JP3025157B2 - Method for producing spherical rare earth oxide - Google Patents

Method for producing spherical rare earth oxide

Info

Publication number
JP3025157B2
JP3025157B2 JP6199409A JP19940994A JP3025157B2 JP 3025157 B2 JP3025157 B2 JP 3025157B2 JP 6199409 A JP6199409 A JP 6199409A JP 19940994 A JP19940994 A JP 19940994A JP 3025157 B2 JP3025157 B2 JP 3025157B2
Authority
JP
Japan
Prior art keywords
rare earth
oxalate
spherical
water
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6199409A
Other languages
Japanese (ja)
Other versions
JPH0859233A (en
Inventor
正実 金吉
酒井  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6199409A priority Critical patent/JP3025157B2/en
Publication of JPH0859233A publication Critical patent/JPH0859233A/en
Application granted granted Critical
Publication of JP3025157B2 publication Critical patent/JP3025157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蛍光体原料として有用な
球状希土類酸化物の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a spherical rare earth oxide useful as a raw material for a phosphor.

【0002】[0002]

【従来の技術】希土類酸化物は蛍光ランプ、 CRTなどの
蛍光体の原料として用いられているが、蛍光体としては
粒子の形状が球状に近いほど塗布性能、発光効率共に良
く、希土類酸化物球状粒子に対する要望は強い。蛍光体
は一般に希土類酸化物と他の原料および融剤とを粉体で
混合して焼成して得られるが、希土類酸化物の粒子が球
状であればそれを使って得られる蛍光体の粒子も球状に
なり易い傾向にある。特開平3-271117号、特開平3-2711
18号には希土類蓚酸塩粒子の取得までの間温度を20℃以
下に保つことで球状希土類蓚酸塩粒子が、それを焼成す
ることで球状希土類酸化物が得られることが開示されて
いる。しかしこれらの実施例では全て付着水分を除去す
る目的で濾別した蓚酸塩の沈殿をメタノールで洗浄して
いるが、工業化を考えた場合、作業環境面、また排水公
害対策として流出させないための回収再生のコスト等の
問題があり、また引き続き焼成を行う前にメタノールを
完全に揮発させておかないと焼成炉内で爆発の恐れがあ
ることからも大量生産には不向きである。また、上記特
開平各号によって得られる希土類酸化物は、球状粒子形
状、粒度分布の均一さの点では全般的には優れている
が、平均粒径5μm程度かそれ以下のものはやや作りに
くく、少し形状がくずれる傾向にある。
2. Description of the Related Art Rare earth oxides are used as a raw material for phosphors such as fluorescent lamps and CRTs. As the phosphors become closer to spheres, the coating performance and luminous efficiency are better, and the rare earth oxide spheres are better. The demand for particles is strong. Phosphors are generally obtained by mixing rare earth oxides with other raw materials and fluxes in a powder form and firing the mixture. If the rare earth oxide particles are spherical, the phosphor particles obtained using the same are also used. It tends to be spherical. JP-A-3-271117, JP-A-3-2711
No. 18 discloses that spherical rare earth oxalate particles can be obtained by maintaining the temperature at 20 ° C. or lower until rare earth oxalate particles are obtained, and spherical rare earth oxides can be obtained by firing the particles. However, in all of these examples, oxalate precipitates which were separated by filtration for the purpose of removing adhering water were washed with methanol.However, in consideration of industrialization, recovery to prevent spillage as a work environment and as a countermeasure against wastewater pollution. It is not suitable for mass production because of problems such as the cost of regeneration and the possibility of explosion in the firing furnace unless methanol is completely volatilized before subsequent firing. Further, the rare earth oxides obtained according to the above-mentioned JP-A-Hei Hei 9-203 are generally excellent in terms of spherical particle shape and uniformity of particle size distribution, but those having an average particle size of about 5 μm or less are slightly difficult to make. , Tends to be slightly distorted.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記欠点を解
決したもので、粒径の整った球状粒子を安定かつ容易に
得られる製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and it is an object of the present invention to provide a method for producing spherical particles having a uniform particle diameter stably and easily.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記課題を
解決するために検討を重ね、大量処理、工業化の容易な
粒径の整った球状希土類酸化物の製造方法を見出し、製
造条件を確立して本発明を完成させたもので、その要旨
は、希土類イオンと蓚酸との沈殿反応において、反応開
始から濾別、水洗までの間−5℃以上20℃以下に保つと
ともに有機塩基の共存下に希土類蓚酸塩を沈殿させ、濾
別水洗後−5℃以上20℃以下の水蒸気未飽和の空気流中
におくこと、または−20℃以上20℃以下での真空乾燥或
は凍結真空乾燥によって希土類1モルあたりの付着水お
よび結晶水の総和が4.5モル以下に除去した後、焼成
することを特徴とする球状希土類酸化物の製造方法にあ
り、有機塩基としてエタノールアミン類またはヘキサメ
チレンテトラミンを使用するものである。
Means for Solving the Problems The inventors of the present invention have studied to solve the above-mentioned problems, and have found a method for producing a spherical rare earth oxide having a uniform particle size, which can be easily processed in large quantities and industrialized. The gist of the present invention has been established. The gist of the present invention is that in the precipitation reaction between rare earth ions and oxalic acid, the temperature is kept at -5 ° C or more and 20 ° C or less and the coexistence of an organic base from the start of the reaction to filtration and washing with water. Precipitate the rare earth oxalate below, filter, wash with water and place in a stream of steam-saturated air at -5 ° C to 20 ° C, or vacuum dry at -20 ° C to 20 ° C or freeze-vacuum drying Water attached per mole of rare earth
A method for producing a spherical rare earth oxide, characterized in that the total of water and crystallization water are removed to 4.5 mol or less, followed by firing, wherein ethanolamines or hexamethylenetetramine is used as an organic base.

【0005】以下、本発明を詳細に説明する。本発明の
適応範囲は、希土類としてはイットリウムおよび原子番
号が57〜71のランタノイドであり、特にランタノイドの
うち原子番号63以上(63:ユーロピウム)のものとイッ
トリウムに適している。本発明における球状とは真球、
および短径に対する長径の比が 1.5以下の略々球形の粒
子を意味する。これは用途上充分な範囲であり、また大
部分の粒子がこのような粒子で構成される球状希土類酸
化物は、通常の不定形粒子からなるものと比べて流動性
が良く、従ってその指標である安息角は小さく、また嵩
密度は大きい。平均粒径(D50)は体積基準であらわし
たもので、全粒子体積の50%が平均粒径以下の粒子で占
められる。測定法はコールターカウンター(コールター
社製商品名)を用いた。安息角は傾斜法で測定した。嵩
密度はゆるみ見掛け比重である。また非凝集とは、個々
の粒子が独立して存在しており、実質的に凝集部分がな
いことを意味する。
Hereinafter, the present invention will be described in detail. The applicable range of the present invention is yttrium as a rare earth element and lanthanoids having an atomic number of 57 to 71, and is particularly suitable for lanthanoids having an atomic number of 63 or more (63: europium) and yttrium. The spherical shape in the present invention is a true sphere,
And a substantially spherical particle having a ratio of major axis to minor axis of 1.5 or less. This is a range sufficient for applications, and spherical rare earth oxides, in which most of the particles are composed of such particles, have better fluidity than those composed of ordinary amorphous particles. Some angles of repose are small and bulk density is large. The average particle size (D 50 ) is expressed on a volume basis, and 50% of the total particle volume is occupied by particles smaller than the average particle size. The measurement was performed using a Coulter counter (trade name, manufactured by Coulter Corporation). The angle of repose was measured by the tilt method. Bulk density is the loose apparent specific gravity. Non-aggregated means that individual particles are present independently and have substantially no aggregated portion.

【0006】球状希土類酸化物の製造方法としては、ま
ず、希土類イオンと蓚酸とを、−5℃以上20℃以下の温
度で反応させ、球状の希土類元素蓚酸塩を沈殿させる。
希土類イオン源としては、希土類の塩化物、硝酸塩等の
水に可溶性の化合物の水溶液が挙げられる。希土類元素
の種類は1種でも、2種以上でも良く、また全希土類濃
度はあまり低いと生産性が悪いので、通常0.02mol/L 以
上、好ましくは0.05〜0.5mol/L の範囲が良い。蓚酸と
希土類イオンとの反応式は下記の通りであり、 2R3++3H224 ─→ R2(C24)3 +6H+ 水素イオンが副生する。この水素イオンの存在が希土類
蓚酸塩の粒径を大きくする作用があるので、中和するこ
とが必要だが、上述の理由とも考え合わせて、有機塩基
で中和するのが良い。有機塩基としては安全性、臭気等
の作業性、塩基性度の強さからみてトリエタノールアミ
ン等のエタノールアミン類、およびヘキサメチレンテト
ラミンが望ましく、添加量は希土類溶液中に元々存在し
ている遊離酸を中和する分に加えて希土類1モルあたり
3モル以下が良く、この量が多いほど粒径が細かくなる
傾向がある。
As a method for producing a spherical rare earth oxide, first, a rare earth ion and oxalic acid are reacted at a temperature of -5 ° C. or more and 20 ° C. or less to precipitate a spherical rare earth element oxalate.
Examples of the rare earth ion source include aqueous solutions of compounds soluble in water such as rare earth chlorides and nitrates. The kind of the rare earth element may be one kind or two or more kinds. If the total rare earth concentration is too low, productivity is poor. Therefore, the rare earth element is usually at least 0.02 mol / L, preferably in the range of 0.05 to 0.5 mol / L. The reaction formula of oxalic acid and rare earth ions is as follows, and 2R 3+ + 3H 2 C 2 O 4 ─ → R 2 (C 2 O 4 ) 3 + 6H + hydrogen ions are by-produced. Since the presence of the hydrogen ions has the effect of increasing the particle size of the rare-earth oxalate, it is necessary to neutralize the rare-earth oxalate. However, it is preferable to neutralize with an organic base in consideration of the above-mentioned reason. As the organic base, ethanolamines such as triethanolamine, and hexamethylenetetramine are preferable in view of safety, workability such as odor, and strength of the basicity, and the amount of addition is free from the amount originally present in the rare earth solution. In addition to neutralizing the acid, the amount is preferably 3 mol or less per 1 mol of rare earth, and the larger the amount, the smaller the particle size tends to be.

【0007】蓚酸の量は希土類総量に対してモル比で
1.5〜 2.0の範囲が良い。 1.5未満では希土類が完全に
沈殿せず収率が悪くまた 2.0あれば十分である。反応を
行うには希土類の水溶液、蓚酸水溶液、また必要に応じ
て有機塩基の水溶液を調製し、いずれも−5℃以上20℃
以下に保ってから混合する。有機塩基は予め希土類水溶
液か蓚酸水溶液に加えておいても良い。この混合時の温
度は重要であり、低温ほど球形度の良いものが得られる
傾向があるので、好ましくは水溶液の凝固点以上で10℃
以下とするのが良い。液の混合速度もまた粒径に影響す
る。希土類水溶液と蓚酸水溶液のうち後から加える方の
全液量を1〜30分間で加えるのが良い。時間が長い程粒
径が大きくなり、極端に短いと粒子が微細になり球状に
なりにくい。但し蓚酸を固形で加える場合、徐々に溶解
した蓚酸が反応していくので、速く加えても良い。
The amount of oxalic acid is a molar ratio with respect to the total amount of rare earths.
The range of 1.5 to 2.0 is good. If it is less than 1.5, the rare earth is not completely precipitated and the yield is poor, and 2.0 is sufficient. To carry out the reaction, an aqueous solution of a rare earth, an aqueous solution of oxalic acid and, if necessary, an aqueous solution of an organic base are prepared.
Mix after keeping below. The organic base may be previously added to the rare earth aqueous solution or oxalic acid aqueous solution. The temperature at the time of this mixing is important, and the lower the temperature, the better the sphericity tends to be obtained.
It is better to do the following. The mixing speed of the liquid also affects the particle size. The total amount of the rare earth aqueous solution and the oxalic acid aqueous solution, which is added later, is preferably added in 1 to 30 minutes. The longer the time, the larger the particle size. If the time is extremely short, the particles become finer and hardly spherical. However, when oxalic acid is added as a solid, the oxalic acid which is dissolved gradually reacts, so that it may be added quickly.

【0008】生成した球状希土類蓚酸塩は母液から分離
し水洗する。分離は濾過、傾斜、遠心分離等が採用でき
る。水洗は蓚酸塩の数倍体積の水を用い、分散またはふ
りかけ洗浄すればよい。このとき用いる水の温度は20℃
以下であることが必要である。分離、水洗した蓚酸塩
は、直ちに乾燥工程に入る。本発明の最大の特徴はこの
乾燥方法にあり、−5℃以上20℃以下の水蒸気未飽和の
気流下において乾燥するか、蓚酸塩の物温を20℃以下に
して真空乾燥、または凍結真空乾燥すれば良い。気流乾
燥の場合、送る気体中の水蒸気量が少ないほど良く、空
気の場合絶対湿度で10g/m3以下であることが望まし
い。乾燥の程度としては、希土類1モルあたりの付着水
および結晶水の総和が 4.5モル以下、望ましくは4モル
以下になっていることが必要である。4.5 モルを越えて
常温で放置すると結晶構造の変化を伴う粒成長を起こ
し、球状を保てなくなる。この水の量は蓚酸塩の重量と
それを焼成した酸化物の重量とから、蓚酸塩の化学式R
2(C24)3 (R:希土類元素)を考慮して求めること
ができる。真空乾燥は真空度1.5Pa の下、10〜15℃で16
〜24時間で上記水分以下になる。また凍結真空乾燥は分
離水洗した含水蓚酸塩を−30〜−20℃まで急速に冷凍し
0〜5℃で24〜40時間、真空度50〜 100Pa下に乾燥すれ
ば結晶析出時の球状を保持した球状蓚酸塩が得られる。
The resulting spherical rare earth oxalate is separated from the mother liquor and washed with water. As the separation, filtration, inclination, centrifugation and the like can be adopted. The water washing may be performed by dispersing or sprinkling washing using water several times the volume of the oxalate. The temperature of water used at this time is 20 ° C
It must be: The oxalate separated and washed with water immediately enters a drying step. The greatest feature of the present invention lies in this drying method. The drying is performed under a steam-saturated stream of -5 ° C or more and 20 ° C or less, or the oxalate is dried at a temperature of 20 ° C or less under vacuum drying or freeze vacuum drying. Just do it. In the case of flash drying, the smaller the amount of water vapor in the gas to be sent, the better. In the case of air, the absolute humidity is desirably 10 g / m 3 or less. As for the degree of drying, it is necessary that the total amount of adhering water and crystallization water per mole of rare earth is 4.5 mol or less, preferably 4 mol or less. If left at room temperature in excess of 4.5 mol, grain growth accompanied by a change in crystal structure occurs, and the sphere cannot be maintained. The amount of this water is calculated from the weight of the oxalate and the weight of the oxide obtained by calcining the oxalate by the chemical formula R of the oxalate.
It can be determined in consideration of 2 (C 2 O 4 ) 3 (R: rare earth element). Vacuum drying is performed at 10 to 15 ° C under a vacuum of 1.5 Pa.
It will be below the above moisture in 24 hours. Freeze-vacuum drying keeps the hydrated oxalate which has been separated and washed with water, quickly frozen to -30 to -20 ° C and dried at 0 to 5 ° C for 24 to 40 hours under a vacuum of 50 to 100 Pa to keep the spheres during crystal precipitation. The resulting spherical oxalate is obtained.

【0009】付着水を除いた蓚酸塩を 600℃以上の温度
で焼成すれば、球状希土類酸化物が得られる。乾燥が十
分なされていれば、焼成条件は限定的ではないが、好ま
しくは昇温速度は 600℃/hr以下であることが望まし
い。
If the oxalate from which adhering water is removed is calcined at a temperature of 600 ° C. or more, a spherical rare earth oxide can be obtained. The firing conditions are not limited as long as the drying is sufficient, but it is preferable that the heating rate be 600 ° C./hr or less.

【0010】[0010]

【実施例】以下、本発明の実施態様を実施例により具体
的に説明するが、本発明はこれらに限定されるものでは
ない。 (実施例1)濃度 0.3mol/L 、pH 1.5の硝酸イットリウ
ム水溶液 1.5L をバッフル、温度計、撹拌羽根をとりつ
けた3L ビーカー中に仕込み5℃に保持した。濃度 0.5
mol/L の蓚酸水溶液 1.5L を別に調製し、7℃に保持し
た。300rpmで撹拌しながらトリエタノールアミン74.2g
を一気に加えた。次いで5℃に保って撹拌を続けながら
蓚酸水溶液全量を7分かけて添加した。更に5分間撹拌
を続けた後ブフナー濾斗で濾別し、10℃の水2L でふり
かけ洗浄した後−20℃の冷凍庫に入れた。30分後に冷凍
庫からとり出し、2℃に保った密閉容器中に入れ−40℃
に保ったコールドトラップを介して真空ポンプで脱気
し、60Pa以下の圧力下で24時間乾燥し、乾燥蓚酸塩 13
0.2g を得た(H2 O/Y= 3.9(モル比))。次いで
これを磁性るつぼにとり電気炉に入れ5℃/分で 850℃
まで昇温し、引きつづき1時間 850℃に保った後放冷し
て50.2g の酸化イットリウムを得た。この酸化物を電子
顕微鏡で観察したところ非凝集性で球状の粒子から成っ
ており、平均粒径 4.2μm、安息角46°、嵩密度1.39g/
cm3 であった。
EXAMPLES Hereinafter, the embodiments of the present invention will be described specifically with reference to examples, but the present invention is not limited to these. Example 1 1.5 L of an aqueous solution of yttrium nitrate having a concentration of 0.3 mol / L and a pH of 1.5 was charged into a 3 L beaker equipped with a baffle, a thermometer, and a stirring blade, and kept at 5 ° C. Concentration 0.5
A 1.5 L mol / L oxalic acid aqueous solution was separately prepared and kept at 7 ° C. 74.2 g of triethanolamine while stirring at 300 rpm
Was added all at once. Next, the whole amount of the oxalic acid aqueous solution was added over 7 minutes while keeping stirring at 5 ° C. After stirring for further 5 minutes, the mixture was filtered off with a Buchner funnel, sprinkled and washed with 2 L of water at 10 ° C, and then placed in a freezer at -20 ° C. After 30 minutes, remove from the freezer and place in a closed container kept at 2 ℃ -40 ℃
Degassed with a vacuum pump through a cold trap kept at a pressure of 60 Pa or less, and dried for 24 hours under a pressure of 60 Pa or less.
0.2 g was obtained (H 2 O / Y = 3.9 (molar ratio)). Next, place it in a magnetic crucible and place it in an electric furnace at 850 ° C at 5 ° C / min.
The temperature was maintained at 850 ° C. for 1 hour, and then allowed to cool to obtain 50.2 g of yttrium oxide. When this oxide was observed with an electron microscope, it was composed of non-agglomerated, spherical particles, with an average particle size of 4.2 μm, a repose angle of 46 °, and a bulk density of 1.39 g /
It was cm 3.

【0011】(実施例2)蓚酸塩の沈殿生成を実施例1
と同様に行った。ブフナー濾斗で濾別し10℃の水2L で
洗浄し水切りした後、気温17℃、絶対湿度6g/m3の恒
温恒湿室中の定常的にゆるやかな風が流れている場所に
70時間置いて乾燥し、乾燥蓚酸塩 130.3gを得た(H2
O/Y= 3.9(モル比))。次いでこれを磁性るつぼに
とり、実施例1と同条件で焼成し50.3g の非凝集球状粒
子からなる酸化イットリウムを得た。この平均粒径は
4.0μm、安息角47°、嵩密度1.36g/cm3 であった。
(Example 2) The precipitation of oxalate was carried out in Example 1.
The same was done. After filtering off with a Buchner funnel, washing with 2 L of water at 10 ° C and draining, place it in a constant temperature / humidity room at a temperature of 17 ° C and an absolute humidity of 6 g / m 3 , where a steady gentle wind is flowing.
It was dried for 70 hours to obtain 130.3 g of dry oxalate (H 2
O / Y = 3.9 (molar ratio)). Next, this was placed in a magnetic crucible and calcined under the same conditions as in Example 1 to obtain 50.3 g of yttrium oxide composed of non-agglomerated spherical particles. This average particle size is
It was 4.0 μm, the angle of repose was 47 °, and the bulk density was 1.36 g / cm 3 .

【0012】(実施例3)蓚酸塩の沈殿生成、分離、水
洗を実施例1と同様に行った。集めた蓚酸塩をヒーター
を取りつけた金属板上にのせ、温度計をケーキ中にさし
こんで、全体を密閉容器に入れ、コールドトラップを介
して真空ポンプで脱気した。ヒーターでゆるやかに加熱
し蒸発潜熱を補給しながらケーキの温度を10〜15℃に保
ち 1.5kPa以下の圧力に17時間保持して乾燥し、乾燥蓚
酸塩 127.8g (H2 O/Y= 3.7(モル比))を得た。
これを実施例1と同様に焼成して50.0g の酸化イットリ
ウムを得た。粒子形状は非凝集球状粒子で、平均粒径
4.4μm、安息角42°、嵩密度1.31g/cm3 であった。
(Example 3) Precipitation of oxalate, separation and washing with water were carried out in the same manner as in Example 1. The collected oxalate was placed on a metal plate fitted with a heater, a thermometer was inserted into the cake, the whole was put into a closed container, and degassed by a vacuum pump through a cold trap. The temperature of the cake is maintained at 10 to 15 ° C while maintaining the temperature of the cake at 10 to 15 ° C for 17 hours while drying by heating gently with a heater to supply latent heat of evaporation, and 127.8 g of dried oxalate (H 2 O / Y = 3.7 Molar ratio)).
This was fired in the same manner as in Example 1 to obtain 50.0 g of yttrium oxide. Particle shape is non-agglomerated spherical particles, average particle size
It was 4.4 μm, the angle of repose was 42 °, and the bulk density was 1.31 g / cm 3 .

【0013】(実施例4)濃度 0.3mol/L 、pH 1.4の硝
酸イットリウムと硝酸ユーロピウム混合水溶液(Eu /
Y= 0.034モル比)を用いることの他は実施例1と同様
にして、乾燥蓚酸塩 128.3g を得た。これを実施例1と
同様に焼成してイットリウム・ユーロピウム混合酸化物
51.5gを得た。電子顕微鏡で観察したところ非凝集性の
球状粒子から成っており、平均粒径 3.9μm、安息角49
°、嵩密度1.34g/cm3 であった。
(Example 4) A mixed aqueous solution of yttrium nitrate and europium nitrate having a concentration of 0.3 mol / L and a pH of 1.4 (Eu /
(Y = 0.034 mol ratio) In the same manner as in Example 1 except for using (Y = 0.034 mol ratio), 128.3 g of dried oxalate was obtained. This was fired in the same manner as in Example 1 to obtain a mixed oxide of yttrium and europium.
51.5 g were obtained. When observed with an electron microscope, it consisted of non-agglomerated spherical particles, with an average particle size of 3.9 μm and an angle of repose of 49.
° and bulk density was 1.34 g / cm 3 .

【0014】(実施例5)濃度 0.3mol/L 、pH 1.3の硝
酸ガドリニウム水溶液を用いることの他は実施例1と同
様にして、 157.3g の蓚酸塩(H2 O/Gd = 3.5(モ
ル比))を得、これを実施例1と同様に焼成して80.8g
の酸化ガドリニウムを得た。電子顕微鏡で観察したとこ
ろ球状の粒子から成っており、平均粒径 3.6μm、安息
角48°、嵩密度2.04g/cm3 であった。
Example 5 157.3 g of oxalate (H 2 O / Gd = 3.5 (molar ratio) in the same manner as in Example 1 except that an aqueous solution of gadolinium nitrate having a concentration of 0.3 mol / L and a pH of 1.3 was used. )) And calcined in the same manner as in Example 1 to obtain 80.8 g
Gadolinium oxide was obtained. Observation with an electron microscope revealed that the particles were spherical and had an average particle size of 3.6 μm, a repose angle of 48 °, and a bulk density of 2.04 g / cm 3 .

【0015】(実施例6)トリエタノールアミンに替え
てヘキサメチレンテトラミン69.7g を加え、完全に溶解
してからそれ以降の工程は実施例1の通り行った。 12
7.7g の乾燥蓚酸塩(H2 O/Y= 3.7(モル比))を
得た。これを実施例1と同様に焼成して50.1g の酸化イ
ットリウムを得た。球状の粒子から成っており、平均粒
径 4.3μm、安息角40°、嵩密度1.45g/cm3 であった。
(Example 6) In place of triethanolamine, 69.7 g of hexamethylenetetramine was added and completely dissolved, and the subsequent steps were carried out as in Example 1. 12
7.7 g of dry oxalate (H 2 O / Y = 3.7 (molar ratio)) were obtained. This was fired in the same manner as in Example 1 to obtain 50.1 g of yttrium oxide. It was composed of spherical particles, and had an average particle size of 4.3 μm, a repose angle of 40 °, and a bulk density of 1.45 g / cm 3 .

【0016】(実施例7)濃度 0.4mol/L の蓚酸水溶液
2.5L を溶液をバッフル、温度計、撹拌羽根をとりつけ
た3L ビーカー中に仕込み5℃に保持した。これに 11
4.9g のトリエタノールアミンを加えて均一に混合し
た。さらに300rpmで撹拌しつつ5℃に保って 1.2mol/L
、pH 1.0の硝酸イットリウム水溶液 500mlを 4.5分間
かけて加えた。以下実施例1と同様に処理して 158.6g
の乾燥蓚酸塩(H2 O/Y= 3.4(モル比))を得た。
これを実施例1と同様に焼成し67.0g の酸化イットリウ
ムを得た。球状粒子からなっており、平均粒径 3.4μ
m、安息角46°、嵩密度1.38g/cm3 であった。
(Example 7) An aqueous solution of oxalic acid having a concentration of 0.4 mol / L
2.5 L of the solution was charged into a 3 L beaker equipped with a baffle, a thermometer, and a stirring blade, and kept at 5 ° C. To this 11
4.9 g of triethanolamine was added and mixed uniformly. 1.2 mol / L while keeping at 5 ℃ while stirring at 300rpm
Then, 500 ml of an aqueous solution of yttrium nitrate having a pH of 1.0 was added over 4.5 minutes. Thereafter, the same treatment as in Example 1 was performed to obtain 158.6 g.
Was obtained (H 2 O / Y = 3.4 (molar ratio)).
This was fired in the same manner as in Example 1 to obtain 67.0 g of yttrium oxide. Consisting of spherical particles, average particle size 3.4μ
m, the angle of repose was 46 °, and the bulk density was 1.38 g / cm 3 .

【0017】(比較例1)実施例1と同条件で沈殿生
成、分離、洗浄した蓚酸塩を付着水を除去する乾燥工程
を省いて、実施例1と同条件で焼成して50.3g の酸化イ
ットリウムを得た。電子顕微鏡で観察したところ、棒
状、板状、不定形の粒子からなっており、平均粒径 3.2
μm、安息角70°以上で測定困難、嵩密度0.53g/cm3
あった。
Comparative Example 1 Oxalates formed, separated and washed under the same conditions as in Example 1 were calcined under the same conditions as in Example 1 without the drying step of removing adhering water, and 50.3 g of oxidized water was oxidized. Yttrium was obtained. Observation with an electron microscope revealed that the particles consisted of rod-shaped, plate-shaped, and amorphous particles with an average particle size of 3.2
μm, angle of repose was 70 ° or more, measurement was difficult, and bulk density was 0.53 g / cm 3 .

【0018】(比較例2)実施例1と同条件で沈殿生
成、分離した蓚酸塩を45℃に保った送風乾燥機中に14時
間放置して乾燥し、乾燥蓚酸塩 124.5g (H2 O/Y=
3.2(モル比))を得た。これを実施例1と同様に焼成
して50.4g の酸化イットリウムを得た。電子顕微鏡で観
察したところ、微細から粗大までさまざまなサイズの角
ばった粒子からなっており、平均粒径10.9μm、安息角
64°、嵩密度0.74g/cm3 であった。
(Comparative Example 2) The oxalate formed and separated under the same conditions as in Example 1 was dried by leaving it in a blow dryer kept at 45 ° C. for 14 hours, and dried 124.5 g of oxalate (H 2 O / Y =
3.2 (molar ratio)). This was fired in the same manner as in Example 1 to obtain 50.4 g of yttrium oxide. When observed with an electron microscope, it consisted of angular particles of various sizes from fine to coarse, with an average particle size of 10.9 μm and a repose angle.
It was 64 ° and the bulk density was 0.74 g / cm 3 .

【0019】(比較例3)凍結したケーキを真空中に置
く時間を11時間にしたことのほかは実施例1と同様にし
て乾燥蓚酸塩 140.8g (H2 O/Y= 5.2(モル比))
を得た。これを実施例1と同様に焼成して50.2g の酸化
イットリウムを得た。電子顕微鏡で観察したところ、半
分以上の粒子が球状であったが、残りは球状から崩れた
りしたと思われる不定形粒子であり、平均粒径 6.1μ
m、安息角48°、嵩密度1.08g/cm3 であった。
(Comparative Example 3) 140.8 g of dry oxalate (H 2 O / Y = 5.2 (molar ratio) in the same manner as in Example 1 except that the time for placing the frozen cake in a vacuum was 11 hours. )
I got This was fired in the same manner as in Example 1 to obtain 50.2 g of yttrium oxide. Observation with an electron microscope showed that more than half of the particles were spherical, but the rest were irregular particles that seemed to have collapsed from spherical, with an average particle size of 6.1μ
m, angle of repose was 48 ° and bulk density was 1.08 g / cm 3 .

【0020】(比較例4)沈殿生成時の液温を25℃に保
つことの他は実施例1と同様にして 125.2g の乾燥蓚酸
塩(H2 O/Y= 3.4(モル比))を得た。これを実施
例1と同様に焼成して50.0g の酸化イットリウムを得
た。電子顕微鏡で観察したところ、細長い板状粒子が主
であり、平均粒径 8.5μm、安息角70°以上で測定困
難、嵩密度0.66g/cm3 であった。
Comparative Example 4 125.2 g of dry oxalate (H 2 O / Y = 3.4 (molar ratio)) was prepared in the same manner as in Example 1 except that the liquid temperature during precipitation was kept at 25 ° C. Obtained. This was fired in the same manner as in Example 1 to obtain 50.0 g of yttrium oxide. Observation with an electron microscope revealed that the particles were mainly elongated plate-like particles, the average particle diameter was 8.5 μm, the angle of repose was 70 ° or more, measurement was difficult, and the bulk density was 0.66 g / cm 3 .

【0021】(比較例5)トリエタノールアミンの添加
を省略した他は実施例1と同様にして 128.7g の乾燥蓚
酸塩(H2 O/Y= 3.8(モル比))を得た。これを実
施例1と同様に焼成して50.2g の酸化イットリウムを得
た。この酸化物は非凝集性、球状であったが、平均粒径
は 6.8μmと大きく、安息角38°、嵩密度1.49g/cm3
あった。
Comparative Example 5 128.7 g of a dry oxalate (H 2 O / Y = 3.8 (molar ratio)) was obtained in the same manner as in Example 1 except that the addition of triethanolamine was omitted. This was fired in the same manner as in Example 1 to obtain 50.2 g of yttrium oxide. Although this oxide was non-agglomerated and spherical, the average particle size was as large as 6.8 μm, the angle of repose was 38 °, and the bulk density was 1.49 g / cm 3 .

【0022】[0022]

【発明の効果】本発明によれば、非凝集性球状希土類酸
化物粒子を安定にかつ容易に得ることができ、産業上そ
の利用価値は極めて高い。
According to the present invention, non-agglomerated spherical rare earth oxide particles can be stably and easily obtained, and their industrial value is extremely high.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01F 17/00 C09K 11/08 - 11/78 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C01F 17/00 C09K 11/08-11/78

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類イオンと蓚酸との反応において、反
応開始から濾別、水洗までの間−5℃以上20℃以下に保
つとともに有機塩基の共存下に希土類蓚酸塩を沈殿さ
せ、濾別水洗後−5℃以上20℃以下の水蒸気未飽和の空
気流中におくこと、または−20℃以上20℃以下での真空
乾燥或は凍結真空乾燥によって希土類1モルあたりの付
着水および結晶水の総和が4.5モル以下に除去した
後、焼成することを特徴とする球状希土類酸化物の製造
方法。
In the reaction between rare earth ions and oxalic acid, the mixture is kept at -5 ° C or more and 20 ° C or less from the start of the reaction to filtration and washing with water, and rare earth oxalate is precipitated in the presence of an organic base, followed by filtration and washing with water. After that, place in a steam-saturated air stream of -5 ° C or more and 20 ° C or less, or apply vacuum drying or freezing vacuum drying at -20 ° C or more and 20 ° C or less per mole of rare earth.
A method for producing a spherical rare earth oxide, which comprises firing after removing the sum of water landing and crystallization water to 4.5 mol or less .
【請求項2】有機塩基がエタノールアミン類またはヘキ
サメチレンテトラミンである請求項1に記載の球状希土
類酸化物の製造方法。
2. The method for producing a spherical rare earth oxide according to claim 1, wherein the organic base is ethanolamines or hexamethylenetetramine.
JP6199409A 1994-08-24 1994-08-24 Method for producing spherical rare earth oxide Expired - Fee Related JP3025157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6199409A JP3025157B2 (en) 1994-08-24 1994-08-24 Method for producing spherical rare earth oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6199409A JP3025157B2 (en) 1994-08-24 1994-08-24 Method for producing spherical rare earth oxide

Publications (2)

Publication Number Publication Date
JPH0859233A JPH0859233A (en) 1996-03-05
JP3025157B2 true JP3025157B2 (en) 2000-03-27

Family

ID=16407325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6199409A Expired - Fee Related JP3025157B2 (en) 1994-08-24 1994-08-24 Method for producing spherical rare earth oxide

Country Status (1)

Country Link
JP (1) JP3025157B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387339B1 (en) * 1999-11-11 2002-05-14 Shin-Etsu Chemical Co., Ltd. Rare earth oxide particles and method for preparation thereof
US6677262B2 (en) 2000-07-05 2004-01-13 Shin-Etsu Chemical Co., Ltd. Rare earth oxide, basic rare earth carbonate, making method, phosphor, and ceramic
JP4023222B2 (en) * 2002-05-31 2007-12-19 住友化学株式会社 Method for producing silicate phosphor

Also Published As

Publication number Publication date
JPH0859233A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
KR950003421B1 (en) Method for the production of mixed ammonium rare earth oxalates and their application to the production of rare earth oxides
JP2914602B2 (en) Process for producing rare earth phosphate and product obtained thereby
US5545386A (en) Method for the preparation of globular particles of a rare earth oxide
CN103539195A (en) Preparation method for nanometer yttrium oxide powder
JPH07315816A (en) Rare earth element salt particle of phosphoric acid and its production
JP3025157B2 (en) Method for producing spherical rare earth oxide
JP2003524676A (en) Rare earth activated phosphor
JP2950324B1 (en) Gallium oxide and method for producing the same
JP3436712B2 (en) Manufacturing method of green light emitting phosphor
US6387339B1 (en) Rare earth oxide particles and method for preparation thereof
JPH04310516A (en) Production of rare earth element oxide
JPH0859234A (en) Production of spherical rare earth metal oxide
JP3300576B2 (en) Method for producing spherical rare earth oxide
JPH05262518A (en) Preparation of ammonium pare earth double oxalate, use thereof for production of rare earth oxide, and obtained rare earth oxide
JPH0825731B2 (en) Method for producing rare earth phosphate
JPH1179742A (en) Production of yttria/gadolinia/europia coprecipitated single-dispersed spherical particles and yttria/gadolinia/ europia coprecipitated single-dispersed spherical particles obtained by same
JP2883522B2 (en) Method for producing rare earth oxide fine powder
JP3280689B2 (en) Method for producing round rare earth oxide
JP3394071B2 (en) Method for producing rare earth oxide fine powder
JP3551428B2 (en) Method for producing rare earth element-containing BaFI prismatic crystal
JP2001199724A (en) Oxide of rare earth element, method for producing the same and phosphor
CN111978869B (en) Preparation method of cerium-based polishing powder for optical glass and liquid crystal display glass
JP3350332B2 (en) Method for producing aggregated rare earth hydroxide
JPS6126513A (en) Preparation of compound oxide of rare earth metal
JP2002029741A (en) Rare earth oxide, basic carbonate, method for manufacturing the same, phosphor and ceramic material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees