JP3020270B2 - Manufacturing method of mash type cathode - Google Patents

Manufacturing method of mash type cathode

Info

Publication number
JP3020270B2
JP3020270B2 JP2329714A JP32971490A JP3020270B2 JP 3020270 B2 JP3020270 B2 JP 3020270B2 JP 2329714 A JP2329714 A JP 2329714A JP 32971490 A JP32971490 A JP 32971490A JP 3020270 B2 JP3020270 B2 JP 3020270B2
Authority
JP
Japan
Prior art keywords
nickel particles
particles
base metal
type cathode
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2329714A
Other languages
Japanese (ja)
Other versions
JPH04206350A (en
Inventor
登志彦 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2329714A priority Critical patent/JP3020270B2/en
Publication of JPH04206350A publication Critical patent/JPH04206350A/en
Application granted granted Critical
Publication of JP3020270B2 publication Critical patent/JP3020270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベース金属上に形成したニッケル粒子の焼
結体の気孔内に熱電子放射物質を塗り込んだマッシュ型
カソードの製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a mash-type cathode in which thermionic emission material is applied to pores of a sintered body of nickel particles formed on a base metal.

〔従来の技術〕[Conventional technology]

第3図は従来のマッシュ型カソードの製造方法の一例
を示す。
FIG. 3 shows an example of a conventional method for manufacturing a mash type cathode.

図において1は金属、2はベース金属、3はニッケル
粒子、6は熱電子放射物質、7はヒータである。
In the figure, 1 is a metal, 2 is a base metal, 3 is nickel particles, 6 is a thermionic emission material, and 7 is a heater.

金型1に基体となるベース金属2(通常、ニッケル、
モリブデン等でできている)を挿入し、その上に、粒径
が5〜100μmのニッケル粒子3を所定の厚さに堆積す
る〔図(a)〕。この際、ニッケル粒子3の層の厚さを
均一にするため、振動を加えたり、場合によってはプレ
ス機を使用して圧力を加える。
A base metal 2 (usually nickel,
(Made of molybdenum or the like), and nickel particles 3 having a particle size of 5 to 100 μm are deposited thereon to a predetermined thickness [FIG. At this time, in order to make the thickness of the layer of the nickel particles 3 uniform, vibration is applied, or in some cases, pressure is applied using a press machine.

続いて、ベース金属2上に堆積したニッケル粒子3を
水素雰囲気中又は真空中で900〜1,300℃まで加熱し、焼
結させる。
Subsequently, the nickel particles 3 deposited on the base metal 2 are heated to 900 to 1,300 ° C. in a hydrogen atmosphere or vacuum to be sintered.

金型1に入れたまま焼結させてもよく、図(b)に示
すように金型1から取り出して焼結させてもよい。
The sintering may be carried out while being placed in the mold 1, or may be taken out from the mold 1 and sintered as shown in FIG.

次に、焼結体のニッケル粒子3間の隙間すなわち気孔
内に熱電子放射物質6を塗り込み〔図(c)〕、スリー
ブにベース金属2を溶接して取付け、ヒータ7を組み込
み、一体の構造のカソードに組み立てる〔図(d)〕。
Next, thermionic emission material 6 is applied to the gaps between the nickel particles 3 of the sintered body, that is, the pores [FIG. (C)], the base metal 2 is attached to the sleeve by welding, and the heater 7 is incorporated. Assemble to the cathode having the structure [FIG.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

この種のカソードでは、寿命が焼結体の気孔内に塗り
込んだ熱電子放射物質の量に左右されるので、長寿命化
を計るには、焼結体の気孔率を大きくする必要がある。
In this type of cathode, the life depends on the amount of thermionic emission material applied to the pores of the sintered body, so that it is necessary to increase the porosity of the sintered body in order to extend the life. .

しかるに、従来の製造方法では、焼結体の気孔率をニ
ッケル粒子3の大きさによってほとんど決まり、粒径が
5〜100μmのニッケル粒子3では気孔率が10〜20%程
度のものしか得られない。
However, in the conventional manufacturing method, the porosity of the sintered body is almost determined by the size of the nickel particles 3, and the nickel particles 3 having a particle size of 5 to 100 μm can only obtain a porosity of about 10 to 20%. .

また、従来の方法でも、金型1内でニッケル粒子3に
加えるプレス圧力を変えることにより、多少気孔率を制
御できるが、再現性が悪く、気孔率の大きさのコントロ
ールが困難であった。
Also, in the conventional method, the porosity can be controlled to some extent by changing the pressing pressure applied to the nickel particles 3 in the mold 1, but the reproducibility is poor, and it is difficult to control the size of the porosity.

本発明は上記の事情に鑑みてなされたもので、同程度
の粒径のニッケル粒子で従来より気孔率の大きいものを
得ることができ、気孔率の大きさを容易にコントロール
できる方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method capable of obtaining nickel particles having substantially the same particle size and having a higher porosity than conventional ones, and easily controlling the size of the porosity. The purpose is to:

〔課題を解決するための手段〕[Means for solving the problem]

本発明の製造方法は、ベース金属上のニッケル粒子の
焼結体を、粒径が5〜100μmのニッケル粒子に該ニッ
ケル粒子の焼結温度より低い温度で分解気化する粒径が
上記ニッケル粒子と同程度の有機物ポリマー粉末粒子を
所定の割合で混合した粉末をベース金属上に堆積し、水
素雰囲気中又は真空中で加熱、上記ニッケル粒子を燃焼
させて形成するものである。
The production method of the present invention is characterized in that a sintered body of nickel particles on a base metal is converted into nickel particles having a particle size of 5 to 100 μm at a temperature lower than the sintering temperature of the nickel particles. A powder in which organic polymer powder particles of the same degree are mixed at a predetermined ratio is deposited on a base metal, heated in a hydrogen atmosphere or in a vacuum, and burns the nickel particles to form the powder.

〔作用〕[Action]

上記の方法によると、ニッケル粒子の間に適当に有機
物ポリマー粉末粒子が挟まり、ニッケル粒子間の間隔が
広がり、有機物ポリマー粉末粒子が分解気化したあとに
大きな隙間ができ、気孔率が高くなる。
According to the above method, the organic polymer powder particles are appropriately sandwiched between the nickel particles, the interval between the nickel particles is widened, and a large gap is formed after the organic polymer powder particles are decomposed and vaporized, thereby increasing the porosity.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.

図において1,2,3,6,7は第3図の同一符号と同一また
は相当するものを示し、5は粒径が5〜100μmのニッ
ケル粒子3にニッケル粒子3の焼結温度より低い温度で
分解気化する粒径がニッケル粒子3と同程度の有機物ポ
リマー粉末粒子を所定の割合で混合した粉末である。
In the figure, 1,2,3,6,7 are the same or corresponding to the same reference numerals in FIG. 3, and 5 is a temperature lower than the sintering temperature of nickel particles 3 having a particle size of 5 to 100 μm. This is a powder obtained by mixing organic polymer powder particles having a particle size that is decomposed and vaporized in the same manner as the nickel particles 3 at a predetermined ratio.

金型1に基体となるベース金属2を挿入し、そのベー
ス金属2上に、ニッケル粒子3に有機物ポリマー粉末粒
子を所定の割合で混合した粉末5を所定の厚さに堆積し
〔図(a)〕、水素雰囲気中又は真空中で加熱し、粉末
5中の有機物ポリマー粉末粒子を分解気化させ、温度を
900〜1,300℃まで上げてニッケル粒子3を焼結させる
〔図(b)〕。
A base metal 2 serving as a base is inserted into a mold 1, and a powder 5 obtained by mixing organic polymer powder particles with nickel particles 3 at a predetermined ratio is deposited on the base metal 2 to a predetermined thickness [FIG. )], Heated in a hydrogen atmosphere or in a vacuum to decompose and vaporize the organic polymer powder particles in the powder 5, and reduce the temperature.
The temperature is raised to 900 to 1,300 ° C. to sinter the nickel particles 3 [FIG.

続いて、従来と同じ手順により、焼結体の気孔内に熱
電子放射物質6を塗り込み〔図(c)〕、スリーブに取
付け、ヒータ7を組み込み、一体の構造のカソードに組
み立てる〔図(d)〕。
Subsequently, the thermoelectron emitting substance 6 is applied to the pores of the sintered body by the same procedure as in the prior art [FIG. (C)], attached to the sleeve, the heater 7 is assembled, and the cathode having an integral structure is assembled [FIG. d)].

第2図は本発明の方法によって気孔率が大きくなる状
況を示す。
FIG. 2 shows a situation where the porosity is increased by the method of the present invention.

図において2,3は第1図の同一符号と同一のものを示
し、4はニッケル粒子3の焼結温度より低い温度で分解
気化する粒径がニッケル粒子3と同程度の有機物ポリマ
ー粉末粒子であり、図(a)は焼結前、図(b)は焼結
後の状態を示す。
In the figure, reference numerals 2 and 3 denote the same components as those shown in FIG. The figure (a) shows the state before sintering, and the figure (b) shows the state after sintering.

焼結後、有機物ポリマー粉末粒子4の分解気化したあ
とに大きな隙間ができ、気孔率が大きくなる。
After sintering, large gaps are formed after the organic polymer powder particles 4 are decomposed and vaporized, and the porosity increases.

なお、使用する有機物ポリマーは、ニッケル粒子3の
焼結温度より低い温度で分解気化するものであればよ
く、例えば、メタクリル酸メチル、メタクリル酸イソブ
チル、n−アクリル酸メチルを初め、アクリル系樹脂や
ポリエステル系、ビニル系樹脂等でもよい。
The organic polymer to be used may be any one that can be decomposed and vaporized at a temperature lower than the sintering temperature of the nickel particles 3, and examples thereof include methyl methacrylate, isobutyl methacrylate, n-methyl acrylate, acrylic resin, Polyester-based and vinyl-based resins may be used.

本発明の方法では、有機物ポリマー粉末粒子4とニッ
ケル粒子3の混合比を変えることにより、再現性よく気
孔率の大きさを調製することができ、容易に気孔率の大
きさを揃えることができる。
In the method of the present invention, the porosity can be adjusted with good reproducibility by changing the mixing ratio of the organic polymer powder particles 4 and the nickel particles 3, and the porosity can be easily equalized. .

なお、ニッケル粒子3と有機物ポリマー粉末粒子4を
混合する際よく混ぜ合わせておかないと、部分的に気孔
率の小さいものなどができるので、注意を要する。
It should be noted that if the nickel particles 3 and the organic polymer powder particles 4 are not sufficiently mixed when they are mixed well, particles having a small porosity can partially be formed, and therefore care must be taken.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によると、焼結体の気孔
率を従来より大きくできるとともに、再現性よく気孔率
の大きさを調整することができ、カソードの長寿命化に
寄与する効果が大である。
As described above, according to the present invention, the porosity of the sintered body can be made larger than before, and the size of the porosity can be adjusted with good reproducibility. It is.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す説明図、第2図は本発
明の方法によると気孔率が大きくなる状況を示す説明
図、第3図は従来のマッシュ型カソードの製造方法の一
例を示す説明図である。 1……金型、2……ベース金属、3……ニッケル粒子、
4……有機物ポリマー粉末粒子、5……ニッケル粒子3
と有機物ポリマー粉末粒子4の混合粉末、6……熱電子
放射物質、7……ヒータ、 なお図中同一符号は同一または相当するものを示す。
FIG. 1 is an explanatory view showing one embodiment of the present invention, FIG. 2 is an explanatory view showing a situation where porosity increases according to the method of the present invention, and FIG. 3 is an example of a conventional method for manufacturing a mash type cathode. FIG. 1 ... mold, 2 ... base metal, 3 ... nickel particles,
4 ... organic polymer powder particles, 5 ... nickel particles 3
, A mixed powder of organic polymer powder particles 4, 6... Thermionic emission material, 7... A heater.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ベース金属上に形成したニッケル粒子の焼
結体の気孔内に熱電子放射物質を塗り込んだマッシュ型
カソードの製造方法において、 ベース金属上のニッケル粒子の焼結体を、粒径が5〜10
0μmのニッケル粒子に該ニッケル粒子の焼結温度より
低い温度で分解気化する粒径が上記ニッケル粒子と同程
度の有機物ポリマー粉末粒子を所定の割合で混合した粉
末をベース金属上に堆積し、水素雰囲気中又は真空中で
加熱、上記ニッケル粒子を燃焼させて形成することを特
徴とするマッシュ型カソードの製造方法。
1. A method for manufacturing a mash-type cathode in which thermionic emission material is applied to pores of a sintered body of nickel particles formed on a base metal, wherein the sintered body of nickel particles on the base metal is granulated. Diameter 5-10
A powder in which organic polymer powder particles having a particle size that decomposes and evaporates at a temperature lower than the sintering temperature of the nickel particles at a temperature lower than the sintering temperature of the nickel particles at a predetermined ratio is deposited on a base metal, and hydrogen is deposited on the base metal. A method for producing a mash-type cathode, wherein the mash-type cathode is formed by heating in an atmosphere or in a vacuum and burning the nickel particles.
JP2329714A 1990-11-30 1990-11-30 Manufacturing method of mash type cathode Expired - Fee Related JP3020270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329714A JP3020270B2 (en) 1990-11-30 1990-11-30 Manufacturing method of mash type cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329714A JP3020270B2 (en) 1990-11-30 1990-11-30 Manufacturing method of mash type cathode

Publications (2)

Publication Number Publication Date
JPH04206350A JPH04206350A (en) 1992-07-28
JP3020270B2 true JP3020270B2 (en) 2000-03-15

Family

ID=18224452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329714A Expired - Fee Related JP3020270B2 (en) 1990-11-30 1990-11-30 Manufacturing method of mash type cathode

Country Status (1)

Country Link
JP (1) JP3020270B2 (en)

Also Published As

Publication number Publication date
JPH04206350A (en) 1992-07-28

Similar Documents

Publication Publication Date Title
CN113941704A (en) Electromagnetic induction heating layer and preparation method thereof, and atomization core and preparation method thereof
JP2006500735A (en) Anode-supported fuel cell
US5893511A (en) Pressure sintering method for fastening electronic components on a substrate
JP3020270B2 (en) Manufacturing method of mash type cathode
US4767372A (en) Process for the production of a porous pressed part
KR0170221B1 (en) Dispenser cathode
JPH04232252A (en) Sputtered scandium oxide coating for dispenser cathode and its manufacture
JP3107812B2 (en) Manufacturing method of indirectly heated cathode
US3320058A (en) Method of producing a porous tungsten structure with an impervious skin
KR910014977A (en) Dispenser-type cathode and its manufacturing method
GB2100502A (en) Dispenser cathodes
JP3068160B2 (en) Impregnated cathode and method for producing the same
JPH0612601Y2 (en) Impregnated cathode
JP4117815B2 (en) Manufacturing method and repair method of pressure-resistant hydrogen permeable membrane
JP4133824B2 (en) Cathode for cathode ray tube with improved useful life
KR100473068B1 (en) Cathode manufacturing method of electron gun
JP2910426B2 (en) Manufacturing method of tungsten powder sintered body for impregnated cathode
JPS6149377A (en) Porous carbon electrode and manufacture
KR920007414B1 (en) Manufacturing method of reservoir type cathode
JP2001229816A (en) Manufacturing method for impregnated cathode
JPS6097553A (en) Manufacture of electrode for fuel cell
JP3115020B2 (en) Oxide cathode
CN114983031A (en) Groove annular heating type atomizing core and preparation method thereof
JPH04202607A (en) Method for sintered type cathode
JPH02210735A (en) Manufacture of impregnated cathode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees