JP3021930B2 - Method for controlling crystal orientation of ferroelectric thin film - Google Patents

Method for controlling crystal orientation of ferroelectric thin film

Info

Publication number
JP3021930B2
JP3021930B2 JP4057242A JP5724292A JP3021930B2 JP 3021930 B2 JP3021930 B2 JP 3021930B2 JP 4057242 A JP4057242 A JP 4057242A JP 5724292 A JP5724292 A JP 5724292A JP 3021930 B2 JP3021930 B2 JP 3021930B2
Authority
JP
Japan
Prior art keywords
thin film
plane
heat treatment
ferroelectric thin
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4057242A
Other languages
Japanese (ja)
Other versions
JPH06116095A (en
Inventor
勝実 小木
信幸 曽山
明彦 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3040592A external-priority patent/JPH04259380A/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4057242A priority Critical patent/JP3021930B2/en
Publication of JPH06116095A publication Critical patent/JPH06116095A/en
Application granted granted Critical
Publication of JP3021930B2 publication Critical patent/JP3021930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemically Coating (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はチタン酸ジルコン酸鉛(P
ZT)またはランタン含有チタン酸ジルコン酸鉛(PLZT)か
らなる強誘電体薄膜の結晶配向性制御方法に関する。P
ZT薄膜やPLZT薄膜は、例えば 赤外線センサー、
圧電フィルター、振動子、レーザの変調素子、光シャッ
ター、キャパシター膜、不揮発性のメモリー等に用いら
れており、鮮明な微細パターンを形成することができる
優れた物性を具えている。本発明は、このPZT強誘電
体薄膜の結晶配向性を制御する方法に関する。
This invention relates to lead zirconate titanate (P
The present invention relates to a method for controlling the crystal orientation of a ferroelectric thin film composed of ZT) or lanthanum-containing lead zirconate titanate (PLZT). P
ZT thin film and PLZT thin film are used for infrared sensors,
It is used for piezoelectric filters, vibrators, laser modulation elements, optical shutters, capacitor films, nonvolatile memories, etc., and has excellent physical properties capable of forming clear fine patterns. The present invention relates to a method for controlling the crystal orientation of the PZT ferroelectric thin film.

【0002】[0002]

【従来技術とその課題】PZT強誘電体薄膜やPLZT
薄膜を基板上に形成する方法としては、(イ)粉末状複合
酸化物のペーストを基板上に塗布して乾燥焼結する方
法、(ロ)スパッタリングによる方法、(ハ)相当する金属ア
ルコキシド化合物等の複合化合物前駆体ゾルを基板上に
塗布して熱分解した後結晶化させるいわゆるゾル−ゲル
法等が知られている。強誘電体薄膜は分極反転の現象を
利用するために結晶歪による膜の疲労が問題となってお
り、その歪を抑えるために膜の単結晶化もしくは分極軸
方向への配向成長等が解決策として検討されている。こ
のうち特定の軸方向に結晶を配向させた配向膜に関して
は、スパッタリング法によって成膜したPZT薄膜につ
いての報告が比較的多く見られが、ゾル−ゲル法によっ
て薄膜を形成する場合の結晶配向性についての報告は少
ない。ゾル−ゲル法は低い温度で良好な特性を有する薄
膜が得られるので、経済性および取扱いの簡便さの面か
ら有利な方法であり最近注目されている。ところで、従
来、ゾル−ゲル法によって薄膜を形成する場合、薄膜の
結晶配向性は、基板自体の結晶軸方向に依存し、多くの
場合、薄膜の結晶は基板の結晶軸方向に一致することは
よく知られている。ところが、基板自体の結晶軸方向と
異なる配向性を示す場合もあり、薄膜の結晶配向性を信
頼性よく制御するのは必ずしも容易ではなかった。
2. Description of the Related Art PZT ferroelectric thin film and PLZT
As a method of forming a thin film on a substrate, (a) a method of applying a powdery composite oxide paste on the substrate and drying and sintering it, (b) a method by sputtering, (c) a corresponding metal alkoxide compound, etc. A so-called sol-gel method or the like is known in which a composite compound precursor sol is coated on a substrate, thermally decomposed, and then crystallized. The ferroelectric thin film uses the phenomenon of polarization reversal, so the film fatigue due to crystal distortion is a problem. To suppress the distortion, solution such as single crystallization of the film or orientation growth in the direction of the polarization axis is a solution. It has been considered as. Of these, relatively many reports have been made on PZT thin films formed by the sputtering method with respect to the oriented film in which the crystals are oriented in a specific axial direction. However, the crystal orientation when forming the thin film by the sol-gel method is relatively high. There are few reports on The sol-gel method is a method that is advantageous from the viewpoint of economy and simplicity of handling because a thin film having good properties can be obtained at a low temperature, and has recently been receiving attention. By the way, conventionally, when a thin film is formed by the sol-gel method, the crystal orientation of the thin film depends on the crystal axis direction of the substrate itself, and in many cases, the crystal of the thin film does not coincide with the crystal axis direction of the substrate. well known. However, in some cases, the crystal orientation of the substrate itself is different from the crystal axis direction, and it is not always easy to control the crystal orientation of the thin film with high reliability.

【0003】[0003]

【課題の解決手段:発明の構成】本発明によれば、ゾル
−ゲル法によってPZT薄膜やPLZT薄膜を形成する
際に、原料溶液(前駆体溶液)を基板に塗布した後に施す
熱処理の温度によりこれら薄膜の結晶配向性が異なるこ
とが見出された。本発明は上記知見に基づくものであ
り、原料溶液を基板に塗布した後の熱処理温度を調整す
ることにより信頼性よくPZT薄膜およびPLZT薄膜
の結晶配向性を制御する方法を提供する。具体的には、
結晶面が(111)軸方向に配向した白金基板上にチタ
ン酸ジルコン酸鉛またはランタン含有チタン酸ジルコン
酸鉛の前駆体溶液を塗布し、加熱して強誘電体薄膜を形
成する方法において、該前駆体溶液を基板上に塗布した
後、まず所望の結晶配向をもたらす150〜550℃の
温度範囲で熱処理を行い、その後550〜800℃で焼
成して結晶化させることにより、薄膜の結晶面を熱処理
温度に従った特定軸方向に優先的に配向させることを特
徴とする強誘電体薄膜の結晶配向性制御方法が提供され
る。更に本発明によれば、基板上に塗布した前駆体溶液
を結晶化前に150〜250℃で熱分解させ、その後加
熱して結晶化させることにより薄膜の結晶の(111)
面を優先的に配向させる強誘電体薄膜の結晶配向性制御
方法が提供される。また本発明によれば、基板上に塗布
した前駆体溶液を結晶化前に250〜350℃で熱分解
させ、その後加熱して結晶化させることにより薄膜の結
晶の(111)面と(100)面を優先的に配向させる
の強誘電体薄膜の結晶配向性制御方法が提供される。ま
た本発明によれば、基板上に塗布した前駆体溶液を結晶
化前に450〜550℃で熱分解させ、その後加熱して
結晶化させることにより薄膜の結晶の(100)面と
(200)面を優先的に配向させる強誘電体薄膜の結晶
配向性制御方法が提供される。
According to the present invention, when a PZT thin film or a PLZT thin film is formed by a sol-gel method, the temperature of a heat treatment applied after a raw material solution (precursor solution) is applied to a substrate. It has been found that the crystal orientation of these thin films is different. The present invention is based on the above findings, and provides a method for controlling the crystal orientation of a PZT thin film and a PLZT thin film with high reliability by adjusting a heat treatment temperature after applying a raw material solution to a substrate. In particular,
A method for forming a ferroelectric thin film by applying a precursor solution of lead zirconate titanate or lanthanum-containing lead zirconate titanate on a platinum substrate having a crystal plane oriented in a (111) axis direction and heating the applied solution to form a ferroelectric thin film. After applying the precursor solution on the substrate, first, a heat treatment is performed in a temperature range of 150 to 550 ° C. that provides a desired crystal orientation, and then, the film is fired and crystallized at 550 to 800 ° C. A method for controlling the crystal orientation of a ferroelectric thin film, characterized by preferentially orienting in a specific axis direction according to a heat treatment temperature. Further, according to the present invention, the precursor solution applied on the substrate is thermally decomposed at 150 to 250 ° C. before crystallization, and then heated to be crystallized, whereby the (111) of the crystal of the thin film is formed.
A method for controlling the crystal orientation of a ferroelectric thin film that preferentially orients a plane is provided. Further, according to the present invention, the precursor solution applied on the substrate is thermally decomposed at 250 to 350 ° C. before crystallization, and then heated to be crystallized, whereby the (111) plane of the crystal of the thin film and the (100) A method for controlling the crystal orientation of a ferroelectric thin film that preferentially orients a plane is provided. Further, according to the present invention, the precursor solution applied on the substrate is thermally decomposed at 450 to 550 ° C. before crystallization, and then heated to be crystallized, whereby the (100) plane of the crystal of the thin film and the (200) A method for controlling the crystal orientation of a ferroelectric thin film that preferentially orients a plane is provided.

【0004】本発明の方法に使用される出発物質は、P
b,Zr,Ti,Laの有機酸塩、アルコキシド、β-ジケトン錯
体等で、これらは当該技術分野においてよく知られてお
り、均等的に使用できる。本発明において、PZT薄膜
およびPLZT薄膜を製造する基板としては結晶面が
(111)軸方向に配向した白金板が好適に用いられ
る。PZT薄膜およびPLZT薄膜の基板は、下部電極
として利用するため導電性であることが必要であり、か
つPZT薄膜およびPLZT薄膜と反応しないことが必
要である。その点で白金は非常に好ましい下地材料であ
る。白金は板状のものに限らず、他の基板上に成膜した
白金薄膜でも同じように用いることができる。因みにシ
リコンウエハーを熱酸化させた基板上に白金を成膜する
と(111)軸配向膜となる。
The starting material used in the process of the invention is P
b, Zr, Ti, La organic acid salts, alkoxides, β-diketone complexes and the like, which are well known in the art and can be used equally. In the present invention, as a substrate for producing a PZT thin film and a PLZT thin film, a platinum plate having a crystal plane oriented in the (111) axis direction is suitably used. The substrate of the PZT thin film and the PLZT thin film needs to be conductive to be used as a lower electrode, and must not react with the PZT thin film and the PLZT thin film. In that regard, platinum is a very preferred underlying material. Platinum is not limited to a plate-like one, and a platinum thin film formed on another substrate can be similarly used. Incidentally, when platinum is deposited on a substrate obtained by thermally oxidizing a silicon wafer, a (111) -axis oriented film is obtained.

【0005】本発明は、PZT薄膜ないしPLZT薄膜
の原料溶液である有機金属化合物の複合化合物前駆体ゾ
ルを前記(111)軸方向に配向した白金基板上に塗布
した後、まづ150〜550℃の温度で熱分解を行い、
次いで600℃〜800℃に加熱焼成して結晶化させ、
この結晶化前の熱処理温度を150〜550℃の範囲内
で所定の温度範囲に調整することにより、PZT薄膜お
よびPLZT薄膜の結晶配向性を制御することができ
る。具体的には、結晶化前の熱処理温度を150℃〜2
50℃に調整することにより(111)面が優先的に配
向(成長)したペロブスカイト型のPZT薄膜結晶また
はPLZT薄膜結晶を得ることができる。150℃未満
の温度では熱分解が十分に進行せず、また250℃を超
えると(100)軸方向の配向性が次第に強まり(11
1)軸方向の優先性が低下する。また熱処理の温度を2
50〜350℃に調整することにより(111)面と
(100)面に優先的に配向したペロブスカイト型のP
ZT薄膜結晶またはPLZT薄膜結晶を得ることができ
る。熱処理の温度が250℃未満であると(111)面
が優先的になり、また350℃を越えると450℃まで
は(111)面と(100)面を優先的に配向させるこ
とができなくなるため好ましくない。さらに熱処理温度
を450〜550℃に調整することにより(100)面
および(200)面を優先的に配向させたPZT薄膜を
得ることができる。結晶化させる前の熱処理の温度が4
50℃未満であると(100)面以外の面の配向性が出
るため、また550℃を超えると結晶化が始まるため何
れも好ましくない。また、結晶化温度が800℃を超え
るとPZT薄膜と白金とが反応し始め、充分な特性の薄
膜が得られないので、結晶化温度は800℃以下が好ま
しい。本発明の結晶配向性制御方法における結晶化前の
熱分解温度温度範囲と薄膜結晶の優先配向面を次表に纏
めて示す。
According to the present invention, a sol of a precursor of a complex compound of an organometallic compound, which is a raw material solution of a PZT thin film or a PLZT thin film, is applied on the platinum substrate oriented in the (111) axis direction, and then, at 150 to 550 ° C. Pyrolysis at the temperature of
Then, heat calcination to 600 to 800 ° C to crystallize,
The crystal orientation of the PZT thin film and the PLZT thin film can be controlled by adjusting the heat treatment temperature before the crystallization to a predetermined temperature range within a range of 150 to 550 ° C. Specifically, the heat treatment temperature before crystallization is set to 150 ° C. to 2 ° C.
By adjusting the temperature to 50 ° C., a perovskite-type PZT thin film crystal or a PLZT thin film crystal in which the (111) plane is preferentially oriented (grown) can be obtained. At a temperature lower than 150 ° C., the thermal decomposition does not sufficiently proceed, and at a temperature higher than 250 ° C., the orientation in the (100) axis direction gradually increases (11).
1) The priority in the axial direction decreases. In addition, the heat treatment temperature is set to 2
By adjusting the temperature to 50 to 350 ° C., perovskite-type P preferentially oriented in the (111) plane and the (100) plane.
A ZT thin film crystal or a PLZT thin film crystal can be obtained. If the temperature of the heat treatment is lower than 250 ° C., the (111) plane becomes preferential, and if it exceeds 350 ° C., the (111) plane and (100) plane cannot be preferentially oriented up to 450 ° C. Not preferred. Further, by adjusting the heat treatment temperature to 450 to 550 ° C., a PZT thin film in which the (100) plane and the (200) plane are preferentially oriented can be obtained. Temperature of heat treatment before crystallization is 4
When the temperature is lower than 50 ° C., the orientation of the plane other than the (100) plane is obtained, and when the temperature is higher than 550 ° C., crystallization starts. If the crystallization temperature exceeds 800 ° C., the PZT thin film starts reacting with platinum, and a thin film having sufficient characteristics cannot be obtained. Therefore, the crystallization temperature is preferably 800 ° C. or less. The following table summarizes the temperature range of the thermal decomposition temperature before crystallization and the preferred orientation plane of the thin film crystal in the crystal orientation control method of the present invention.

【0006】 [0006]

【0007】実施例1 7.59gのPb(CH3COO)3・3H2O、3.99gのZr(OBu)4、2.73gのT
i(Oi-Pr)4を55gの2-エトキシエタノールに溶解してPZT
複合化合物前駆体溶液(ゾル)からなる原料溶液を(11
1)軸方向に配向した白金基板上に塗布し、それぞれ2
00℃、300℃、400℃および500℃で15分間
熱処理を行った後に600℃で1時間結晶化させてPb1Z
r0.52Ti0.48O3のPZT薄膜結晶を得た。このPZT薄
膜のX線回折図を図1(A)〜(D)に示す。なお、(A)は2
00℃、(B)は300℃、(C)は400℃および(D)は
500℃の熱処理の場合をそれぞれ示す。図1の(A)は
PZT薄膜結晶の優先配向軸が(111)であり、(B)
は(111)および(100)であることが判る。また
(C)は優先配向軸が特定されず、(D)は(100)およ
び(200)に優先的に配向することを示している。本
実施例において熱処理の時間をさらに長くすると(11
1)軸方向の配列がより優先的になると考えられる。
Example 1 7.59 g of Pb (CH 3 COO) 3 .3H 2 O, 3.99 g of Zr (OBu) 4 , 2.73 g of T
i (Oi-Pr) 4 is dissolved in 55 g of 2-ethoxyethanol to give PZT
The raw material solution composed of the composite compound precursor solution (sol) is
1) Coating on a platinum substrate oriented in the axial direction, 2
After heat treatment at 00 ° C., 300 ° C., 400 ° C. and 500 ° C. for 15 minutes, crystallization is performed at 600 ° C. for 1 hour to obtain Pb 1 Z
A PZT thin film crystal of r 0.52 Ti 0.48 O 3 was obtained. X-ray diffraction diagrams of this PZT thin film are shown in FIGS. (A) is 2
00C, (B) shows the case of 300 ° C, (C) shows the case of 400 ° C, and (D) shows the case of the heat treatment of 500 ° C. FIG. 1A shows that the preferred orientation axis of the PZT thin film crystal is (111), and FIG.
Are (111) and (100). Also
(C) shows that the preferred orientation axis is not specified, and (D) shows that the (100) and (200) are preferentially oriented. In this embodiment, if the time of the heat treatment is further increased (11)
1) It is considered that the arrangement in the axial direction becomes more preferential.

【0008】実施例2 結晶化前の熱処理を1時間行った以外は実施例1と同様
にしてPZT薄膜結晶を形成した。このPZT薄膜のX
線回折図を図2(A)〜(D)に示す。なお(A)は200℃、
(B)は300℃、(C)は400℃、(D)は500℃の熱
処理の場合をそれぞれ示す。この結果は図示するように
実施例1と同様の傾向を示した。
Example 2 A PZT thin film crystal was formed in the same manner as in Example 1 except that the heat treatment before crystallization was performed for 1 hour. X of this PZT thin film
The line diffraction diagrams are shown in FIGS. (A) is 200 ° C,
(B) shows the case of heat treatment at 300 ° C, (C) shows the case of heat treatment at 400 ° C, and (D) shows the case of heat treatment at 500 ° C. The result showed the same tendency as in Example 1 as shown.

【0009】実施例3 実施例1および2で用いたものと同じ原料溶液を10時
間還流して用いた他は実施例2と同様にしてPZT薄膜
結晶を得た。X線回折図を実施例2と同様に図3に示し
た。
Example 3 A PZT thin film crystal was obtained in the same manner as in Example 2, except that the same raw material solution as used in Examples 1 and 2 was refluxed for 10 hours. The X-ray diffraction pattern is shown in FIG.

【0010】実施例4 7.20gのPb(CH3COO)3・3H2O、 3.94gのZr(OBu)4、0.34gの
La(CH3COO)3・1.5H2O、2.70gのTi(Oi-Pr)4、55gの2-エト
キシエタノールを使用して実施例1と同様に実施した。
得られたPLZTはPb0.95La0.05Zr0.51Ti0.47O3であっ
た。得られたX線回折図を図4(A)〜(D)に示した。概ね
実施例1〜3と同様の傾向を示すが配向性の優先性はさ
らに改良されている。
Example 4 7.20 g of Pb (CH 3 COO) 3 .3H 2 O, 3.94 g of Zr (OBu) 4 , 0.34 g of
La (CH 3 COO) 3 · 1.5H 2 O, 2.70g of Ti (Oi-Pr) 4, was carried out in the same manner as in Example 1 using 55g of 2-ethoxyethanol.
The obtained PLZT was Pb 0.95 La 0.05 Zr 0.51 Ti 0.47 O 3 . The obtained X-ray diffraction patterns are shown in FIGS. 4 (A) to (D). Although the same tendency as in Examples 1 to 3 is shown, the priority of the orientation is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(A)〜(D)は実施例で得たPZT薄膜
のX線回折図である。
FIGS. 1A to 1D are X-ray diffraction diagrams of a PZT thin film obtained in an example.

【図2】図2(A)〜(D)は実施例で得たPZT薄膜
のX線回折図である。
FIGS. 2A to 2D are X-ray diffraction diagrams of a PZT thin film obtained in an example.

【図3】図3(A)〜(D)は実施例で得たPZT薄膜
のX線回折図である。
FIGS. 3A to 3D are X-ray diffraction diagrams of a PZT thin film obtained in an example.

【図4】図4(A)〜(D)は実施例で得たPZT薄膜
のX線回析図である。
FIGS. 4A to 4D are X-ray diffraction diagrams of the PZT thin films obtained in the examples.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−6335(JP,A) 特開 平3−69512(JP,A) 特開 昭63−239880(JP,A) 特開 昭57−82121(JP,A) 特開 昭60−200403(JP,A) 特開 平5−221643(JP,A) 特開 平6−5948(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 29/32 C04B 35/49 C23C 18/12 H01B 3/00 B01J 19/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-6335 (JP, A) JP-A-3-69512 (JP, A) JP-A-63-239880 (JP, A) JP-A-57- 82121 (JP, A) JP-A-60-200403 (JP, A) JP-A-5-221643 (JP, A) JP-A-6-5948 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 29/32 C04B 35/49 C23C 18/12 H01B 3/00 B01J 19/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 結晶面が(111)軸方向に配向した白
金基板上にチタン酸ジルコン酸鉛またはランタン含有チ
タン酸ジルコン酸鉛のゾル−ゲル法前駆体溶液を塗布
し、加熱して基板上に強誘電体薄膜を形成する方法にお
いて、 前記加熱が150〜550℃の温度範囲に保持する熱処
理と、その後の550〜800℃の温度範囲に保持して
結晶化させる焼成を含み、 (1) 前記熱処理を150〜250℃の温度範囲で行い、
焼成後に(111)面に優先的に配向した強誘電体薄膜
を生成させるか、または (2) 前記熱処理を250〜350℃の温度範囲で行い、
焼成後に(111)面と(100)面に優先的に配向し
た強誘電体薄膜を生成させるか、または (3) 前記熱処理を450〜550℃の温度範囲で行い、
焼成後に(100)面と(200)面に優先的に配向し
た強誘電体薄膜を生成させる、 ことを特徴とする、特定軸方向に優先的に結晶配向した
強誘電体薄膜を形成する方法。
1. A sol-gel method precursor solution of lead zirconate titanate or lanthanum-containing lead zirconate titanate is applied on a platinum substrate having a crystal plane oriented in the (111) axis direction, and heated to form a substrate. (1) a method of forming a ferroelectric thin film comprising: a heat treatment in which the heating is performed at a temperature in a range of 150 to 550 ° C .; Performing the heat treatment in a temperature range of 150 to 250 ° C.,
(B) generating a ferroelectric thin film preferentially oriented on the (111) plane after firing, or (2) performing the heat treatment in a temperature range of 250 to 350 ° C.
After the firing, a ferroelectric thin film preferentially oriented in the (111) plane and the (100) plane is generated, or (3) the heat treatment is performed in a temperature range of 450 to 550 ° C;
A method of forming a ferroelectric thin film preferentially oriented in a specific axis direction, which comprises producing a ferroelectric thin film preferentially oriented on the (100) plane and the (200) plane after firing.
JP4057242A 1991-02-13 1992-02-12 Method for controlling crystal orientation of ferroelectric thin film Expired - Lifetime JP3021930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4057242A JP3021930B2 (en) 1991-02-13 1992-02-12 Method for controlling crystal orientation of ferroelectric thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-40592 1991-02-13
JP3040592A JPH04259380A (en) 1991-02-13 1991-02-13 Method for controlling crystalline orientation property of pzt ferroelectric body thin film
JP4057242A JP3021930B2 (en) 1991-02-13 1992-02-12 Method for controlling crystal orientation of ferroelectric thin film

Publications (2)

Publication Number Publication Date
JPH06116095A JPH06116095A (en) 1994-04-26
JP3021930B2 true JP3021930B2 (en) 2000-03-15

Family

ID=26380062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4057242A Expired - Lifetime JP3021930B2 (en) 1991-02-13 1992-02-12 Method for controlling crystal orientation of ferroelectric thin film

Country Status (1)

Country Link
JP (1) JP3021930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312558B2 (en) 2004-04-02 2007-12-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, and ink jet recording apparatus
US7530676B2 (en) 2004-03-05 2009-05-12 Panasonic Corporation Piezoelectric element, inkjet head, angular velocity sensor, methods for manufacturing them and inkjet recording device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359436B2 (en) * 1994-11-07 2002-12-24 京セラ株式会社 Method for producing PbTiO3 alignment film
JP3890634B2 (en) * 1995-09-19 2007-03-07 セイコーエプソン株式会社 Piezoelectric thin film element and ink jet recording head
JP3438509B2 (en) * 1997-02-04 2003-08-18 セイコーエプソン株式会社 Ceramic thin film and method for producing the same
US7033001B2 (en) 2001-12-18 2006-04-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, manufacturing method thereof, and ink jet type recording apparatus
JP4530615B2 (en) 2002-01-22 2010-08-25 セイコーエプソン株式会社 Piezoelectric element and liquid discharge head
US6969157B2 (en) 2002-05-31 2005-11-29 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus
US7083270B2 (en) 2002-06-20 2006-08-01 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus
JP3965579B2 (en) * 2003-07-03 2007-08-29 セイコーエプソン株式会社 Method for forming piezoelectric layer
US7193756B2 (en) 2003-11-26 2007-03-20 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, method for fabricating the same, inkjet head, method for fabricating the same, and inkjet recording apparatus
CN100533798C (en) * 2004-02-27 2009-08-26 佳能株式会社 Piezoelectric thin film manufacture method
JP5240807B2 (en) * 2004-09-24 2013-07-17 独立行政法人産業技術総合研究所 Photoelectric conversion structure and manufacturing method thereof
JP4766299B2 (en) * 2005-01-18 2011-09-07 独立行政法人産業技術総合研究所 (111) Oriented PZT Dielectric Film Forming Substrate, (111) Oriented PZT Dielectric Film Formed Using This Substrate
JP5644975B2 (en) * 2011-05-17 2014-12-24 三菱マテリアル株式会社 Method for manufacturing PZT ferroelectric thin film
JP5613910B2 (en) 2011-05-17 2014-10-29 三菱マテリアル株式会社 Method for manufacturing PZT ferroelectric thin film
JP5828293B2 (en) * 2011-05-17 2015-12-02 三菱マテリアル株式会社 Method for manufacturing PZT ferroelectric thin film
JP2014103226A (en) 2012-11-20 2014-06-05 Mitsubishi Materials Corp Method for producing ferroelectric thin film
JP6142586B2 (en) * 2013-03-11 2017-06-07 株式会社リコー Method for manufacturing piezoelectric film, method for manufacturing piezoelectric element
JP6787192B2 (en) * 2017-03-08 2020-11-18 三菱マテリアル株式会社 Piezoelectric membrane
CN112062561B (en) * 2020-09-17 2022-08-05 广西大学 Preparation method of PNNZT-based multiphase coexisting relaxation ferroelectric epitaxial film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7530676B2 (en) 2004-03-05 2009-05-12 Panasonic Corporation Piezoelectric element, inkjet head, angular velocity sensor, methods for manufacturing them and inkjet recording device
US7312558B2 (en) 2004-04-02 2007-12-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, and ink jet recording apparatus

Also Published As

Publication number Publication date
JPH06116095A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
JP3021930B2 (en) Method for controlling crystal orientation of ferroelectric thin film
KR970006997B1 (en) Method for controlling crystal orientation of ferr
JP3209082B2 (en) Piezoelectric thin film element, method of manufacturing the same, and ink jet recording head using the same
US5198269A (en) Process for making sol-gel deposited ferroelectric thin films insensitive to their substrates
KR100453416B1 (en) Ferroelectric thin films and solutions: compositions and processing
EP0897901B1 (en) Solution for forming ferroelectric film and method for forming ferroelectric film
Swartz et al. Sol-gel processing of composite PbTiO3/PLZT thin films
JP4122430B2 (en) Ferroelectric film
JP2995290B2 (en) Method of forming PZT-based ferroelectric thin film
JP3164849B2 (en) Method for producing lead zirconate titanate thin film
JPH09315857A (en) Perovskite type oxide film and its production
JP3026310B2 (en) Method for producing precursor solution for forming ferroelectric thin film and method for producing ferroelectric thin film
JP6910812B2 (en) Method for manufacturing piezoelectric substrate
JP3359436B2 (en) Method for producing PbTiO3 alignment film
JP2002114519A (en) Method for producing powdery lead zirconate titanate
JP2001172099A (en) Method for forming dielectric thin film, dielectric thin film and electronic part
JPH05897A (en) Composite crystal body having oriented film of linbo3 and its production
JP3212700B2 (en) Method for producing composite oxide thin film
JP2783158B2 (en) Manufacturing method of oxide thin film
JPH1086365A (en) Thin film element for ferroelectric substance
JP3268649B2 (en) Method for producing composite crystal having (Pb, La) (ZrxTiy) O3 alignment film
JPH11278846A (en) Pzt precursor sol, its preparation and formation of thin pzt film using same
JP2956356B2 (en) Lead-containing perovskite structure composite oxide ferroelectric thin film, its production method and material
JPH10287983A (en) Production of titanium-containing ceramic thin film
Ren et al. Structures and properties of Pb (Zr, Ti) O3 thin films by metallo-organic compound decomposition process

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13