JP5578112B2 - Induction heating device cooling method - Google Patents

Induction heating device cooling method Download PDF

Info

Publication number
JP5578112B2
JP5578112B2 JP2011045391A JP2011045391A JP5578112B2 JP 5578112 B2 JP5578112 B2 JP 5578112B2 JP 2011045391 A JP2011045391 A JP 2011045391A JP 2011045391 A JP2011045391 A JP 2011045391A JP 5578112 B2 JP5578112 B2 JP 5578112B2
Authority
JP
Japan
Prior art keywords
bushing
induction heating
refractory
outer case
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011045391A
Other languages
Japanese (ja)
Other versions
JP2012180573A (en
Inventor
元邦 板楠
英彰 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011045391A priority Critical patent/JP5578112B2/en
Publication of JP2012180573A publication Critical patent/JP2012180573A/en
Application granted granted Critical
Publication of JP5578112B2 publication Critical patent/JP5578112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、誘導炉に設置されているチャンネル型誘導加熱装置の冷却方法に関する。 The present invention relates to a cooling method for a channel type induction heating device installed in an induction furnace.

高炉から出銑した溶融金属はトピードカー(混銑車)や溶銑鍋等を介して転炉(精錬炉)へ供給される。その際、高炉から出銑される溶融金属(以下では、「溶湯」と呼ぶこともある。)の量や転炉での溶鋼生産量の変動により転炉への溶湯供給条件が変動するため、誘導炉に溶湯を一旦貯蔵している。この誘導炉は、貯蔵されている溶湯の保熱及び加熱を行う誘導加熱装置を備えている。 Molten metal discharged from the blast furnace is supplied to a converter (smelting furnace) through a topped car (mixing car), a hot metal ladle, or the like. At that time, the molten metal supply conditions to the converter vary depending on the amount of molten metal discharged from the blast furnace (hereinafter sometimes referred to as “molten metal”) and the amount of molten steel produced in the converter. The molten metal is temporarily stored in the induction furnace. This induction furnace is provided with an induction heating device that performs heat retention and heating of the stored molten metal.

誘導加熱装置には、ループ状の溶湯流路が形成されている。ループ状の溶湯流路(以下では、「湯道」と呼ぶこともある。)で囲まれた領域の中央部には、誘導加熱コイルが巻かれた鉄心が配置されている。誘導加熱コイルを1次回路、湯道を流れる溶湯を2次回路として変圧器回路を構成することにより溶湯の加熱が行われる。 A loop-shaped molten metal flow path is formed in the induction heating device. An iron core around which an induction heating coil is wound is disposed at the center of a region surrounded by a loop-shaped molten metal flow path (hereinafter also referred to as “runner”). The molten metal is heated by configuring the transformer circuit with the induction heating coil as the primary circuit and the molten metal flowing through the runner as the secondary circuit.

チャンネル型(溝型)の湯道が形成されたチャンネル型(溝型)誘導加熱装置では、電力効率を上げるため、湯道に面する耐火物の厚みを必要最小限の厚みとし、誘導加熱コイルと湯道を可能な限り接近させている。その結果、湯道に面する耐火物の溶損又は亀裂等によって湯漏れが発生した場合、誘導加熱装置を覆う外装ケースや誘導加熱コイルが損傷し、さらに亀裂が成長して誘導加熱装置に付設されている水冷管に到達すると、冷却水と溶湯が反応して水蒸気爆発を誘発する危険性がある。
そのため、湯道に面する耐火物中に湯漏れ検知アンテナを埋め込んでおき、この湯漏れ検知アンテナと溶湯との間に電圧を印加して、耐火物を介して溶湯と湯漏れ検知アンテナとの間に流れる電流を監視することにより、湯漏れ(溶湯の漏洩)を検知することが行われている(例えば、特許文献1〜3参照)。
In a channel type (groove type) induction heating device in which a channel type (groove type) runway is formed, in order to increase power efficiency, the thickness of the refractory facing the runway is made the minimum necessary thickness, and the induction heating coil And the runway as close as possible. As a result, when molten metal leaks due to melting or cracking of the refractory facing the runner, the outer case or induction heating coil covering the induction heating device is damaged, and cracks grow and are attached to the induction heating device. When reaching the water-cooled pipe, there is a risk that the cooling water and the molten metal react to induce a steam explosion.
Therefore, a leak detector antenna is embedded in the refractory facing the runway, a voltage is applied between the leak detector antenna and the molten metal, and the molten metal and the leak detector antenna are connected via the refractory. By monitoring the current flowing between them, detection of hot water leakage (leakage of molten metal) is performed (see, for example, Patent Documents 1 to 3).

湯漏れ検知システムの電気回路の場合、平常時は電気抵抗が大きいため、電流は殆ど流れていないが、湯漏れが発生すると、湯漏れ検知アンテナと湯道が短絡して回路が閉じることにより電流が流れ、湯漏れが検知される。このため、例えば湯漏れ検知アンテナから延出するリード線が破損切断等して湯漏れ検知システムに設備的な異常が発生した場合、これに気付かない危険性が高い。そこで、特許文献4では、湯漏れ検知アンテナ1基について2本以上のリード線を引き出しておくことにより、これらのリード線間で電流を導通させてリード線の断線の有無を判定するようにしている。 In the case of an electric circuit of a hot water leak detection system, since electric resistance is large in normal times, almost no current flows. However, when a hot water leak occurs, the electric current is caused by the short circuit between the hot water leak detection antenna and the runway and the circuit closing. Flows and a leak is detected. For this reason, for example, when a lead abnormality extending from the hot water leak detection antenna breaks and cuts and a facility abnormality occurs in the hot water leak detection system, there is a high risk of not being aware of this. Therefore, in Patent Document 4, by drawing out two or more lead wires for one molten metal leak detection antenna, current is conducted between these lead wires to determine whether or not the lead wires are disconnected. Yes.

実開昭53−48231号公報Japanese Utility Model Publication No. 53-48231 特開平9−133601号公報JP-A-9-133601 特開2008−267758号公報JP 2008-267758 A 特開2008−170062号公報JP 2008-170062 A

上述したように、湯漏れ検知システムは、耐火物中に埋め込まれた湯漏れ検知アンテナと溶湯との間に電圧を印加することにより、耐火物を介して溶湯と湯漏れ検知アンテナの間に流れる電流を監視し、その電流値の挙動によって湯漏れを判定する。つまり、誘導炉内の溶湯と湯漏れ検知アンテナの間の電気抵抗値が、ある基準値を下回った場合に、湯漏れが発生したと判断するものである。
しかし、この電気抵抗値が低下する要因は湯漏れだけではなく、他の要因によって電気抵抗値が低下し、湯漏れが発生したと誤認する(湯漏れ誤検知)場合がある。具体的には、チャンネル型誘導加熱装置の印加電力を低出力状態(保熱操業)、即ちスクラップや型銑等の冷鉄源を溶解せず、溶湯を維持するのみの最低限の電力のみを印加している状態から高出力状態(加熱操業)、即ち誘導加熱装置の定格出力を用いて最大限の冷鉄源を溶解する状態に移行する際に、一時的に湯漏れ誤検知が起きることがある。
As described above, the molten metal detection system flows between the molten metal and the molten metal detection antenna via the refractory by applying a voltage between the molten metal detection antenna embedded in the refractory and the molten metal. The current is monitored, and a leak is determined by the behavior of the current value. That is, when the electric resistance value between the molten metal in the induction furnace and the molten metal leak detection antenna falls below a certain reference value, it is determined that the molten metal leak has occurred.
However, the cause of the decrease in the electrical resistance value is not only the leakage of hot water, but the electrical resistance value may be decreased due to other factors, and it may be mistakenly recognized that a leakage of molten metal has occurred (water leakage error detection). Specifically, the applied electric power of the channel type induction heating device is in a low output state (heat insulation operation), that is, only the minimum electric power for maintaining the molten metal without melting the cold iron source such as scraps and molds. When a transition is made from the applied state to the high output state (heating operation), that is, the state where the maximum cold iron source is melted using the rated output of the induction heating device, erroneous detection of hot water leakage will occur temporarily. There is.

本発明者等は、後述するように、上記湯漏れ誤検知の原因がチャンネル型誘導加熱装置内で生じる結露が原因であることを発見した。そこで、本発明では、チャンネル型誘導加熱装置の冷却方法を改善することにより、保熱操業から加熱操業に移行する際に一時的に発生する湯漏れ誤検知を防止することを目的とする。 As will be described later, the present inventors have found that the cause of the erroneous detection of hot water leakage is caused by dew condensation occurring in the channel type induction heating apparatus. Accordingly, an object of the present invention is to prevent erroneous detection of hot water leakage that temporarily occurs when shifting from a heat retaining operation to a heating operation by improving the cooling method of the channel type induction heating device.

本発明者等は、保熱操業から加熱操業に移行する際に一時的に発生する湯漏れ誤検知が、誘導加熱装置内に存在する水分に起因していることを発見した。
誘導加熱装置内には、電力効率を上げるため、必要最小限の厚みとした耐火物を湯道に面して配置し、誘導加熱コイルと湯道を可能な限り接近させている。このため、湯道を構成する耐火物として、ドライスタンプ材(乾式ラミング材とも言う)と呼ばれる、水を添加しない粉粒状の不定形耐火物が適用されることが多い。ドライスタンプ材を適用すると、高温に曝される湯道の稼働面近傍が焼き固まって焼結体となり湯道壁面が形成される。一方、その背面はドライで未焼結な粉粒圧密体の状態が維持される。これにより、焼結体に亀裂が入り当該亀裂に溶湯が浸入(湯漏れの開始)しても、その溶湯の熱によって背面の粉粒圧密体が焼結し、それ以上の湯漏れの進展が阻止される。その結果、外装ケースに達するような湯漏れが回避される。
しかし、ドライスタンプ材を適用する場合でも、誘導加熱装置を構成する耐火物には微量の自由水や結晶水が含まれている。また、誘導加熱装置内には、誘導加熱装置の施工時に大気中に含まれていた水分が閉じ込められている。本発明者等は、これらの水分が湯道近傍の高温部で蒸発し、水冷構造とされている外装ケースやブッシング(湯道を形成する耐火物と誘導加熱コイルとの間に設けられる隔壁)の近傍で結露して付近の耐火物中に湿潤部を形成することにより、外装ケースと湯漏れ検知アンテナとの間の耐火物湿潤部を経由して電気抵抗値が低下することを発見した。
The inventors of the present invention have discovered that the erroneous detection of hot water leakage that temporarily occurs when shifting from the heat retaining operation to the heating operation is caused by moisture present in the induction heating apparatus.
In the induction heating apparatus, in order to increase power efficiency, a refractory having a minimum thickness is arranged facing the runner, and the induction heating coil and the runner are as close as possible. For this reason, as a refractory constituting the runner, a powdery amorphous refractory called a dry stamp material (also referred to as a dry ramming material) to which water is not added is often applied. When the dry stamp material is applied, the vicinity of the running surface of the runner exposed to high temperature is baked and solidified to become a sintered body, and the runner wall surface is formed. On the other hand, the back surface is maintained in a dry and unsintered powder compact. As a result, even if a crack occurs in the sintered body and the molten metal enters the crack (start of leakage), the powder compact on the back surface is sintered by the heat of the molten metal, and further leakage of molten metal is caused. Be blocked. As a result, hot water leakage that reaches the outer case is avoided.
However, even when a dry stamp material is applied, the refractory constituting the induction heating device contains a small amount of free water or crystal water. Moreover, the moisture contained in the atmosphere at the time of construction of the induction heating device is confined in the induction heating device. The present inventors evaporate these moisture at a high temperature portion in the vicinity of the runner and have a water-cooled outer case or bushing (a partition wall provided between the refractory forming the runner and the induction heating coil). It has been discovered that by forming condensation in the vicinity of the refractory and forming a wet portion in the refractory nearby, the electrical resistance value decreases via the refractory wet portion between the outer case and the leak detector antenna.

チャンネル型誘導加熱装置は出力(印加電力)が大きいため、外装ケース及びブッシングを水冷構造とし、誘導発熱から外装ケース及びブッシングを保護する場合が多い。一方、湯漏れ検知アンテナは、耐火物の背面近傍、即ち、外装ケース及びブッシングの近傍に埋設される場合が多い。ブッシング及び/又は外装ケースに誘導電流が流れることによるブッシング及び/又は外装ケースの異常発熱を防止するため、ブッシングは外装ケースから電気的に絶縁して設置されることが多いことから、特許文献3に記載のようにブッシング自体に湯漏れ検知アンテナの機能を兼用させる場合もある。 Since the channel type induction heating device has a large output (applied power), the outer case and the bushing are often water-cooled to protect the outer case and the bushing from induction heat generation. On the other hand, the hot water leak detection antenna is often embedded in the vicinity of the back surface of the refractory, that is, in the vicinity of the exterior case and the bushing. In order to prevent abnormal heat generation of the bushing and / or the outer case due to the induction current flowing through the bushing and / or the outer case, the bushing is often electrically insulated from the outer case. In some cases, the bushing itself also has the function of a hot water leak detection antenna as described in (1).

従って、チャンネル型誘導加熱装置が稼働中でも、湯漏れ検知アンテナの近傍は比較的低温が維持されており、チャンネル型誘導加熱装置の湯道を構成する耐火物の稼働面近傍から脱離した水蒸気が湯漏れ検知アンテナの近傍で結露し、外装ケースと湯漏れ検知アンテナとの間の電気抵抗値を低下させる。また、ブッシング自体に湯漏れ検知アンテナの機能を兼用させる場合、湯漏れ検知アンテナ自体を強力に冷却して多量に結露させることと等価となるため、湯漏れ検知アンテナ(即ちブッシング)と耐火物湿潤部の接触抵抗が低下し易くなる。その結果、湯漏れ検知アンテナ(即ちブッシング)と外装ケースの間の絶縁抵抗値が低下し易くなり、湯漏れ誤検知に至る傾向が強い。 Therefore, even when the channel type induction heating device is in operation, the vicinity of the hot water leak detection antenna is maintained at a relatively low temperature, and water vapor desorbed from the vicinity of the operating surface of the refractory constituting the runway of the channel type induction heating device. Condensation occurs in the vicinity of the hot water leak detection antenna, and the electrical resistance value between the outer case and the hot water leak detection antenna is reduced. In addition, when the function of the hot water leak detection antenna is also used for the bushing itself, it is equivalent to powerful cooling of the hot water leak detection antenna itself to cause a large amount of dew condensation. The contact resistance of the part tends to decrease. As a result, the insulation resistance value between the hot water leak detection antenna (that is, the bushing) and the outer case is likely to decrease, and there is a strong tendency for erroneous detection of hot water leak.

一般に、溶湯排出口の耐火物稼働面から炉体鉄皮にかけて架橋するように付着する地金が存在し、該地金によって炉内溶湯と炉体鉄皮との間に電気的な導通が存在することが多い。また、外装ケースは炉体鉄皮にボルト・ナットを用いて強固に締結されるため、外装ケースと炉体鉄皮との間に電気的な導通が存在することが多い。即ち、外装ケースと誘導炉内の溶湯との間に電気的な導通が存在する場合が多い。そのため、外装ケースと湯漏れ検知アンテナとの間の電気抵抗値の低下と、溶湯と湯漏れ検知アンテナとの間の電気抵抗値の低下とが区別できず、湯漏れ誤検知が発生する。
特に、誘導炉を待機状態(保熱操業状態)からスクラップ溶解状態(加熱操業状態)へ移行させる過渡期においては、チャンネル型誘導加熱装置の印加電力が低出力状態から高出力状態へ移行し、チャンネル型誘導加熱装置の湯道を構成する耐火物の稼働面近傍の温度が大きく上昇する。これに伴って、湯道近傍の高温部から発生した水蒸気が湯漏れ検知アンテナの近傍で結露することにより、湯漏れ誤検知が発生する。但し、チャンネル型誘導加熱装置が高出力状態になると、外装ケース及びブッシングの温度も印加電力による発熱等によって上昇するため、概ね1〜6時間後には結露がなくなり、湯漏れ誤検知は解消される。
In general, there is a bare metal that adheres to bridge from the refractory operating surface of the molten metal outlet to the furnace core, and there is electrical continuity between the molten metal in the furnace and the furnace core Often to do. In addition, since the outer case is firmly fastened to the furnace body skin using bolts and nuts, there is often electrical continuity between the outer case and the furnace body skin. That is, there is often an electrical continuity between the outer case and the molten metal in the induction furnace. Therefore, a decrease in electrical resistance value between the outer case and the molten metal detection antenna cannot be distinguished from a decrease in electrical resistance value between the molten metal and the molten metal detection antenna, and erroneous detection of molten metal occurs.
In particular, in the transition period in which the induction furnace shifts from the standby state (heat retention operation state) to the scrap melting state (heating operation state), the applied power of the channel type induction heating device shifts from the low output state to the high output state, The temperature in the vicinity of the working surface of the refractory constituting the runner of the channel type induction heating device is greatly increased. Along with this, water vapor generated from a high-temperature portion near the runner is condensed in the vicinity of the hot water leak detection antenna, thereby causing false detection of hot water leak. However, when the channel type induction heating device is in a high output state, the temperature of the outer case and bushing also rises due to heat generated by the applied power, etc., so that condensation does not occur after about 1 to 6 hours, and erroneous detection of hot water leakage is eliminated. .

要するに、保熱操業から加熱操業に移行する際に一時的に発生する湯漏れ誤検知の原因は、チャンネル型誘導加熱装置が低出力状態から高出力状態へ移行して湯道温度が上昇するのに伴って、湯道稼働面近傍から蒸発した水分が、まだ温度上昇していない外装ケース及びブッシングの内面で結露することによるものである。また、高出力状態が続くと、外装ケース及びブッシングの温度も徐々に上昇するため、外装ケース及びブッシングの内面で結露した水分が再び蒸発することにより、湯漏れ誤検知が解消される。 In short, the cause of hot water leak detection that occurs temporarily when shifting from heat insulation operation to heating operation is that the channel temperature rises as the channel type induction heating device shifts from the low output state to the high output state. Accordingly, moisture evaporated from the vicinity of the running surface of the runner is condensed on the inner surface of the outer case and the bushing where the temperature has not risen yet. In addition, when the high output state continues, the temperature of the outer case and the bushing gradually increases, so that moisture condensed on the inner surfaces of the outer case and the bushing is evaporated again, thereby eliminating erroneous detection of hot water leakage.

チャンネル型誘導加熱装置に付設される冷却設備は、チャンネル型誘導加熱装置の定格出力に見合った冷却能力を発揮するように設計されるため、低出力状態では冷却過剰となっている。そこで、本発明では、チャンネル型誘導加熱装置の冷却方法を改善することにより、保熱操業から加熱操業に移行する際に一時的に発生する湯漏れ誤検知を防止する。
即ち、本発明は、溶融金属が流れるループ状の流路を形成する耐火物と、前記耐火物を被覆する外装ケースと、前記耐火物の内周面に内張りされたブッシングと、前記外装ケース及び前記ブッシングに付設された水冷管と、前記ブッシングで画成された空洞部の中央に配置された誘導加熱コイルと、前記耐火物中に埋設された湯漏れ検知アンテナとを備えるチャンネル型誘導加熱装置の冷却方法に関するものであって、
前記水冷管を流れる冷却水の温度が、前記冷却水と前記外装ケース及び前記ブッシングのそれぞれとが熱交換を開始する位置である、前記外装ケース及び前記ブッシングの各入口で40℃以上、且つ前記冷却水と前記外装ケース及び前記ブッシングのそれぞれとが熱交換を終了する位置である、前記外装ケース及び前記ブッシングの各出口で100℃未満であることを特徴としている。
The cooling equipment attached to the channel type induction heating device is designed to exhibit a cooling capacity commensurate with the rated output of the channel type induction heating device, and thus is overcooled in a low output state. Therefore, in the present invention, by improving the cooling method of the channel type induction heating device, erroneous detection of hot water leakage that temporarily occurs when the heat-holding operation is shifted to the heating operation is prevented.
That is, the present invention provides a refractory that forms a loop-shaped flow path through which molten metal flows , an exterior case that covers the refractory, a bushing that is lined on the inner peripheral surface of the refractory, the exterior case, A channel-type induction heating apparatus comprising: a water-cooled tube attached to the bushing; an induction heating coil disposed in the center of a cavity defined by the bushing; and a hot water leak detection antenna embedded in the refractory. The method of cooling
The temperature of the cooling water flowing through the cooling water pipe is, wherein the coolant is a position where the respective starts heat exchange of the outer casing and the bushing, 40 ° C. or higher in the inlet of the outer casing and the bushing, and wherein The cooling water and each of the outer case and the bushing are at positions where heat exchange is finished, and each outlet of the outer case and the bushing is less than 100 ° C.

一般に、チャンネル型誘導加熱装置の外装ケース及びブッシングを冷却する冷却設備では、印加電力の大小にかかわらず、チラー(冷却装置)の設定や冷却水の流量は一定とされている。このため、低出力状態では冷却過剰となっている。一方、低出力状態から高出力状態へ移行すると、外装ケース及びブッシングの近傍では露点が上昇するため、外装ケース及びブッシングの近傍温度が露点より低くなる。その結果、低出力状態から高出力状態へ移行する際に、外装ケース及びブッシングの近傍において結露が発生しやすくなる。
上記現象に対して、本発明では、外装ケース及びブッシングへ供給される冷却水の温度を制御し、低出力状態においても冷却水温度が40℃以上となるようにする。これにより、低出力状態から高出力状態へ移行する際も、外装ケース及びブッシングの近傍温度が露点より高い温度に維持され、結露の発生が抑制される。なお、冷却水の温度の上限値は沸点(100℃)未満としている。
In general, in a cooling facility for cooling an outer case and a bushing of a channel type induction heating device, the setting of a chiller (cooling device) and the flow rate of cooling water are constant regardless of the magnitude of applied power. For this reason, the cooling is excessive in the low output state. On the other hand, when shifting from the low output state to the high output state, the dew point increases in the vicinity of the outer case and the bushing, and therefore the temperature near the outer case and the bushing becomes lower than the dew point. As a result, when shifting from the low output state to the high output state, condensation is likely to occur in the vicinity of the outer case and the bushing.
With respect to the above phenomenon, in the present invention, the temperature of the cooling water supplied to the outer case and the bushing is controlled so that the cooling water temperature becomes 40 ° C. or higher even in a low output state. Thereby, also when changing from a low output state to a high output state, the vicinity temperature of an exterior case and a bushing is maintained at a temperature higher than a dew point, and generation | occurrence | production of dew condensation is suppressed. Note that the upper limit value of the temperature of the cooling water is less than the boiling point (100 ° C.).

本発明に係る誘導加熱装置の冷却方法では、外装ケース及びブッシングへ供給される冷却水の温度が低出力状態においても40℃以上となるように制御するので、外装ケース及びブッシングの近傍における結露の発生が抑制され、保熱操業から加熱操業に移行する際に一時的に発生する湯漏れ誤検知を防止することができる。 In the cooling method of the induction heating device according to the present invention, the temperature of the cooling water supplied to the outer case and the bushing is controlled to be 40 ° C. or higher even in a low output state, so that condensation in the vicinity of the outer case and the bushing is prevented. Generation | occurrence | production is suppressed and the hot water leak erroneous detection which generate | occur | produces temporarily when it transfers to heat operation from heat insulation operation can be prevented.

誘導炉の模式図である。It is a schematic diagram of an induction furnace. (A)はチャンネル型誘導加熱装置の平断面図、(B)はA−A矢視断面図である。(A) is a plane sectional view of a channel type induction heating device, and (B) is a sectional view taken along line AA. 従来の誘導加熱装置の冷却方法を用いた時の外装ケース近傍における耐火物温度及び露点の温度分布を操業状態ごとに示したグラフである。It is the graph which showed the temperature distribution of the refractory material temperature and dew point in the exterior case vicinity when the cooling method of the conventional induction heating apparatus was used for every operating state. 本発明の一実施の形態に係る誘導加熱装置の冷却方法を用いた時の外装ケース近傍における耐火物温度及び露点の温度分布を操業状態ごとに示したグラフである。It is the graph which showed the temperature distribution of the refractory material temperature and the dew point in the exterior case vicinity when the cooling method of the induction heating apparatus which concerns on one embodiment of this invention was used.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態に付き説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

溶湯(溶融金属)を貯蔵する誘導炉10は、図1に示すように、両端面が封止された円筒形状とされ、炉体の中心軸が水平となるように支持台26上に設置されている。誘導炉10は鉄皮で覆われており、鉄皮の内側には耐火物層が形成されている。
誘導炉10の両側面下部には、誘導炉10の中心軸方向に間隔をあけてチャンネル型誘導加熱装置11(以下では、単に「誘導加熱装置」と呼ぶ。)が複数設置されている(本実施の形態では、片側3基、計6基設置されている。)。また、誘導炉10の一方の側面には、スクラップを装入するためのスクラップ装入口12が、他方の側面には、溶湯を投入するための受銑口(図示省略)と溶湯を排出するための出銑口(図示省略)が設けられている。
As shown in FIG. 1, the induction furnace 10 for storing molten metal (molten metal) has a cylindrical shape with both end faces sealed, and is installed on a support base 26 so that the center axis of the furnace body is horizontal. ing. The induction furnace 10 is covered with an iron skin, and a refractory layer is formed inside the iron skin.
A plurality of channel-type induction heating devices 11 (hereinafter simply referred to as “induction heating devices”) are provided at lower portions on both sides of the induction furnace 10 at intervals in the central axis direction of the induction furnace 10 (this is simply referred to as “induction heating device” hereinafter). In the embodiment, three on one side, a total of six are installed.) In addition, a scrap charging port 12 for charging scrap is provided on one side surface of the induction furnace 10, and a receiving port (not shown) for charging molten metal and a molten metal are discharged on the other side surface. Is provided with an outlet (not shown).

各誘導加熱装置11は扁平な角柱状とされ(図2(B)参照)、誘導炉10の側面から外方に向けて突出するように設置されている。誘導加熱装置11は、溶湯が流れる流路13と、流路13に面して配置された耐火物18、19と、誘導加熱装置11を覆う鉄製の外装ケース17と、溶湯を加熱するための誘導加熱手段とを備え(図2(A)参照)、誘導炉10に貯蔵された溶湯の保熱及び加熱を行う。 Each induction heating device 11 has a flat prismatic shape (see FIG. 2B), and is installed so as to protrude outward from the side surface of the induction furnace 10. The induction heating device 11 includes a flow path 13 through which the molten metal flows, refractories 18 and 19 disposed facing the flow path 13, an iron outer case 17 that covers the induction heating apparatus 11, and heating the molten metal. An induction heating means (see FIG. 2A), and heat retention and heating of the molten metal stored in the induction furnace 10 is performed.

流路13は平面視して略「山」の字状とされ、誘導加熱装置11の中心軸に沿って形成された中央流路14と、中央流路14を挟んで両側部に形成された一対の側部流路15と、中央流路14及び一対の側部流路15と連通する、誘導加熱装置11の先端部に形成された端部流路16とから構成されている。誘導炉10に貯蔵された溶湯は、中央流路14から誘導加熱装置11内に流入し、端部流路16で左右に分岐した後、一対の側部流路15から誘導炉10へ向けて流出するループ状の湯道とされている。 The channel 13 has a substantially “mountain” shape in plan view, and is formed on both sides of the central channel 14 formed along the central axis of the induction heating device 11 and the central channel 14. A pair of side flow paths 15 and an end flow path 16 formed at the distal end portion of the induction heating device 11 that communicate with the central flow path 14 and the pair of side flow paths 15 are configured. The molten metal stored in the induction furnace 10 flows into the induction heating device 11 from the central flow path 14, branches left and right in the end flow path 16, and then flows from the pair of side flow paths 15 toward the induction furnace 10. It is said to be a looped runner that flows out.

中央流路14と側部流路15との間に配置された耐火物19は平面視して「ロ」の字状とされ、耐火物19の内周面には銅製のブッシング20が内張りされている(図2(A)参照)。また、ブッシング20で画成された空洞部21の中央には、溶湯を加熱するための誘導加熱手段である誘導加熱コイル22が巻かれた鉄心23が配置されている。各空洞部21に配置された鉄心23は横架材24によって連結され、立面視して「ロ」の字状のヨークを構成している(図2(B)参照)。
誘導加熱コイル22に交流電流を流すことにより、鉄心23に磁束が発生する。この磁束が、流路13内を流れる溶湯からなる溶湯電路と鎖交することにより、溶湯電路内に誘導電流が発生し、この誘導電流によるジュール熱により溶湯が加熱される。一般に、1ターンの溶湯電路に発生する誘導電流は大電流となる。
The refractory 19 disposed between the central flow path 14 and the side flow path 15 has a “B” shape in plan view, and a copper bushing 20 is lined on the inner peripheral surface of the refractory 19. (See FIG. 2A). In addition, an iron core 23 around which an induction heating coil 22 that is induction heating means for heating the molten metal is wound is disposed in the center of the hollow portion 21 defined by the bushing 20. The iron cores 23 arranged in the respective hollow portions 21 are connected by a horizontal member 24 to constitute a “B” -shaped yoke as viewed from above (see FIG. 2B).
By passing an alternating current through the induction heating coil 22, magnetic flux is generated in the iron core 23. When this magnetic flux is linked to a molten metal circuit made of molten metal flowing in the flow path 13, an induced current is generated in the molten metal circuit, and the molten metal is heated by Joule heat generated by the induced current. Generally, the induced current generated in the one-turn molten metal circuit is a large current.

耐火物18、19の溶損又は亀裂等による湯漏れ(溶湯の漏洩)を検知するため、外装ケース17に接する耐火物18には外装ケース17に沿って、またブッシング20に接する耐火物19にはブッシング20に沿って、それぞれ湯漏れ検知アンテナ25が埋設されている。流路13と外装ケース17及びブッシング20との距離、則ち耐火物18、19の厚さは各々100mm〜400mm程度である。
また、外装ケース17とブッシング20には、各々を冷却するための水冷管(図示省略)が付設されている。外装ケース17及びブッシング20が水冷ジャケットとなっていることが多い。誘導加熱装置11に付設される水冷設備は、誘導加熱装置11の定格出力に見合った冷却能力を発揮するように設計されるため、低出力状態では冷却過剰となっている。
In order to detect molten metal leakage (melted metal leakage) due to melting or cracking of the refractories 18, 19, the refractory 18 in contact with the outer case 17 is placed along the outer case 17 and the refractory 19 in contact with the bushing 20. A hot water leak detection antenna 25 is embedded along each bushing 20. The distance between the flow path 13 and the outer case 17 and the bushing 20, that is, the thickness of the refractories 18 and 19 is about 100 mm to 400 mm, respectively.
The exterior case 17 and the bushing 20 are provided with water cooling tubes (not shown) for cooling each. The exterior case 17 and the bushing 20 are often water-cooled jackets. Since the water cooling facility attached to the induction heating device 11 is designed to exhibit a cooling capacity corresponding to the rated output of the induction heating device 11, it is overcooled in a low output state.

次に、本発明の一実施の形態に係る誘導加熱装置の冷却方法について説明する。
耐火物18、19はドライスタンプ材あるいは乾式ラミング材と呼ばれる粉粒状の不定形耐火物で構成されており、耐火物18、19には微量の自由水や結晶水が含まれている。また、スタンプ材はランマーで打ち込み施工されるため、誘導加熱装置11の施工に伴って、大気中に含まれる水分が誘導加熱装置11内に閉じ込められることになる。大気中に含まれる水分は施工時季によって変化するため、誘導加熱装置11内に閉じ込められる水分量も施工時季によって変化するが、夏の室温・湿度と冬の室温・湿度の間、概ね温度5〜35℃、湿度40〜70%の大気に含まれる水分量と考えてよい。
Next, a cooling method for the induction heating apparatus according to an embodiment of the present invention will be described.
The refractories 18 and 19 are made of a powdered and irregular refractory material called dry stamp material or dry ramming material, and the refractories 18 and 19 contain a small amount of free water or crystal water. Further, since the stamp material is driven in by a rammer, the moisture contained in the atmosphere is confined in the induction heating device 11 as the induction heating device 11 is installed. Since the moisture contained in the atmosphere varies depending on the season of construction, the amount of moisture trapped in the induction heating device 11 also varies depending on the season of construction. It may be considered as the amount of water contained in the atmosphere at 35 ° C. and humidity 40-70%.

上述したように、誘導加熱装置11内には必ず水分が存在しており、この不可避的に存在する水分が湯漏れ誤検知を誘発する。則ち、保熱操業から加熱操業に移行する際に、流路13の近傍から蒸発した水分が、まだ温度上昇していない外装ケース17及びブッシング20の近傍で結露して付近の耐火物中に湿潤部を形成する。その結果、外装ケース17と湯漏れ検知アンテナ25との間の耐火物湿潤部を経由して電気抵抗値が低下して湯漏れ誤検知が発生する。 As described above, moisture is always present in the induction heating device 11, and this inevitably present moisture induces erroneous detection of hot water leakage. In other words, when shifting from the heat retention operation to the heating operation, moisture evaporated from the vicinity of the flow path 13 is condensed in the vicinity of the exterior case 17 and the bushing 20 where the temperature has not risen yet, and in the nearby refractory. Form a wet part. As a result, the electrical resistance value decreases via the refractory wetted portion between the outer case 17 and the hot water leak detection antenna 25, and erroneous hot water leak detection occurs.

これをさらに詳細に説明する。誘導加熱装置11では、流路13内の溶湯を二次コイルとして扱い、二次コイルに流れる電流によって発生するジュール熱によって溶湯を加熱するため、耐火物18、19は、流路13近傍が最も高温となり、水冷されている外装ケース17及びブッシング20に接する側が最も低温となる温度分布を示す。
誘導加熱装置11の出力を低出力状態から高出力状態へ移行させた場合、印加電力により流路13の温度が上昇する。これに伴って、耐火物18、19の温度分布が高温側へシフトするため、誘導加熱装置11内において水分が液体として存在可能な領域が減少し、耐火物18、19内の高温側から追い出された水分は外装ケース17及びブッシング20の内面近傍に集積して結露して付近の耐火物中に湿潤部を形成する。その結果、外装ケース17と湯漏れ検知アンテナ25との間の耐火物湿潤部を経由して電気抵抗値が低下して湯漏れ誤検知が発生する。
This will be described in more detail. In the induction heating device 11, the molten metal in the flow path 13 is treated as a secondary coil, and the molten metal is heated by Joule heat generated by the current flowing through the secondary coil. The temperature distribution is such that the side that comes into contact with the exterior case 17 and the bushing 20 that are high-temperature and water-cooled is the lowest.
When the output of the induction heating device 11 is shifted from the low output state to the high output state, the temperature of the flow path 13 is increased by the applied power. Along with this, the temperature distribution of the refractories 18 and 19 shifts to the high temperature side, so that the region where moisture can exist as a liquid in the induction heating device 11 decreases and is expelled from the high temperature side in the refractories 18 and 19. The collected moisture accumulates in the vicinity of the inner surfaces of the outer case 17 and the bushing 20 to form a wet portion in the nearby refractory. As a result, the electrical resistance value decreases via the refractory wetted portion between the outer case 17 and the hot water leak detection antenna 25, and erroneous hot water leak detection occurs.

そこで、本実施の形態に係る誘導加熱装置の冷却方法では、水冷管を流れる冷却水の温度が、外装ケース17及びブッシング20の各入口(各水冷ジャケットの入口)で40℃以上、且つ外装ケース17及びブッシング20の各出口(各水冷ジャケットの出口)で100℃未満とする。 Therefore, in the cooling method of the induction heating apparatus according to the present embodiment, the temperature of the cooling water flowing through the water cooling pipe is 40 ° C. or more at each inlet of the outer case 17 and the bushing 20 (inlet of each water cooling jacket), and the outer case. 17 and the outlets of the bushing 20 (exit of each water-cooled jacket) are set to be less than 100 ° C.

図3は、従来の誘導加熱装置の冷却方法を用いた際の外装ケース近傍における耐火物温度及び露点の温度分布を操業状態ごとに示したグラフである。なお、耐火物厚さは100〜400mm、溶湯温度は1300〜1500℃とし、実際に操業に使用されている範囲とした。また、炉体の放散熱量は温度によらず一定とした。
図中、A1の線は保熱操業時の耐火物温度を、Bの線は加熱操業時の耐火物温度を表している。また、C1の線は保熱操業から加熱操業に移行する過渡期の耐火物温度であって、出力の上昇速度が速い場合(0.1MW/分超)を表している。一方、A0の線は保熱操業時の露点を、B0は加熱操業時の露点を表している。また、C0は保熱操業から加熱操業に移行する過渡期の露点を表している。
FIG. 3 is a graph showing the temperature distribution of the refractory temperature and the dew point in the vicinity of the outer case when the cooling method of the conventional induction heating apparatus is used for each operating state. The thickness of the refractory was 100 to 400 mm, the molten metal temperature was 1300 to 1500 ° C., and the actual range was used. The amount of heat dissipated in the furnace body was constant regardless of the temperature.
In the figure, the line A1 represents the refractory temperature during the heat insulation operation, and the line B represents the refractory temperature during the heating operation. The line C1 represents the temperature of the refractory during the transition period from the heat retention operation to the heating operation, and represents the case where the output increase rate is fast (over 0.1 MW / min). On the other hand, the A0 line represents the dew point during the heat retention operation, and B0 represents the dew point during the heating operation. Further, C0 represents a dew point in a transition period in which the heat retaining operation is shifted to the heating operation.

図3より以下のことがわかる。
(a)外装ケース17が冷却されているため、外装ケース17に近づくほど耐火物温度が低くなっており、保熱操業時における外装ケース17(耐火物厚み0mm)の温度は30℃、加熱操業時における外装ケース17の温度は40℃である。保熱操業から加熱操業に移行すると、誘導加熱される流路13の溶湯温度が上昇し、タイムラグを伴って外装ケース17の温度も上昇を開始する。
(b)耐火物温度が100℃以上の領域では、耐火物中の吸着水が蒸発し、水分量が減少する。逆に、耐火物温度が100℃未満の領域は水分量が多い(露点が高い)。但し、耐火物は通気性を有しているため、水分量に大きな偏りは無いものと考えられる。
(c)加熱操業時は、保熱操業時に比べて100℃未満の領域が減少するため、100℃未満の領域の水分量(露点)が上昇する。則ち、保熱操業から加熱操業への移行に伴って、外装ケース17の近傍では露点が上昇する。
The following can be seen from FIG.
(A) Since the outer case 17 is cooled, the temperature of the refractory becomes lower as it gets closer to the outer case 17, and the temperature of the outer case 17 (refractory thickness 0 mm) during the heat insulation operation is 30 ° C., heating operation The temperature of the outer case 17 at that time is 40 ° C. When shifting from the heat retaining operation to the heating operation, the temperature of the molten metal in the flow path 13 that is induction-heated increases, and the temperature of the outer case 17 also starts increasing with a time lag.
(B) In the region where the refractory temperature is 100 ° C. or higher, the adsorbed water in the refractory evaporates and the amount of water decreases. Conversely, the region where the refractory temperature is less than 100 ° C. has a large amount of moisture (high dew point). However, since the refractory has air permeability, it is considered that there is no large deviation in the moisture content.
(C) At the time of heating operation, since the area below 100 ° C. is reduced as compared with that at the time of heat insulation operation, the amount of water (dew point) in the area below 100 ° C. increases. In other words, the dew point increases in the vicinity of the outer case 17 with the transition from the heat retaining operation to the heating operation.

(d)耐火物温度が露点より低い場合、結露する可能性が高い。結露が発生すると、湯漏れ検知アンテナ25と外装ケース17との間の耐火物中に湿潤部が形成されるため、これを介することにより湯漏れ検知アンテナ25と外装ケース17の間の電気抵抗値が低下し、湯漏れ誤検知の原因となる。保熱操業から加熱操業に急速に移行すると、外装ケース17に近接する部位の耐火物温度が40℃へ上昇する前に当該部位の露点が上昇してしまう。このため、外装ケース17に近接する部位ではC1<C0となり、一時的に結露が発生して湯漏れ誤検知を引き起こす。 (D) If the refractory temperature is lower than the dew point, there is a high possibility of condensation. When condensation occurs, a wet portion is formed in the refractory material between the hot water leak detection antenna 25 and the outer case 17, and the electric resistance value between the hot water leak detection antenna 25 and the outer case 17 is interposed therethrough. Lowers and causes false detection of hot water leaks. If the heat transfer operation rapidly shifts to the heating operation, the dew point of the part increases before the refractory temperature of the part close to the outer case 17 rises to 40 ° C. For this reason, C1 <C0 at a portion close to the outer case 17, and condensation is temporarily generated, causing erroneous detection of hot water leakage.

一方、図4は、本実施の形態に係る誘導加熱装置の冷却方法を用いた際の外装ケース近傍における耐火物温度及び露点の温度分布を操業状態ごとに示したグラフである。図中、A2の線は保熱操業時の耐火物温度を、C2の線は保熱操業から加熱操業に移行する過渡期の耐火物温度であって、出力の上昇速度が速い場合(0.1MW/分超)を表している。他の線は図3と同様である。また、試験条件も図3と同様である。 On the other hand, FIG. 4 is a graph showing the temperature distribution of the refractory temperature and the dew point in the vicinity of the outer case when the cooling method for the induction heating device according to the present embodiment is used. In the figure, the A2 line is the refractory temperature during the heat insulation operation, and the C2 line is the refractory temperature during the transition period from the heat insulation operation to the heating operation, and the output increase rate is fast (0. 1 MW / min). The other lines are the same as in FIG. The test conditions are the same as in FIG.

図4より以下のことがわかる。
(e)保熱操業から加熱操業に急速に移行した場合でも、外装ケース17に近接する部位の耐火物温度が常に40℃以上であるため、C2>C0となり、結露は発生しない。
The following can be seen from FIG.
(E) Even in the case of a rapid transition from the heat retaining operation to the heating operation, the temperature of the refractory in the vicinity of the exterior case 17 is always 40 ° C. or higher, so C2> C0 and no condensation occurs.

なお、ブッシング20近傍においても図3及び図4と同様の現象が発生する。 Note that the same phenomenon as in FIGS. 3 and 4 also occurs in the vicinity of the bushing 20.

ここで、本実施の形態に係る誘導加熱装置の冷却方法を実現する具体的なハードウェア構成について二通り挙げておく。
(1)冷却水の温度が40℃になった時点でチラーがOFF、冷却水の温度が100℃になった時点でチラーがONとなるように、サーモスタット等の温度調節器を用いてチラーをON/OFF制御する。
(2)冷却水の一部がチラーを迂回するバイパス経路を設けておく。冷却水の温度が40℃未満になった場合は、冷却水の一部がバイパス経路を流れるようにすることで、冷却水の温度が40℃以上となるようにする。
Here, two specific hardware configurations for realizing the cooling method for the induction heating apparatus according to the present embodiment will be described.
(1) Use a thermostat or other temperature controller to turn off the chiller so that the chiller turns off when the cooling water temperature reaches 40 ° C and the chiller turns on when the cooling water temperature reaches 100 ° C. ON / OFF control.
(2) A bypass path in which a part of the cooling water bypasses the chiller is provided. When the temperature of the cooling water is less than 40 ° C., the temperature of the cooling water is set to 40 ° C. or more by allowing a part of the cooling water to flow through the bypass path.

なお、冷却水の流量を抑えると、外装ケース17及びブッシング20の各出口における水温は高くなるが、外装ケース17及びブッシング20の各入口における水温は高くならない。即ち、外装ケース17及びブッシング20の各入口近傍において結露が発生するリスクが残る。但し、外装ケース17は30〜40mm、ブッシング20は10mm程度の厚みがあるため、その熱抵抗により、冷却水の流量制御のみでも湯漏れ検知アンテナ25近傍の耐火物温度を40℃以上に維持することが、条件次第で可能となる可能性はある。 If the flow rate of the cooling water is suppressed, the water temperature at each outlet of the outer case 17 and the bushing 20 increases, but the water temperature at each inlet of the outer case 17 and the bushing 20 does not increase. That is, there is a risk that condensation occurs near the entrances of the outer case 17 and the bushing 20. However, since the outer case 17 has a thickness of 30 to 40 mm and the bushing 20 has a thickness of about 10 mm, the refractory temperature in the vicinity of the hot water detection antenna 25 is maintained at 40 ° C. or higher only by controlling the flow rate of the cooling water. This may be possible depending on the conditions.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included.

10:誘導炉、11:チャンネル型誘導加熱装置(誘導加熱装置)、12:スクラップ装入口、13:流路、14:中央流路、15:側部流路、16:端部流路、17:外装ケース、18、19:耐火物、20:ブッシング、21:空洞部、22:誘導加熱コイル、23:鉄心、24:横架材、25:湯漏れ検知アンテナ、26:支持台 10: induction furnace, 11: channel type induction heating device (induction heating device), 12: scrap charging inlet, 13: flow channel, 14: central flow channel, 15: side flow channel, 16: end flow channel, 17 : Outer case, 18, 19: Refractory material, 20: Bushing, 21: Cavity, 22: Induction heating coil, 23: Iron core, 24: Horizontal member, 25: Hot water leak detection antenna, 26: Support base

Claims (1)

溶融金属が流れるループ状の流路を形成する耐火物と、前記耐火物を被覆する外装ケースと、前記耐火物の内周面に内張りされたブッシングと、前記外装ケース及び前記ブッシングに付設された水冷管と、前記ブッシングで画成された空洞部の中央に配置された誘導加熱コイルと、前記耐火物中に埋設された湯漏れ検知アンテナとを備えるチャンネル型誘導加熱装置の冷却方法であって、
前記水冷管を流れる冷却水の温度が、前記冷却水と前記外装ケース及び前記ブッシングのそれぞれとが熱交換を開始する位置である、前記外装ケース及び前記ブッシングの各入口で40℃以上、且つ前記冷却水と前記外装ケース及び前記ブッシングのそれぞれとが熱交換を終了する位置である、前記外装ケース及び前記ブッシングの各出口で100℃未満であることを特徴とする誘導加熱装置の冷却方法。
A refractory that forms a loop-shaped flow path through which molten metal flows , an outer case that covers the refractory, a bushing that is lined on the inner peripheral surface of the refractory, and an attachment to the outer case and the bushing A cooling method for a channel-type induction heating apparatus comprising a water-cooled tube , an induction heating coil disposed in the center of a cavity defined by the bushing, and a hot water leak detection antenna embedded in the refractory. ,
The temperature of the cooling water flowing through the cooling water pipe is, wherein the coolant is a position where the respective starts heat exchange of the outer casing and the bushing, 40 ° C. or higher in the inlet of the outer casing and the bushing, and wherein A cooling method for an induction heating apparatus, wherein the cooling water and each of the outer case and the bushing are at a position where heat exchange is finished, and each outlet of the outer case and the bushing is less than 100 ° C.
JP2011045391A 2011-03-02 2011-03-02 Induction heating device cooling method Active JP5578112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011045391A JP5578112B2 (en) 2011-03-02 2011-03-02 Induction heating device cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011045391A JP5578112B2 (en) 2011-03-02 2011-03-02 Induction heating device cooling method

Publications (2)

Publication Number Publication Date
JP2012180573A JP2012180573A (en) 2012-09-20
JP5578112B2 true JP5578112B2 (en) 2014-08-27

Family

ID=47012006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045391A Active JP5578112B2 (en) 2011-03-02 2011-03-02 Induction heating device cooling method

Country Status (1)

Country Link
JP (1) JP5578112B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623660A1 (en) * 1986-07-12 1988-01-14 Thyssen Stahl Ag FIREPROOF PIPE
JP3147185B2 (en) * 1991-10-03 2001-03-19 株式会社木村鋳造所 Induction furnace for melting cast iron
JPH08257739A (en) * 1995-03-22 1996-10-08 Nippon Steel Corp Apparatus for induction-heating molten metal
JPH09145266A (en) * 1995-11-22 1997-06-06 Toyota Motor Corp High frequency melting furnace
JP3022764B2 (en) * 1996-03-18 2000-03-21 東京窯業株式会社 Induction furnace sensors
JP2005003286A (en) * 2003-06-12 2005-01-06 Nissei Ltd Tapping device for melting furnace
JP2004061033A (en) * 2002-07-30 2004-02-26 Nissei Ltd Tapping device for melting furnace

Also Published As

Publication number Publication date
JP2012180573A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
CN104981672B (en) Induction furnace and the method for processing scrap metal to be stored
RU2015150290A (en) ELECTROMAGNETIC INDUCTION FURNACE AND ITS USE FOR MELTING OF THE MIXTURE OF METAL (METALS) AND OXIDE (OXIDES), REPRESENTING CORIUM
JP5745588B2 (en) Induction furnace crucible
JP5578112B2 (en) Induction heating device cooling method
US2286481A (en) Induction furnace
JP2013508252A (en) Apparatus for obtaining polycrystalline semiconductor material, in particular silicon, and method for controlling the temperature in the apparatus
JP5578111B2 (en) Induction heating temperature raising method for molten metal
JP5445744B2 (en) Three-phase AC electrode type circular electric furnace and its cooling method
JP6380990B2 (en) Electric furnace with adjusted slag solidification layer thickness and metal smelting method using the same
JP5747286B2 (en) Three-phase AC electrode type circular electric furnace cooling method and three-phase AC electrode type circular electric furnace
JP2005205479A (en) Soldering machine
JP4912758B2 (en) Three-phase AC electrode type circular electric furnace and its cooling method
JP2014105348A (en) Operation method of electric furnace for ferronickel smelting
JP2007253230A (en) High-frequency induction heating device for die casting machine
KR101517377B1 (en) High temperature measurement instrument in molten material with long-term durability
CN202885526U (en) Medium frequency coreless induction drain valve.
JP5309282B2 (en) Induction heating melting device
CN105135883A (en) Intermediate frequency furnace high temperature sintering is with thermal-insulated frock
US6208682B1 (en) Channel inductor and melt furnace comprising such channel inductor
JP5963655B2 (en) Three-phase AC electrode type circular electric furnace and its cooling method
JP3480786B2 (en) Induction melting furnace leak detector
JPH0682171A (en) Crucible induction furnace
RU2826919C1 (en) Induction crucible electric furnace with closed magnetic core
CN217275613U (en) Discharge-stop integrated slag discharge port
KR20140110318A (en) Device for discharging and Outlet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R151 Written notification of patent or utility model registration

Ref document number: 5578112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350