JP3023808B2 - Particle reinforced metal matrix composite - Google Patents

Particle reinforced metal matrix composite

Info

Publication number
JP3023808B2
JP3023808B2 JP3261461A JP26146191A JP3023808B2 JP 3023808 B2 JP3023808 B2 JP 3023808B2 JP 3261461 A JP3261461 A JP 3261461A JP 26146191 A JP26146191 A JP 26146191A JP 3023808 B2 JP3023808 B2 JP 3023808B2
Authority
JP
Japan
Prior art keywords
particles
particle
composite
metal
metal matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3261461A
Other languages
Japanese (ja)
Other versions
JPH05171313A (en
Inventor
明久 井上
健 増本
潤 笹原
勝敏 野崎
正志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
YKK Corp
Original Assignee
Honda Motor Co Ltd
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, YKK Corp filed Critical Honda Motor Co Ltd
Priority to JP3261461A priority Critical patent/JP3023808B2/en
Priority to EP92115508A priority patent/EP0532000B1/en
Priority to US07/943,324 priority patent/US5436080A/en
Priority to DE69221047T priority patent/DE69221047T2/en
Publication of JPH05171313A publication Critical patent/JPH05171313A/en
Application granted granted Critical
Publication of JP3023808B2 publication Critical patent/JP3023808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種構造部材として用
いられる粒子強化金属基複合部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle-reinforced metal matrix composite member used as various structural members.

【0002】[0002]

【従来の技術】従来、この種複合部材としては、セラミ
ック粒子に金属コーティング処理を施して、その表面を
金属層により被覆した複合粒子を用い、それら複合粒子
の金属層相互間を接合したものが知られている。
2. Description of the Related Art Conventionally, as a composite member of this kind, a composite particle obtained by subjecting a ceramic particle to a metal coating treatment and coating the surface of the composite particle with a metal layer is used. Are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
複合粒子は、そのセラミック粒子と金属層との濡れ性が
悪いために両者間の接合強度が低く、またそれらの熱膨
脹率の差が大きいこともあって、複合部材の強度、特に
高温強度を目標通りに向上させることができない、とい
う問題がある。
However, the conventional composite particles have low bonding strength between the ceramic particles and the metal layer due to poor wettability between the ceramic particles and the metal layer, and also have a large difference in their thermal expansion coefficients. Therefore, there is a problem that the strength of the composite member, particularly the high-temperature strength, cannot be improved as intended.

【0004】本発明は前記に鑑み、セラミック粒子と金
属層との接合強度を向上させると共に両者間の熱膨脹率
の差を緩和した複合粒子を用いた高強度な前記複合部材
を提供することを目的とする。
[0004] In view of the above, it is an object of the present invention to provide a high-strength composite member using composite particles in which the bonding strength between ceramic particles and a metal layer is improved and the difference in the coefficient of thermal expansion between the two is reduced. And

【0005】[0005]

【課題を解決するための手段】本発明に係る粒子強化金
属基複合部材は、単結晶構造のセラミック粒子表面に単
結晶構造の金属層を成長させた複合粒子の前記金属層相
互間を接合したことを特徴とする。
In the particle-reinforced metal matrix composite member according to the present invention, the metal layers of the composite particles in which a metal layer having a single crystal structure is grown on the surface of ceramic particles having a single crystal structure are joined to each other. It is characterized by the following.

【0006】[0006]

【実施例】図1は、粒子強化金属基複合部材(以下、P
RMと称す)の製造に用いられる装置を示す。
FIG. 1 shows a particle reinforced metal matrix composite member (hereinafter referred to as P
RM).

【0007】その装置は、メインチャンバ1と、そのメ
インチャンバ1の下方に連設されたサブチャンバ2とを
有し、両チャンバ1,2はダクト3およびその下端に取
付けられたノズル4を介して連通する。メインチャンバ
1内に挿入されたW電極5とメインチャンバ1内に設置
されたCu製ハース6とが電源7に接続される。サブチ
ャンバ2内には可動基板8が配置されてノズル4と対向
する。メインチャンバ1は雰囲気ガス供給源9に接続さ
れ、一方、サブチャンバ2は真空ポンプ10に接続され
る。
The apparatus has a main chamber 1 and a sub-chamber 2 provided below the main chamber 1 and both chambers 1 and 2 are connected via a duct 3 and a nozzle 4 attached to the lower end thereof. Communicate. A W electrode 5 inserted in the main chamber 1 and a Cu hearth 6 installed in the main chamber 1 are connected to a power supply 7. A movable substrate 8 is arranged in the sub-chamber 2 and faces the nozzle 4. The main chamber 1 is connected to an atmosphere gas supply 9, while the sub-chamber 2 is connected to a vacuum pump 10.

【0008】PRMの製造には次のような手順が採用さ
れる。 (1) ハース6内に金属塊Mを入れる。 (2) 真空ポンプ10を作動させてサブチャンバ2内
を減圧する。 (3) 雰囲気ガス供給源9を作動させてメインチャン
バ1内に雰囲気ガスを供給し、その雰囲気ガスをダクト
3を通じてノズル4よりサブチャンバ2内に噴射させ
る。 (4) W電極5およびハース6間に電圧を印加してア
ーク放電を発生させ、これにより金属塊Mを溶融して金
属蒸気を発生させる。
[0008] The following procedure is employed in the manufacture of PRM. (1) The metal lump M is put in the hearth 6. (2) The pressure inside the sub-chamber 2 is reduced by operating the vacuum pump 10. (3) The atmosphere gas supply source 9 is operated to supply the atmosphere gas into the main chamber 1, and the atmosphere gas is injected from the nozzle 4 into the sub-chamber 2 through the duct 3. (4) A voltage is applied between the W electrode 5 and the hearth 6 to generate an arc discharge, thereby melting the metal lump M and generating a metal vapor.

【0009】この金属蒸気と雰囲気ガスとが反応するこ
とにより、セラミック粒子表面を金属層により被覆した
超微細な複合粒子が製造される。その複合粒子の製造過
程では、先ず、金属蒸気と雰囲気ガスとの反応で、単結
晶構造のセラミック粒子が生成され、次いでそのセラミ
ック粒子の表面に付着した金属蒸気がエピタクシ成長し
て単結晶構造の金属層が生成される、といった現象が発
生する。 (5) 複合粒子はダクト3を通じてノズル4より基板
8に噴射され、その基板8上に堆積する。その際、金属
層相互間の接合が行われて、金属マトリックスに超微細
なセラミック粒子を均一に分散させたPRMが製造され
る。
By reacting the metal vapor with the atmospheric gas, ultrafine composite particles having the surface of the ceramic particles covered with a metal layer are produced. In the process of producing the composite particles, first, a reaction between the metal vapor and the atmospheric gas generates ceramic particles having a single crystal structure, and then the metal vapor attached to the surface of the ceramic particles grows epitaxially to form a single crystal structure. The phenomenon that a metal layer is generated occurs. (5) The composite particles are ejected from the nozzle 4 to the substrate 8 through the duct 3 and are deposited on the substrate 8. At this time, bonding between the metal layers is performed, and a PRM in which ultrafine ceramic particles are uniformly dispersed in a metal matrix is manufactured.

【0010】この場合、次工程として押出し加工工程や
加圧下での焼結工程を採用してもよく、またノズル4よ
り複合粒子を捕集し、その複合粒子を単独で用いるか、
または他の金属単体粒子を併用して、圧粉成形に次ぐ焼
結処理を行う、押出し加工を行う等により複合粒子の金
属層相互間を接合してPRMを製造するようにしてもよ
い。複合粒子と金属単体粒子との混合粒子を用いる場合
には、複合粒子中に存在するセラミック粒子の、PRM
全体に対する体積分率Vfは1%以上に設定される。
In this case, an extrusion process or a sintering process under pressure may be adopted as the next process. Alternatively, the composite particles may be collected from the nozzle 4 and used alone.
Alternatively, the PRM may be manufactured by bonding the metal layers of the composite particles to each other by performing sintering processing after powder compaction, extruding, or the like using other single metal particles in combination. When the mixed particles of the composite particles and the metal simple particles are used, the PRM of the ceramic particles present in the composite particles is used.
The volume fraction Vf with respect to the whole is set to 1% or more.

【0011】金属塊Mとしては、Fe、Al、Ti等の
単体または合金が用いられる。
As the metal lump M, a simple substance or an alloy of Fe, Al, Ti or the like is used.

【0012】雰囲気ガスとしては、N2 ガス、O2
ス、CH4 ガス、ジボランガス等が用いられ、また必要
に応じてArガスが併用される。したがって、セラミッ
ク粒子は、前記金属の窒化物、炭化物、ホウ化物または
酸化物である。
As the atmosphere gas, N 2 gas, O 2 gas, CH 4 gas, diborane gas or the like is used, and Ar gas is used together if necessary. Thus, the ceramic particles are nitrides, carbides, borides or oxides of said metals.

【0013】次に、具体例について説明する。Next, a specific example will be described.

【0014】図1の装置を用いた前記製造方法におい
て、金属塊として純Alを用い、また雰囲気ガスとして
純度99.99%のN2 ガスおよび純度99.99%の
Arガスを用いて、サブチャンバ内の気圧10-2Torr、
ノズルの直径0.8mmの条件下で複合粒子を製造した。
In the above-described manufacturing method using the apparatus shown in FIG. 1, pure Al is used as the metal lump, and N 2 gas having a purity of 99.99% and Ar gas having a purity of 99.99% are used as the atmosphere gas. The pressure in the chamber is 10 -2 Torr,
The composite particles were produced under the condition of a nozzle diameter of 0.8 mm.

【0015】図2は、複合粒子Pの結晶構造を示す顕微
鏡写真(30万倍)であり、また図3は図2に対応する
複合粒子Pの概略横断面図である。その複合粒子Pは、
単結晶構造で横断面六角形の八面体形AlN粒子(セラ
ミック粒子)cと、その表面を被覆する単結晶構造で横
断面六角形の八面体形Al層(金属層)mとよりなる。
Al層mはAlN粒子c表面にエピタクシ成長してお
り、両者m,cの結晶方位関係は、〔111〕Al//
〔001〕AlN、〔101〕Al//〔110〕Al
N、〔121〕Al//〔110〕AlNである。これに
よりAlN粒子cとAl層mとの間の接合強度が高くな
る。
FIG. 2 is a micrograph (magnification: 300,000) showing the crystal structure of the composite particle P, and FIG. 3 is a schematic cross-sectional view of the composite particle P corresponding to FIG. The composite particles P
It is composed of octahedral AlN particles (ceramic particles) c having a single crystal structure and a hexagonal cross section, and octahedral Al layers (metal layers) m having a hexagonal cross section and a single crystal structure covering the surface thereof.
The Al layer m has grown epitaxially on the surface of the AlN particle c, and the crystal orientation relationship between the two m and c is [111] Al //
[001] AlN, [101] Al // [110] Al
N, [121] Al // [110] AlN. Thereby, the bonding strength between the AlN particles c and the Al layer m increases.

【0016】各種複合粒子Pにおいて、ガス分圧と複合
比との関係は表1の通りである。なお、複合比は、図3
において、複合粒子Pの中心とAl層mの1つの稜部と
の間の間隔をd1 とし、また前記中心とAlN粒子cの
1つの稜部との間の間隔をd2 としたとき、d2 /d1
で表わされる。
Table 1 shows the relationship between the gas partial pressure and the composite ratio in the various composite particles P. The composite ratio is shown in FIG.
In, when the distance between the one edge portion and the center of the Al layer m of the composite particles P and d 1, also the distance between the one edge portion of the center and AlN particles c was d 2, d 2 / d 1
Is represented by

【0017】[0017]

【表1】 表1より、N2 ガス分圧の上昇に伴い複合比が増加する
ことが判る。この場合、AlN粒子cの前記間隔d2
2倍を粒径とすると、AlN粒子cの粒径は40〜12
0nmであり、超微細である。
[Table 1] From Table 1, it can be seen that the composite ratio increases as the N 2 gas partial pressure increases. In this case, if the particle diameter of twice the distance d 2 of AlN particles c, the particle size of AlN particles c forty to twelve
0 nm, which is very fine.

【0018】次に、各種複合粒子とAl合金粒子(20
24材)とよりなる混合粒子を用い、加圧力4t/cm2
にて直径80mm、長さ70mmの圧粉体を成形し、その後
圧粉体に、450℃、押出し比13.0、押出速度1mm
/sec の条件下で押出し加工を施して各種PRMを製造
した。
Next, various composite particles and Al alloy particles (20
24 materials) and a pressing force of 4 t / cm 2
A green compact having a diameter of 80 mm and a length of 70 mm is formed at 450 ° C., an extrusion ratio of 13.0, and an extrusion speed of 1 mm.
Each PRM was manufactured by extrusion under the conditions of / sec.

【0019】図4は、各種PRMの温度と引張強さとの
関係を示す。図中、線aは本発明に係るPRMの引張強
さσB を示し、この場合のAlN粒子の体積分率Vfは
20%であり、またAlN粒子の粒径は100nmであ
る。また線bは比較例PRMの引張強さσB を示し、そ
比較例PRMは、SiC粒子表面をAl層により被覆
した複合粒子とAl合金粒子(2024材)とよりなる
混合粒子を用いて前記と同様の方法で製造されたもので
ある。この場合のSiC粒子の体積分率Vfは20%で
あり、またSiC粒子の粒径は4μmである。
FIG. 4 shows the relationship between the temperature and the tensile strength of various PRMs. In the figure, the line a indicates the tensile strength σ B of the PRM according to the present invention. In this case, the volume fraction Vf of the AlN particles is 20%, and the particle size of the AlN particles is 100 nm. The line b represents the strength sigma B Tensile Comparative Example PRM, the comparative example PRM, the using more becomes mixed particle composite particles and Al alloy particles of SiC particle surfaces were coated with Al layer (2024 material) It is manufactured by the same method as that described above. In this case, the volume fraction Vf of the SiC particles is 20%, and the particle size of the SiC particles is 4 μm.

【0020】図4より、本発明に係るPRMは比較例P
RMに比べて高温強度の高いことが判る。
FIG. 4 shows that the PRM according to the present invention is comparative example P
It can be seen that the high-temperature strength is higher than that of RM.

【0021】これは、本発明に係るPRMにおいては、
単結晶構造を有するAlN粒子表面に単結晶構造を有す
るAl層がエピタクシ成長することによって、それらの
結晶方位が揃っているので、AlN粒子およびAl層
間、したがってAlN粒子およびAl合金マトリックス
間の接合強度が高く、またそれらの熱膨脹差も小さい上
に、AlN粒子が微細であり、且つAl合金マトリック
ス中に均一に分散しているからである。
This is because in the PRM according to the present invention,
Since the Al layer having a single crystal structure is epitaxially grown on the surface of the AlN particle having a single crystal structure and their crystal orientations are aligned, the bonding strength between the AlN particle and the Al layer, and thus between the AlN particle and the Al alloy matrix, is increased. Is high, the thermal expansion difference is small, and the AlN particles are fine and uniformly dispersed in the Al alloy matrix.

【0022】比較例PRMは、SiC粒子とAl層との
熱膨脹率の差が大きく、高温下において層間剥離が発生
するため高温強度の劣化が著しい。
Comparative Example PRM has a large difference in the coefficient of thermal expansion between the SiC particles and the Al layer, and delamination occurs at a high temperature.

【0023】なお、本発明における複合粒子には、セラ
ミック粒子表面を金属層により完全被覆していないもの
も含まれる。
The composite particles in the present invention include those in which the surface of the ceramic particles is not completely covered with a metal layer.

【0024】[0024]

【発明の効果】本発明によれば、前記のような特定構造
を有する複合粒子を用いることによって、セラミック粒
子と金属マトリックスとの接合強度の高い高強度な粒子
強化金属基複合部材を提供することができる。
According to the present invention, it is possible to provide a high-strength particle-reinforced metal matrix composite member having high bonding strength between a ceramic particle and a metal matrix by using composite particles having the above specific structure. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る粒子強化金属基複合部材を製造す
る装置の概略断面図である。
FIG. 1 is a schematic sectional view of an apparatus for manufacturing a particle-reinforced metal matrix composite member according to the present invention.

【図2】複合粒子の結晶構造を示す顕微鏡写真である。FIG. 2 is a micrograph showing a crystal structure of a composite particle.

【図3】複合粒子の概略横断面図である。FIG. 3 is a schematic cross-sectional view of a composite particle.

【図4】引張試験結果を示すグラフである。FIG. 4 is a graph showing the results of a tensile test.

【符号の説明】[Explanation of symbols]

P 複合粒子 c AlN粒子(セラミック粒子) m Al層(金属層) P Composite particles c AlN particles (ceramic particles) m Al layer (metal layer)

フロントページの続き (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住 宅11−806 (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8−22 (72)発明者 笹原 潤 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 野崎 勝敏 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 山口 正志 宮城県仙台市太白区鹿野3−24−23 (56)参考文献 特開 昭63−216919(JP,A) 特開 平3−146627(JP,A) 特表 平4−502347(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/09 C22C 1/10 Continued on the front page (72) Inventor Akihisa Inoue 11-806 Kawauchi Residence, No. Kawauchi, Aoba-ku, Sendai, Miyagi Prefecture Inventor Takeshi Masumoto 3-8-22, Uesugi, Aoba-ku, Aoba-ku, Sendai City, Miyagi Prefecture (72) Inventor Jun Sasahara 1-4-1 Chuo, Wako-shi, Saitama Pref.Honda R & D Co., Ltd. (72) Inventor Katsutoshi Nozaki 1-4-1 Chuo Wako-shi, Saitama Pref. Honda R & D Co., Ltd. (72) Inventor Masashi Yamaguchi 3-24-23 Kano, Taihaku-ku, Sendai-city, Miyagi Prefecture (56) References JP-A-63-216919 (JP, A) JP-A-3-146627 (JP, A) JP-A-4-502347 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 1/09 C22C 1/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶構造のセラミック粒子表面に単結
晶構造の金属層を成長させた複合粒子の前記金属層相互
間を接合してなる粒子強化金属基複合部材。
1. A particle-reinforced metal matrix composite member comprising a composite particle obtained by growing a metal layer having a single crystal structure on the surface of a ceramic particle having a single crystal structure and joining the metal layers to each other.
JP3261461A 1991-09-13 1991-09-13 Particle reinforced metal matrix composite Expired - Fee Related JP3023808B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3261461A JP3023808B2 (en) 1991-09-13 1991-09-13 Particle reinforced metal matrix composite
EP92115508A EP0532000B1 (en) 1991-09-13 1992-09-10 High strength structural member and process for producing the same
US07/943,324 US5436080A (en) 1991-09-13 1992-09-10 High strength structural member and process for producing the same
DE69221047T DE69221047T2 (en) 1991-09-13 1992-09-10 Construction element with high strength and method of its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3261461A JP3023808B2 (en) 1991-09-13 1991-09-13 Particle reinforced metal matrix composite

Publications (2)

Publication Number Publication Date
JPH05171313A JPH05171313A (en) 1993-07-09
JP3023808B2 true JP3023808B2 (en) 2000-03-21

Family

ID=17362221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3261461A Expired - Fee Related JP3023808B2 (en) 1991-09-13 1991-09-13 Particle reinforced metal matrix composite

Country Status (1)

Country Link
JP (1) JP3023808B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747315B2 (en) 2007-11-19 2011-08-17 三菱マテリアル株式会社 Power module substrate and power module
CN105385875B (en) * 2015-12-04 2017-03-22 中北大学 Preparation method for shell-nacreous-layer-imitating magnesium-based composite material

Also Published As

Publication number Publication date
JPH05171313A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
EP0532000B1 (en) High strength structural member and process for producing the same
US6183690B1 (en) Method of bonding a particle material to near theoretical density
US5130209A (en) Arc sprayed continuously reinforced aluminum base composites and method
US4778649A (en) Method of producing composite materials
JPS58171502A (en) Pulverized composite powder of ceramic and metal
JP2863675B2 (en) Manufacturing method of particle reinforced composite material
JP3023808B2 (en) Particle reinforced metal matrix composite
US6187087B1 (en) Method of bonding a particle material to near theoretical density
EP0250163B1 (en) A method for the preparation of an alloy of nickel and titanium
US5837633A (en) Method for production of aluminum nitride sintered body and aluminum nitride powder
US5229165A (en) Plasma sprayed continuously reinforced aluminum base composites
JPH06321511A (en) Ultrafine aluminum nitride particle, its production and ultrafine particulate sintered compact
JPH05140605A (en) Production of particle reinforced metal-matrix composite member
JP2722724B2 (en) Method of coating diamond film
US3419388A (en) Sintered titanium coating process
JPH05140606A (en) High-strength structural member
US5217815A (en) Arc sprayed continously reinforced aluminum base composites
US5549951A (en) Composite ultrafine particles of nitrides, method for production and sintered article thereof
JPH05140604A (en) Production of high-strength structural member
US5141145A (en) Arc sprayed continuously reinforced aluminum base composites
JPH04224601A (en) Manufacture of titanium-based composite material
JPH06235032A (en) Method for developing superplasticity of titanium carbide reinforced aluminum alloy composite material
JPH01298074A (en) Niobium boride composite powder and production thereof
JPH06235031A (en) Al-aln composite material and its production
JPH04247836A (en) Manufacture of titanium matrix composite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees