JP3022764B2 - Induction furnace sensors - Google Patents

Induction furnace sensors

Info

Publication number
JP3022764B2
JP3022764B2 JP8059882A JP5988296A JP3022764B2 JP 3022764 B2 JP3022764 B2 JP 3022764B2 JP 8059882 A JP8059882 A JP 8059882A JP 5988296 A JP5988296 A JP 5988296A JP 3022764 B2 JP3022764 B2 JP 3022764B2
Authority
JP
Japan
Prior art keywords
sensor
molten metal
induction furnace
cylindrical tube
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8059882A
Other languages
Japanese (ja)
Other versions
JPH09250879A (en
Inventor
幸二 小川
洋 鈴木
静男 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
TYK Corp
Original Assignee
Fuji Electric Co Ltd
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, TYK Corp filed Critical Fuji Electric Co Ltd
Priority to JP8059882A priority Critical patent/JP3022764B2/en
Publication of JPH09250879A publication Critical patent/JPH09250879A/en
Application granted granted Critical
Publication of JP3022764B2 publication Critical patent/JP3022764B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、るつぼ型誘導炉
の湯漏れ検出と溶湯温度の連続測定を行うことのできる
誘導炉用センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for an induction furnace capable of detecting a molten metal leak in a crucible-type induction furnace and continuously measuring a molten metal temperature.

【0002】[0002]

【従来の技術】図3は、るつぼ型誘導炉の湯漏れ検出を
行うための湯漏れ検出センサと、溶湯温度の連続測定を
行うための温度センサとを別々に備えた従来の誘導炉の
概略構成図を示す。この図3において、1は溶湯、2は
るつぼ形状に成形された耐火物、3は誘導加熱コイル、
4は第1アンテナ、4aは第1アンテナ4の先端、5は
第2アンテナ、6は電源、7は電流計、8は浸漬型の温
度センサを示す。この図3において、耐火物2と、第2
アンテナ5と、誘導加熱コイル3とは判りやすくするた
めに間隔を空けて記載されている。また第2アンテナ5
とマイカシート10とは厚さを拡大して記載されてい
る。
2. Description of the Related Art FIG. 3 is a schematic diagram of a conventional induction furnace provided with a molten metal leak detection sensor for detecting a molten metal leak of a crucible type induction furnace and a temperature sensor for continuously measuring a molten metal temperature. FIG. In FIG. 3, 1 is a molten metal, 2 is a refractory formed in a crucible shape, 3 is an induction heating coil,
4 denotes a first antenna, 4a denotes a tip of the first antenna 4, 5 denotes a second antenna, 6 denotes a power source, 7 denotes an ammeter, and 8 denotes an immersion type temperature sensor. In FIG. 3, the refractory 2 and the second
The antenna 5 and the induction heating coil 3 are spaced apart for easy understanding. The second antenna 5
The mica sheet 10 is described with its thickness enlarged.

【0003】この図3において、溶湯1はるつぼ形状に
成形された耐火物2の中で誘導加熱コイル3の電磁誘導
作用により固形の金属から溶解され、目標成分になるよ
うに添加物等により成分調整されて、目標温度にまで加
熱されてから出湯される。
In FIG. 3, a molten metal 1 is melted from a solid metal in a refractory 2 formed into a crucible shape by an electromagnetic induction action of an induction heating coil 3 and is added to a target component by an additive or the like. It is adjusted and heated to the target temperature before tapping.

【0004】耐火物2の外周部のほぼ全体と誘導加熱コ
イル3との間には第2アンテナ5が装着されている。
又、耐火物2で成形されたるつぼの炉底部には第1アン
テナ4がその先端4aを溶湯1に接触するように埋め込
まれている。
A second antenna 5 is mounted between substantially the entire outer peripheral portion of the refractory 2 and the induction heating coil 3.
A first antenna 4 is embedded in the furnace bottom of the crucible formed of the refractory 2 so that the tip 4 a of the first antenna 4 contacts the molten metal 1.

【0005】第2アンテナ5は、るつぼの高さ方向に長
い短冊状のアルミ箔またはステンレス箔を隣り合う箔と
5〜100mmの間隔で配置して、円周方向の一か所で
同じ箔により電気的に短絡されたものをマイカ、テフロ
ンシート等の絶縁物シートでサンドウィッチされた構造
のシートを誘導加熱コイル4の内側に張付けて作られ
る。
The second antenna 5 is composed of a strip-shaped aluminum foil or a stainless steel foil which is long in the crucible height direction and is arranged at intervals of 5 to 100 mm with the adjacent foils, and the same foil is used at one place in the circumferential direction. An electrically short-circuited sheet is sandwiched between insulating sheets such as mica and Teflon sheets, and a sheet having a structure sandwiched between the induction heating coils 4 is formed.

【0006】この状態で溶湯1が耐火物2に生じた亀裂
を通して漏出し、第2アンテナ5に接触すると溶湯1を
通して第1アンテナ4と第2アンテナ5とが電気的につ
ながり、第1アンテナ4と第2アンテナ5との間に接続
された電源6及び電流計7を通して電流が流れて電流計
7の指針が振れるので溶湯1が第2アンテナ5にまで湯
漏れしたことが検出される。
In this state, when the molten metal 1 leaks through a crack formed in the refractory 2 and contacts the second antenna 5, the first antenna 4 and the second antenna 5 are electrically connected through the molten metal 1, and the first antenna 4 The current flows through the power supply 6 and the ammeter 7 connected between the first antenna 5 and the second antenna 5, and the pointer of the ammeter 7 swings, so that it is detected that the molten metal 1 has leaked to the second antenna 5.

【0007】湯漏れが検出されて数時間から2、3日で
湯漏れが進行して溶湯1が誘導加熱コイル3に到達し、
水冷式の誘導加熱コイル3を溶かして、水に溶湯1が触
れると水が瞬時に気化して水蒸気爆発を起こし炉を破壊
する恐れがあるので、湯漏れが検出された場合は炉の運
転を止めて溶湯1を出湯して炉内を空にして、その後耐
火物2を張り替える。
In a few hours to two or three days after the leak is detected, the melt leaks and the molten metal 1 reaches the induction heating coil 3.
When the water-cooled induction heating coil 3 is melted and the molten metal 1 comes into contact with the water, the water is instantaneously vaporized, causing a steam explosion and possibly destroying the furnace. Stop and discharge the molten metal 1 to empty the furnace, and then replace the refractory 2.

【0008】一方、溶湯1の温度測定は出湯直前に使い
捨て式の浸漬形温度センサ8を溶湯1の中に浸けて行わ
れる。
On the other hand, the temperature measurement of the molten metal 1 is performed by immersing a disposable immersion type temperature sensor 8 in the molten metal 1 immediately before tapping.

【0009】浸漬形温度センサ8の代わりに、耐火物2
の中に保護管付き温度センサを埋め込みした例が特開平
3−207988号公報及び特開平1−167592号
公報、実開平4−64739号公報に示されている。
Instead of the immersion type temperature sensor 8, the refractory 2
Japanese Patent Application Laid-Open Nos. 3-207988 and 1-167592, and Japanese Utility Model Laid-Open No. 4-64739 disclose examples in which a temperature sensor with a protective tube is embedded in the inside.

【0010】[0010]

【発明が解決しようとする課題】図3に示されている使
い捨て式浸漬形温度センサは溶湯に浸けられる時間が5
秒から長くて30秒であり、溶湯が目標温度に達する直
前に目視判断してから温度センサを溶湯に浸けるので、
正確な温度に溶湯を昇温するためには少なくとも1回以
上測温する必要があり、さらに測温後は捨てられるため
に、使い捨て式浸漬形温度センサを多数使用しなければ
ならないという問題がある。
The disposable immersion type temperature sensor shown in FIG. 3 has a immersion time of 5 minutes.
It is 30 seconds at most from the second, and the temperature sensor is immersed in the molten metal after making a visual judgment just before the molten metal reaches the target temperature.
In order to raise the temperature of the molten metal to an accurate temperature, it is necessary to measure the temperature at least once, and furthermore, since the temperature is discarded, there is a problem that a large number of disposable immersion type temperature sensors must be used. .

【0011】さらに、上記公報に示された埋め込み形保
護管付き温度センサの保護管の材質はアルミナ(Al2
3 )系であり、熱伝導率が金属と比べて一桁低いので
被測定物の温度変化に対し応答性が良くないので昇温能
力の高い炉には使いにくい問題がある。
Further, the material of the protection tube of the temperature sensor with a built-in protection tube disclosed in the above publication is alumina (Al 2).
O 3 ) -based materials, which have an order of magnitude lower thermal conductivity than metals, have poor responsiveness to changes in the temperature of the object to be measured, and therefore have a problem that they are difficult to use in a furnace having a high temperature raising capability.

【0012】又、耐火物中に温度センサを埋め込む場合
は湯漏れ検知センサとしての第1アンテナの埋め込みに
追加される埋め込みとなり、それゆえセンサの埋め込み
個数が増加することは耐火物の円滑な膨張及び収縮を妨
げて、耐火物の寿命を短くすると共に、炉壁のセンサ埋
め込み個所からの湯漏れの危険性を増大させるという問
題がある。
Further, when the temperature sensor is embedded in the refractory, the temperature sensor is embedded in addition to the embedding of the first antenna as a leak detection sensor. Therefore, an increase in the number of embedded sensors is caused by a smooth expansion of the refractory. In addition, there is a problem in that shrinkage is hindered, the life of the refractory is shortened, and the danger of hot water leaking from the sensor wall in the furnace wall is increased.

【0013】この発明の目的は、耐火物の寿命に与える
影響が少なくかつるつぼ型誘導炉の湯漏れ検出と溶湯温
度の連続測定とを可能にした誘導炉用センサを提供する
ことにある。
An object of the present invention is to provide an induction furnace sensor which has a small influence on the life of a refractory and is capable of detecting molten metal leakage from a crucible-type induction furnace and continuously measuring a molten metal temperature.

【0014】[0014]

【課題を解決するための手段】請求項1の発明は、耐火
物からなるるつぼの周りにコイルを巻回してなる誘導炉
において、導電性有底円筒管を誘導炉の耐火物中に溶湯
に接するように埋設し、前記導電性有底円筒管を第1ア
ンテナとすると共に、前記るつぼの外周に第2アンテナ
を配置して誘導炉内の溶湯が耐火物を通して湯漏れした
ことを検出するための湯漏れ検知センサを形成し、前記
導電性有底円筒管内に絶縁材料によってこの導電性有底
円筒管から絶縁される溶湯温度を測定するための温度セ
ンサを配設して湯漏れ検知センサを形成し、前記導電性
有底円筒管を湯漏れ検知センサの第1アンテナと温度セ
ンサの保護管とに兼用するものとする。
According to the present invention, there is provided an induction furnace in which a coil is wound around a crucible made of a refractory, and a conductive bottomed cylindrical tube is melted in a refractory of the induction furnace. In order to detect that the molten metal in the induction furnace has leaked through the refractory by burying the conductive bottomed cylindrical tube as the first antenna and arranging the second antenna on the outer periphery of the crucible, A temperature sensor for measuring the temperature of molten metal that is insulated from the conductive bottomed cylindrical tube by an insulating material in the conductive bottomed cylindrical tube. The conductive bottomed cylindrical tube is also used as a first antenna of the hot water leak detection sensor and a protection tube of the temperature sensor.

【0015】請求項2の発明は、請求項1記載の誘導炉
用センサにおいて、前記導電性有底円筒管は、金属、金
属−セラミック複合材料、導電性セラミックの何れかか
ら成るものとする。
According to a second aspect of the present invention, in the sensor for an induction furnace according to the first aspect, the conductive bottomed cylindrical tube is made of any one of a metal, a metal-ceramic composite material, and a conductive ceramic.

【0016】請求項3の発明は、請求項1記載の誘導炉
用センサにおいて、前記導電性有底円筒管はモリブデン
−ジルコニア(Mo−ZrO2)から成るものとする。
According to a third aspect of the present invention, in the sensor for an induction furnace according to the first aspect, the conductive bottomed cylindrical tube is made of molybdenum-zirconia (Mo-ZrO 2 ).

【0017】請求項4の発明は、請求項1乃至3のいず
れかに記載の誘導炉用センサにおいて、前記導電性有底
円筒管は、るつぼ型誘導炉の炉底部にその先端が溶湯に
接触するように埋め込まれるものとする。
According to a fourth aspect of the present invention, in the sensor for an induction furnace according to any one of the first to third aspects, the conductive bottomed cylindrical tube is in contact with the molten metal at the tip of the furnace bottom of the crucible type induction furnace. Shall be embedded.

【0018】[0018]

【0019】この発明において、湯漏れ検知センサを形
成する導電性有底円筒管は、溶湯の温度を測定するため
の温度センサの保護管を構成する。それゆえ、この発明
においては、湯漏れ検知センサと温度センサとは一体化
されている。
In the present invention, the conductive bottomed cylindrical tube forming the leak detection sensor constitutes a protective tube of the temperature sensor for measuring the temperature of the molten metal. Therefore, in the present invention, the hot water leak detection sensor and the temperature sensor are integrated.

【0020】その際、温度センサの保護管を構成する湯
漏れ検知センサの導電性有底円筒管の材料(モリブデン
−ジルコニア(Mo−ZrO2 ))は、最高使用温度が
1700℃で、鉄、銅、アルミに対して耐溶損性に優れ
ている。更に、熱伝導率は1400℃において0.23
cal/cm・sec・℃でありアルミとほぼ同等の熱
伝導特性を持ち、体積固有抵抗が10〜100×10-6
Ω−cmであり鉄とほぼ同等の体積固有抵抗を持ってい
る。この熱伝導率が高いことは温度センサの保護管とし
て使用した場合、被測定物の温度変化を温度センサに伝
達する誤差を少なくし、応答性を良くする。また、体積
固有抵抗が小さいことは、溶湯と、湯漏れ検知センサ
と、電流計と、電源とから成る湯漏れ検出回路の調整抵
抗以外の抵抗値を殆ど零にできるので、湯漏れの有無に
おける検出電流差を顕著にする。
At this time, the material (molybdenum-zirconia (Mo-ZrO 2 )) of the conductive bottomed cylindrical tube of the leak detection sensor constituting the protection tube of the temperature sensor has a maximum operating temperature of 1700 ° C. Excellent erosion resistance to copper and aluminum. Further, the thermal conductivity is 0.23 at 1400 ° C.
cal / cm.sec..degree. C., having substantially the same thermal conductivity as aluminum, and having a volume resistivity of 10 to 100.times.10.sup.- 6.
Ω-cm and has a volume resistivity substantially equal to that of iron. The high thermal conductivity, when used as a protective tube for a temperature sensor, reduces errors in transmitting a temperature change of an object to be measured to the temperature sensor and improves responsiveness. In addition, since the volume resistivity is small, it is possible to make resistance values other than the adjustment resistance of the molten metal leak detection sensor, the ammeter, and the power supply other than the adjustment resistance almost zero, so that the presence or absence of the molten metal leaks. Make the detected current difference remarkable.

【0021】[0021]

【発明の実施の形態】図1はこの発明の実施の形態の主
要部の構成図を示し、図2はその使用状態の概略図を示
す。この図1及び図2において、従来例と同一の符号を
付けた部材はおおよそ同一の機能を有するのでその説明
は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a main part of an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a state of use thereof. In FIGS. 1 and 2, the members denoted by the same reference numerals as those of the conventional example have almost the same functions, and therefore the description thereof will be omitted.

【0022】先ず、図2において、1は溶湯、2はるつ
ぼ形状に成形された耐火物、3は耐火物2の外周側に配
置された誘導加熱コイル、5は耐火物2の外周部の殆ど
と誘導加熱コイル3との間に装着された第2アンテナ、
6は電源、7は電流計、9はこの発明による誘導炉用セ
ンサである。
First, in FIG. 2, 1 is a molten metal, 2 is a refractory formed in a crucible shape, 3 is an induction heating coil arranged on the outer peripheral side of the refractory 2, and 5 is almost all of the outer peripheral portion of the refractory 2. A second antenna mounted between the and the induction heating coil 3,
Reference numeral 6 denotes a power source, 7 denotes an ammeter, and 9 denotes a sensor for an induction furnace according to the present invention.

【0023】この誘導炉用センサ9は、図1に示されて
いるように、導電性有底円筒管(例えばモリブデン−ジ
ルコニヤ製、試験管形)から構成された湯漏れ検出セン
サ9aと、この湯漏れ検知センサ9aを形成する導電性
有底円筒管内に絶縁材料9cによってその導電性有底円
筒管から絶縁されて装着され溶湯温度を測定するための
熱電対式温度センサ(例えば白金−白金ロジュム熱電
対)9bとから構成されている。その際、湯漏れ検知セ
ンサ9aを形成する導電性有底円筒管は、溶湯温度を測
定するための熱電対式温度センサ9bの保護管を構成し
ている。
As shown in FIG. 1, the induction furnace sensor 9 includes a hot water leak detection sensor 9a composed of a conductive bottomed cylindrical tube (for example, a test tube type made of molybdenum-zirconia), A thermocouple-type temperature sensor (e.g., platinum-platinum rhodum) mounted in a conductive bottomed cylindrical tube forming the hot water leak detection sensor 9a and insulated from the conductive bottomed cylindrical tube by an insulating material 9c to measure the temperature of molten metal. Thermocouple) 9b. At this time, the conductive bottomed cylindrical tube forming the leak detection sensor 9a constitutes a protection tube of the thermocouple type temperature sensor 9b for measuring the temperature of the molten metal.

【0024】第2アンテナ5と、電流計7と、電源6
と、誘導炉用センサ9の湯漏れ検知センサ9aを構成す
る導電性有底円筒管とは電気的に接続されている。湯漏
れ検知センサ9aを構成する導電性有底円筒管は、図3
において説明した第1アンテナの機能を果たすべく、先
端が溶湯1に接触するように耐火物2で成形されたるつ
ぼ底部に埋め込まれている。
The second antenna 5, the ammeter 7, and the power source 6
Is electrically connected to a conductive bottomed cylindrical tube forming the leak detection sensor 9a of the induction furnace sensor 9. The conductive bottomed cylindrical tube constituting the hot water leak detection sensor 9a is shown in FIG.
In order to fulfill the function of the first antenna described in (1), the tip is buried in the crucible bottom formed of the refractory 2 so as to contact the molten metal 1.

【0025】殆どの誘導炉の誘導加熱コイル3は水冷式
であり、誘導加熱コイル3は図示されていない水回路を
通して高抵抗接地されており、湯漏れ検出回路を接地し
て使用している場合に湯漏れ検出回路の調整抵抗以外の
抵抗値が水回路の接地抵抗に近いか、それ以上であれ
ば、湯漏れ検出による電流計7の指示値と水回路接地に
よる電流計7の指示値に差が無くなり湯漏れを検出でき
なくなる。このために、湯漏れ検知センサの材料には体
積固有抵抗が小さいことが望まれる。また、るつぼ型誘
導炉においては、溶湯の浮遊電位をアースに落とすため
に第1アンテナを通して溶湯を接地するのが一般的であ
る。
The induction heating coil 3 of most induction furnaces is of a water-cooled type, and the induction heating coil 3 is grounded with a high resistance through a water circuit (not shown). If the resistance other than the adjustment resistance of the leak detection circuit is close to or greater than the ground resistance of the water circuit, the reading of the ammeter 7 by detecting the leak and the reading of the ammeter 7 by grounding the water circuit The difference disappears and the leak of hot water cannot be detected. For this reason, it is desired that the material of the hot water leak detection sensor has a low volume resistivity. In addition, in a crucible-type induction furnace, it is common to ground the molten metal through a first antenna in order to lower the floating potential of the molten metal to ground.

【0026】この発明による誘導炉用センサ9が設置さ
れたるつぼ型誘導炉において、溶湯1はるつぼ形状に成
形された耐火物2の中で誘導加熱コイル3の電磁誘導作
用により固形の金属から溶解され、目標成分になるよう
に添加物等により成分調整されて、目標温度にまで加熱
されてから出湯される。
In the crucible type induction furnace equipped with the induction furnace sensor 9 according to the present invention, the molten metal 1 is melted from solid metal in the refractory 2 formed into a crucible shape by the electromagnetic induction of the induction heating coil 3. Then, the components are adjusted by additives and the like so as to become the target components, and heated to the target temperature before tapping.

【0027】第2アンテナ5はるつぼの高さ方向に長い
短冊状のアルミ箔またはステンレス箔を隣り合う箔とが
数十mmの間隔で配置されて、円周方向の一か所で同じ
箔により電気的に短絡されたものをマイカ、テフロンシ
ート等の絶縁物シートでサンドウィッチされた構造のシ
ートを誘導加熱コイル4の内側に張りつけて作られてい
る。
The second antenna 5 is composed of a strip-shaped aluminum foil or a stainless steel foil which is long in the crucible height direction and is arranged at intervals of several tens of millimeters from adjacent foils. An electrically shorted sheet is sandwiched by an insulating sheet such as a mica sheet or a Teflon sheet and a sheet having a structure sandwiched between the induction heating coils 4 is formed.

【0028】この状態で溶湯1が耐火物2に生じた亀裂
を通して浸透し、第2アンテナ5に接触すると、溶湯1
を通して誘導炉用センサ9の湯漏れセンサ(第1アンテ
ナ)9aと第2アンテナ5とが電気的につながり、湯漏
れセンサ9aと第2アンテナ5との間に接続された電源
6と電流計7を通して電流が流れて電流計7の指針が振
れるので、溶湯1が第2アンテナ5にまで湯漏れしたこ
とが検出される。
In this state, when the molten metal 1 penetrates through cracks generated in the refractory 2 and comes into contact with the second antenna 5, the molten metal 1
The leak sensor (first antenna) 9a of the sensor 9 for the induction furnace and the second antenna 5 are electrically connected to each other, and the power source 6 and the ammeter 7 connected between the leak sensor 9a and the second antenna 5 are electrically connected. And the pointer of the ammeter 7 swings, it is detected that the molten metal 1 has leaked to the second antenna 5.

【0029】湯漏れが検出されて数時間から2、3日で
湯漏れが進行して溶湯1が誘導加熱コイル3に到達し、
水冷式の誘導加熱コイル3を溶かして、水に溶湯1が触
れると水が瞬時に気化して水蒸気爆発を起こし炉を破壊
する恐れがあるので、湯漏れが検出された場合は炉の運
転を止めて溶湯1を出湯して炉内を空にして、その後耐
火物2を張り替える。
In a few hours to two or three days after the leak is detected, the leak proceeds and the molten metal 1 reaches the induction heating coil 3.
When the water-cooled induction heating coil 3 is melted and the molten metal 1 comes into contact with the water, the water is instantaneously vaporized, causing a steam explosion and possibly destroying the furnace. Stop and discharge the molten metal 1 to empty the furnace, and then replace the refractory 2.

【0030】溶湯1の温度測定は湯漏れ検知センサ9a
を形成する有底円筒管内に装着された熱電対式温度セン
サ9bによって連続的に行われる。
The temperature of the molten metal 1 is measured by a molten metal leak detection sensor 9a.
Is continuously performed by a thermocouple-type temperature sensor 9b mounted in a bottomed cylindrical tube forming the following.

【0031】なお、湯漏れ検知センサ9aを形成する導
電性有底円筒管は金属、金属−セラミック複合材料、導
電性セラミックの何れかから構成することができる。
The conductive bottomed cylindrical tube forming the leak detecting sensor 9a can be made of any one of metal, metal-ceramic composite material, and conductive ceramic.

【0032】[0032]

【発明の効果】この発明によれば、湯漏れ検知センサを
構成する導電性有底円筒管の内部に、溶湯温度を測定す
る温度センサを挿入して、湯漏れ検知センサと溶湯温度
センサとを一体化したので、耐火物からなるるつぼの炉
壁への埋め込み個所を少なくすることができる。その
際、この発明によれば、湯漏れ検知センサを構成する導
電性有底円筒管にモリブデン−ジルコニア(Mo−Zr
2 )を使用すると、湯漏れ検出回路の調整抵抗以外の
抵抗値を殆ど零にできるので、その導電性有底円筒管を
溶湯の接地極(第1アンテナ)と兼用できる効果があ
り、寿命の方ではモリブデン−ジルコニア(Mo−Zr
2)の導電性有底円筒管の肉厚が3mmの場合300
時間以上の使用が可能となった。
According to the present invention, a temperature sensor for measuring the temperature of a molten metal is inserted inside a conductive bottomed cylindrical tube constituting a sensor for detecting a molten metal, and the sensor for detecting the molten metal and the temperature sensor for the molten metal are connected. Because they are integrated, the number of places where the crucible made of refractory is embedded in the furnace wall can be reduced. At this time, according to the present invention, molybdenum-zirconia (Mo-Zr) is added to the conductive bottomed cylindrical tube constituting the hot water leak detection sensor.
When O 2 ) is used, the resistance value other than the adjustment resistance of the molten metal leak detection circuit can be made almost zero, so that there is an effect that the conductive bottomed cylindrical tube can be used also as the ground electrode (first antenna) of the molten metal, and the life is shortened. Molybdenum-zirconia (Mo-Zr
300 when the thickness of the conductive bottomed cylindrical tube of O 2 ) is 3 mm
Use for more than an hour has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態の主要部分を示す概略構
成図
FIG. 1 is a schematic configuration diagram showing a main part of an embodiment of the present invention.

【図2】この発明の誘導炉用センサが設置されたるつぼ
型誘導炉を示す概略構成図
FIG. 2 is a schematic configuration diagram showing a crucible-type induction furnace in which the induction furnace sensor of the present invention is installed.

【図3】従来のるつぼ型誘導炉を示す概略構成図FIG. 3 is a schematic configuration diagram showing a conventional crucible-type induction furnace.

【符号の説明】[Explanation of symbols]

1…溶湯、2…耐火物、3…誘導加熱コイル、5…第2
アンテナ、6…電源、7…電流計、9…誘導炉用セン
サ、9a…湯漏れ検知センサ、9b…熱電対式温度セン
サ、9c…絶縁材料。
1 ... Molten metal, 2 ... Refractory, 3 ... Induction heating coil, 5 ... Second
Antenna, 6 power supply, 7 ammeter, 9 sensor for induction furnace, 9a hot water leak detection sensor, 9b thermocouple type temperature sensor, 9c insulating material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 静男 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 審査官 山本 一正 (56)参考文献 特開 昭53−8833(JP,A) 特開 平1−196493(JP,A) 特開 平6−82171(JP,A) 実開 昭63−101792(JP,U) (58)調査した分野(Int.Cl.7,DB名) F27B 14/20 F27D 21/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shizuo Hayashi 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Examiner, Fuji Electric Co., Ltd. Kazumasa Yamamoto (56) References JP-A-53-8883 (JP JP-A-1-196493 (JP, A) JP-A-6-82171 (JP, A) JP-A-63-101792 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB Name) F27B 14/20 F27D 21/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】耐火物からなるるつぼの周りにコイルを巻
回してなる誘導炉において、 導電性有底円筒管を誘導炉の耐火物中に溶湯に接するよ
うに埋設し、 前記導電性有底円筒管を第1アンテナとすると共に、前
記るつぼの外周に第2アンテナを配置して誘導炉内の溶
湯が耐火物を通して湯漏れしたことを検出するための湯
漏れ検知センサを形成し、 前記導電性有底円筒管内に絶縁材料によってこの導電性
有底円筒管から絶縁される溶湯温度を測定するための温
度センサを配設して湯漏れ検知センサを形成し、 前記導電性有底円筒管を湯漏れ検知センサの第1アンテ
ナと温度センサの保護管とに兼用することを特徴とする
誘導炉用センサ。
1. An induction furnace having a coil wound around a crucible made of a refractory, wherein a conductive bottomed cylindrical tube is buried in a refractory of the induction furnace so as to be in contact with a molten metal; A cylindrical tube is used as a first antenna, and a second antenna is arranged on the outer periphery of the crucible to form a molten metal leak detection sensor for detecting that molten metal in the induction furnace has leaked through a refractory; A temperature sensor for measuring the temperature of the molten metal insulated from the conductive bottomed cylindrical tube by an insulating material in a conductive bottomed cylindrical tube to form a molten metal leak detection sensor; A sensor for an induction furnace, wherein the sensor also serves as a first antenna of a hot water leak detection sensor and a protective tube of a temperature sensor.
【請求項2】請求項1記載の誘導炉用センサにおいて、
前記導電性有底円筒管は、金属、金属−セラミック複合
材料、導電性セラミックの何れかから成ることを特徴と
する誘導炉用センサ。
2. The induction furnace sensor according to claim 1, wherein
The sensor for an induction furnace, wherein the conductive bottomed cylindrical tube is made of any one of a metal, a metal-ceramic composite material, and a conductive ceramic.
【請求項3】請求項1記載の誘導炉用センサにおいて、
前記導電性有底円筒管はモリブデン−ジルコニア(Mo
−ZrO2)から成ることを特徴とする誘導炉用セン
サ。
3. The sensor for an induction furnace according to claim 1, wherein
The conductive bottomed cylindrical tube is made of molybdenum-zirconia (Mo).
-ZrO 2 ). A sensor for an induction furnace, comprising:
【請求項4】請求項1乃至3のいずれかに記載の誘導炉
用センサにおいて、前記導電性有底円筒管は、るつぼ型
誘導炉の炉底部にその先端が溶湯に接触するように埋め
込まれることを特徴とする誘導炉用センサ。
4. A sensor for an induction furnace according to claim 1, wherein said conductive bottomed cylindrical tube is embedded in a furnace bottom of a crucible-type induction furnace so that a tip thereof contacts a molten metal. A sensor for an induction furnace characterized by the above-mentioned.
JP8059882A 1996-03-18 1996-03-18 Induction furnace sensors Expired - Lifetime JP3022764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8059882A JP3022764B2 (en) 1996-03-18 1996-03-18 Induction furnace sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8059882A JP3022764B2 (en) 1996-03-18 1996-03-18 Induction furnace sensors

Publications (2)

Publication Number Publication Date
JPH09250879A JPH09250879A (en) 1997-09-22
JP3022764B2 true JP3022764B2 (en) 2000-03-21

Family

ID=13125964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8059882A Expired - Lifetime JP3022764B2 (en) 1996-03-18 1996-03-18 Induction furnace sensors

Country Status (1)

Country Link
JP (1) JP3022764B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020001393A (en) * 2000-06-28 2002-01-09 이구택 Device for inspecting hydration state of refractory in furnace
JP5578112B2 (en) * 2011-03-02 2014-08-27 新日鐵住金株式会社 Induction heating device cooling method

Also Published As

Publication number Publication date
JPH09250879A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
KR960013997B1 (en) Temperature sensor
US5227610A (en) Process and device for indicating an anomalous thermal stress condition in a heating surface made from glass ceramic or a comparable material
US5864282A (en) Unique strain relief junction
JPH05180583A (en) Early warning device to damage of furnace lining of housed ceramic of metallic melt of melting furnace
JP3022764B2 (en) Induction furnace sensors
JP5404325B2 (en) Electromagnetic heating cooker
CN106124079A (en) Fexible film thermocouple
JP2010027314A (en) Induction cooker
CN105371479B (en) A kind of level gauge of liquid heater
JP3480786B2 (en) Induction melting furnace leak detector
US3782181A (en) Dual measurement ablation sensor
JPS6126858Y2 (en)
CN108758717A (en) System for detecting temperature and cooking stove with it
JP4232406B2 (en) Melting leak detection method for melting holding furnace and melting holding furnace
JPH0533918Y2 (en)
JP2003317918A (en) Induction heating cooking device
JP2524384B2 (en) Cryogenic thermometer
JPH11326013A (en) Liquid level detector
JPH033916Y2 (en)
JP2018155424A (en) Molten metal leakage detection device of induction melting furnace
JPS5952187A (en) Detector for run-out from crucible type induction furnace
US3378621A (en) Electrode tip failure detector
CN218336474U (en) Thick film heater with whole face prevents dry combustion method function
JPH0350400Y2 (en)
JPH05273052A (en) Temperature monitoring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term