Of course, the present invention can be applied to other alkaline storage batteries.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、ア
ルカリ電解液に溶出した遷移金属イオンが選択的に錯化
剤に取り込まれるので、遷移金属イオンが充電状態にあ
る正極若しくは負極と反応するのを防止することができ
る。したがって、アルカリ蓄電池の自己放電を抑制する
ことが可能になるという優れた効果を奏する。また、こ
の場合において、遷移金属イオンのみが取り込まれ、ナ
トリウム等のアルカリイオンは取り込まれないので、そ
の他の電池特性が低下するようなことはない。更に、こ
の錯化剤は、錯化剤を溶解させた有機溶媒と酸性溶媒と
からなる油中水滴型の乳化液の形で電池缶内に含まれて
いるため、錯化剤が遷移金属イオンを取り込んだ後に遷
移金属イオンを酸性液中に放出するので、再度遷移金属
イオンを取り込むことができ、これによって上記作用が
顕著なものとなる。
As described above, according to the present invention, the transition metal ion eluted in the alkaline electrolyte is selectively incorporated into the complexing agent, so that the transition metal ion reacts with the charged positive electrode or negative electrode. Can be prevented. Therefore, there is an excellent effect that self-discharge of the alkaline storage battery can be suppressed. Further, in this case, only the transition metal ion is taken in and the alkali ion such as sodium is not taken in, so that other battery characteristics do not deteriorate. Further, since this complexing agent is contained in the battery can in the form of a water-in-oil type emulsion comprising an organic solvent in which the complexing agent is dissolved and an acidic solvent, the complexing agent contains transition metal ions. Since the transition metal ion is released into the acidic liquid after the absorption of the transition metal ion, the transition metal ion can be captured again, whereby the effect described above becomes remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例に係る単三型ニッケル−水素アル
カリ蓄電池の断面図である。
FIG. 1 is a cross-sectional view of an AA nickel-hydrogen alkaline storage battery according to an example of the present invention.

【図2】W/O型乳化液を電解液中に分散させたW/O
/W型を示す説明図である。
FIG. 2 shows a W / O obtained by dispersing a W / O emulsion in an electrolytic solution.
It is explanatory drawing which shows / W type.

【図3】W/O型乳化液をセパレータ等の多孔体や中空
糸に含浸させた多孔体型を示す説明図である。
FIG. 3 is an explanatory view showing a porous material type in which a W / O type emulsion is impregnated into a porous material such as a separator or a hollow fiber.

【図4】錯化剤が溶解した有機溶媒相内に酸性水溶液相
が存在する場合の、遷移金属イオンと水素イオンとの移
動状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a movement state of a transition metal ion and a hydrogen ion when an acidic aqueous solution phase exists in an organic solvent phase in which a complexing agent is dissolved.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 20 アルカリ電解液 21 四塩化炭素 22 HCl溶液 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 20 Alkaline electrolyte 21 Carbon tetrachloride 22 HCl solution

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−45245(JP,A) 特開 平4−167372(JP,A) 特開 平4−284355(JP,A) 特公 昭37−9378(JP,B1) 特公 昭54−1892(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01M 10/24 - 10/34 H01M 4/14 - 4/34 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-50-45245 (JP, A) JP-A-4-167372 (JP, A) JP-A-4-284355 (JP, A) 9378 (JP, B1) JP-B 54-1892 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/24-10/34 H01M 4/14-4/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電池缶内に、正極と、水素吸蔵合金から
なる負極と、アルカリ電解液とを有する金属−水素アル
カリ蓄電池において、アルカリ性雰囲気で遷移金属イオンを選択的に取り込む
錯化剤を溶解させた有機溶媒と酸性溶媒とから成る油中
水滴型の乳化液を、前記電池缶内に含有させる ことを特
徴とする金属−水素アルカリ蓄電池。
In a metal-hydrogen alkaline storage battery having a positive electrode, a negative electrode made of a hydrogen storage alloy, and an alkaline electrolyte in a battery can, a transition metal ion is selectively taken in an alkaline atmosphere.
In oil composed of organic solvent and acidic solvent in which complexing agent is dissolved
A metal-hydrogen alkaline storage battery, wherein a water-drop type emulsion is contained in the battery can .
JP3092034A 1991-04-23 1991-04-23 Alkaline storage battery Expired - Fee Related JP3025710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3092034A JP3025710B2 (en) 1991-04-23 1991-04-23 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092034A JP3025710B2 (en) 1991-04-23 1991-04-23 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04322067A JPH04322067A (en) 1992-11-12
JP3025710B2 true JP3025710B2 (en) 2000-03-27

Family

ID=14043248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092034A Expired - Fee Related JP3025710B2 (en) 1991-04-23 1991-04-23 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3025710B2 (en)

Also Published As

Publication number Publication date
JPH04322067A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
JP3238930B2 (en) Method for producing metal-hydrogen alkaline storage battery
JP3025710B2 (en) Alkaline storage battery
JP2604282B2 (en) Alkaline storage battery
JP2000182607A (en) Hydrogen storage alloy electrode
JP2995893B2 (en) Nickel / metal hydride storage battery
JP3113345B2 (en) Hydrogen storage alloy electrode
JP2823301B2 (en) Hydrogen storage alloy electrode
JP2999816B2 (en) Metal-hydrogen alkaline storage battery
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2966492B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3268938B2 (en) Nickel-hydrogen storage battery
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH04319257A (en) Metal-hydrogen alkali secondary battery
JP2962857B2 (en) Metal-hydrogen alkaline storage battery
JP3369148B2 (en) Alkaline storage battery
JP3332488B2 (en) Nickel-hydrogen alkaline storage battery
JP2003017116A (en) Alkali storage battery and manufacturing method of the same
JPH0417262A (en) Metal-alikaline hydride storage battery
JPH11191412A (en) Alkaline storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH05174867A (en) Metal-hydrogen alkaline storage battery
JP3082341B2 (en) Hydrogen storage electrode
JP2823303B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees