JP3019560B2 - Test method for follow-up interruption of lightning arrester for transmission line - Google Patents

Test method for follow-up interruption of lightning arrester for transmission line

Info

Publication number
JP3019560B2
JP3019560B2 JP3323518A JP32351891A JP3019560B2 JP 3019560 B2 JP3019560 B2 JP 3019560B2 JP 3323518 A JP3323518 A JP 3323518A JP 32351891 A JP32351891 A JP 32351891A JP 3019560 B2 JP3019560 B2 JP 3019560B2
Authority
JP
Japan
Prior art keywords
current
circuit
power supply
short
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3323518A
Other languages
Japanese (ja)
Other versions
JPH05157788A (en
Inventor
昌俊 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3323518A priority Critical patent/JP3019560B2/en
Publication of JPH05157788A publication Critical patent/JPH05157788A/en
Application granted granted Critical
Publication of JP3019560B2 publication Critical patent/JP3019560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、送電線用避雷装置の
続流遮断能力を検証する試験方法に関し、より詳しく
は、限流要素と大気中ギャップとを直列に備えてなる送
電線用避雷装置において、限流要素と大気中ギャップと
を直列に通過した衝撃性雷電流につづく運転周波数電源
からの電流が前記大気中ギャップで遮断される際の該大
気中ギャップの遮断能力を検証する,送電線用避雷装置
の続流遮断試験方法として、試験用電源に交流電源のみ
を用い、大気中ギャップをヒューズで短絡して交流電源
でヒューズを溶融気化させ、該溶融気化後に大気中ギャ
ップを通過する限流要素通過電流を該大気中ギャップで
遮断させる続流遮断試験方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a test method for verifying the ability of a lightning arrester for a transmission line to interrupt a downstream current, and more particularly to a lightning arrester for a transmission line comprising a current limiting element and an air gap in series. The apparatus verifies the breaking ability of the air gap when the current from the operating frequency power supply following the impulsive lightning current that has passed in series with the current limiting element and the air gap is interrupted at the air gap, As a method for testing the wake of a lightning arrester for a transmission line, only the AC power supply is used as a test power supply, the gap in the atmosphere is short-circuited with a fuse, and the fuse is melted and vaporized with the AC power supply. The present invention relates to a continuation current interruption test method for interrupting a current flowing through a current limiting element at an air gap.

【0002】[0002]

【従来の技術】従来、避雷装置の続流遮断試験には、衝
撃性雷電流を模擬したインパルス電流を発生するインパ
ルス電源と、衝撃性雷電流につづく運転周波数電源から
の電流を供給するための交流電源との2つを試験用電源
として用いるのが普通である。これは、避雷装置が、通
常、その定格電圧より小さい定格電圧の避雷要素を積み
重ねて構成され、避雷装置の性能検証は、大容量の試験
用電源を必要としない避雷要素の性能検証により可能で
あることによるものである。しかし、送電線用避雷装置
は、板状の非線形抵抗素子を避雷装置の定格電圧に応じ
た高さに積み重ね、これを絶縁筒内に収納してなる限流
要素と、定格電圧にかかわらず放電間隙数が1個のみの
大気中ギャップとを直列に配して構成され、落雷時に大
気中ギャップが放電して雷電流が限流要素を通過して流
れた後、つづく送電線からの電流 (続流) を大気中ギャ
ップで遮断するように構成されている。従って、大気中
ギャップの続流遮断能力の検証には、避雷装置の定格電
圧に等しい出力電圧を有する交流電源と、常時絶縁状態
にある大気中ギャップを放電させることができ、かつ放
電につづく所定の継続時間を有するインパルス電流を供
給することのできるインパルス電源とを必要とする。し
かし、送電線用避雷装置の定格電圧は、例えば84kV
とか140kVとかの高電圧であり、このような定格電
圧に対応したインパルス電源を用意することは経済的に
困難である。
2. Description of the Related Art Conventionally, a follow-up cutoff test of a lightning arrester has been carried out by using an impulse power supply for generating an impulse current simulating an impulsive lightning current and a current for supplying a current from an operating frequency power supply following the impulsive lightning current. Usually, two AC power supplies are used as test power supplies. This is because the lightning arrester usually consists of stacked lightning arresters with a rated voltage lower than its rated voltage, and the performance verification of the lightning arrester can be performed by verifying the performance of the lightning arrester element that does not require a large test power supply. It is due to something. However, lightning arresters for power transmission lines have a plate-shaped non-linear resistance element stacked at a height corresponding to the rated voltage of the lightning arrester, and a current-limiting element that is housed in an insulating cylinder. The air gap with only one gap is arranged in series with the air gap, and the air gap discharges during a lightning strike, and the lightning current flows through the current-limiting element. (Continuous flow) is interrupted by an air gap. Therefore, to verify the ability of the air gap to follow the downstream current, an AC power supply having an output voltage equal to the rated voltage of the lightning arrester and the air gap that is always insulated can be discharged, and And an impulse power supply capable of supplying an impulse current having the same duration. However, the rated voltage of the transmission line lightning arrester is, for example, 84 kV.
It is a high voltage such as 140 kV, and it is economically difficult to prepare an impulse power supply corresponding to such a rated voltage.

【0003】そこで、インパルス電源を用いないで大気
中ギャップの続流遮断能力を等価的に検証する方法とし
て、試験用電源に交流電源のみを用い、大気中ギャップ
をヒューズで短絡して交流電源でヒューズを溶融気化さ
せ、該溶融気化後に大気中ギャップを通過する限流要素
通過電流を該大気中ギャップで遮断させる続流遮断試験
方法がとられている。この方法による続流遮断試験を行
うための従来の試験回路構成の一例を図5に示す。図に
おいて、符号2は短絡発電機、3は保護遮断器、4は投
入開閉器、5は電流調整用リアクトル、6は昇圧変圧
器、7Aは避雷装置の限流要素、7Bは避雷装置1の
大気中ギャップである。
[0003] Therefore, as a method of equivalently verifying the ability to interrupt the downstream flow of the air gap without using an impulse power supply, only an AC power supply is used as a test power supply, and the air gap is short-circuited with a fuse and the AC power supply is used. A fuse is melted and vaporized, and a follow-current cutoff test method is adopted in which a current flowing through a current limiting element passing through an air gap after the melt vaporization is cut off by the air gap. FIG. 5 shows an example of a conventional test circuit configuration for performing a follow-current cutoff test by this method. In the figure, reference numeral 2 is short-circuited generator 3 is protected breaker, 4-on switch, a current adjusting reactor 5, 6 the step-up transformer, 7A current limiting element of the lightning protection device 7, 7B is lightning arrester 1 Is the air gap.

【0004】この回路での試験は以下のように行われ
る。すなわち、試験に先立ち、大気中ギャップ7Bを細
い金属線からなるヒューズ8で短絡し、変圧器6の2次
側に避雷装置の定格電圧が出力できるように変圧器6
の1次側または2次側巻線のタップ切替えを行う。然る
後、保護遮断器3を投入して短絡発電機2を始動させ、
短絡発電機2の端子電圧が所定値に到達したところで投
入開閉器4を投入する。これにより、ヒューズ8には限
流要素7Aを通過した電流が流れ、この電流とヒューズ
8の線径とに応じた時間でヒューズ8が溶融気化し、大
気中ギャップ7Bの両電極間はヒューズの金属蒸気の雰
囲気となり、この雰囲気中を限流要素7Aを通過した電
流が流れる。この電流は、限流要素7Aにかかる昇圧変
圧器6の2次側電圧すなわち避雷装置の定格電圧と限
流要素7Aの非線形特性とによってきまる,通常波高値
が1A以下の電流と、限流要素7Aの絶縁筒外周面の汚
損による,不規則なパルスの繰返し波形を有する, 通常
波高値が10A前後となる表面もれ電流との和であり、
この電流がヒューズ溶融気化後の大気中ギャップ中で遮
断されることになる。このときの大気中ギャップの遮断
能力を等価的に検証できるようにするために、使用する
ヒューズの線径や長さは、電極間隔のより小さい気中ギ
ャップと、この気中ギャップに対応した高さに積み重ね
た非線形抵抗素子とを用い、交流電源のみとヒューズと
を用いた試験と、ヒューズを用いず、交流電源とインパ
ルス電源とを併用して行った試験とによる等価性試験の
結果を外挿して決められる。
A test in this circuit is performed as follows. That is, prior to the test, the gap 7B in the atmosphere is short-circuited by a fuse 8 made of a thin metal wire, and the transformer 6 is connected to the secondary side of the transformer 6 so that the rated voltage of the lightning arrester 7 can be output.
Of the primary winding or the secondary winding. After that, the protection circuit breaker 3 is turned on to start the short-circuit generator 2,
When the terminal voltage of the short-circuit generator 2 reaches a predetermined value, the closing switch 4 is closed. As a result, the current that has passed through the current limiting element 7A flows through the fuse 8, and the fuse 8 melts and evaporates in a time corresponding to the current and the wire diameter of the fuse 8, and the gap between the two electrodes of the air gap 7B is closed. The atmosphere becomes a metal vapor atmosphere, and a current passing through the current limiting element 7A flows in the atmosphere. This current is determined by the secondary voltage of the step-up transformer 6 applied to the current limiting element 7A, that is, the rated voltage of the lightning arrester 7 and the nonlinear characteristic of the current limiting element 7A. The sum of the surface leakage current and the normal peak value of about 10 A, which has an irregular pulse repetition waveform due to the contamination of the insulating cylinder outer peripheral surface of the element 7A,
This current is cut off in the air gap after the fuse is vaporized. In order to be able to verify equivalently the interrupting ability of the air gap at this time, the wire diameter and length of the fuse to be used should be the air gap with a smaller electrode gap and the high air gap corresponding to this air gap. The results of the equivalence test between the test using only the AC power supply and the fuse using the stacked nonlinear resistance elements and the test using the AC power supply and the impulse power supply together without using the fuse were excluded. It is decided by inserting.

【0005】[0005]

【発明が解決しようとする課題】ところが、このように
して線径と長さとが決められたヒューズを用いて続流遮
断試験を行っても、避雷装置に電流が流れはじめてから
ヒューズが溶融気化するまでの時間 (この時間は、ヒュ
ーズが溶融気化したときに不連続的に高抵抗となり、電
流がこの気化の時点, 少なくとも次の零値通過の時点で
不連続的に変化するので、電流波形の変化から捉えるこ
とができる。以下この時間を溶断時間、また、溶融気化
を溶断ともいう。) が大きくばらつき、大気中ギャップ
の電流遮断の成否にかかわらず、大気中ギャップの真の
遮断能力の判定が困難であるという問題があった。ま
た、溶断時間のばらつきのため、限流要素通過電流の継
続時間が異常に長くなり、限流要素が破壊して、試験を
繰返し行う上で支障を生じる場合があった。
However, even when a follow-current cutoff test is performed using a fuse having a predetermined wire diameter and length, the fuse melts and vaporizes after the current starts flowing through the lightning arrester. (This time is a discontinuous high resistance when the fuse is melted and vaporized, and the current changes discontinuously at this vaporization time, at least at the time of the next zero crossing. (This time is referred to as the fusing time, and the melting and vaporization is also referred to as fusing.), And the true breaking ability of the gap in the atmosphere is determined regardless of the success or failure of the current breaking in the gap in the atmosphere. There was a problem that was difficult. In addition, due to the variation in the fusing time, the duration of the current flowing through the current-limiting element becomes abnormally long, and the current-limiting element is broken, which may cause a problem in repeating the test.

【0006】この発明の目的は、交流電源からヒューズ
に電流が流れはじめてから溶融気化に到るまでの時間が
ばらつかず、これにより、大気中ギャップの遮断能力判
定のための試験結果の評価がより容易となりかつ試験効
率の低下を防止できる送電線用避雷装置の続流遮断試験
方法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention that the time from the start of the current flow to the fuse from the AC power supply to the melting and vaporization does not vary, which makes it possible to evaluate the test results for determining the gap breaking capability in the atmosphere. It is an object of the present invention to provide a method for testing a lightning arrester for a power transmission line, which is easier and can prevent a decrease in test efficiency.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、限流要素と大気中ギャップとを
直列に備えてなる送電線用避雷装置において、限流要素
と大気中ギャップとを直列に通過した衝撃性雷電流につ
づく運転周波数電源からの電流が前記大気中ギャップで
遮断される際の該大気中ギャップの遮断能力を検証す
る,送電線用避雷装置の続流遮断試験方法として、試験
用電源に交流電源のみを用い、大気中ギャップをヒュー
ズで短絡して交流電源でヒューズを溶融気化させ、該溶
融気化後に大気中ギャップを通過する限流要素通過電流
を該大気中ギャップで遮断させる続流遮断試験方法を、
前記交流電流が短絡電流を出力するための短絡電源から
なり、試験回路が、該短絡電源に避雷装置が直列に接続
されてなる主回路と,限流要素と並列に遮断器が接続さ
れた補助回路とからなり、該遮断器をONした状態で短
絡電源からヒューズに短絡電流を供給して溶融気化さ
せ、該溶融気化とほぼ同時に遮断器をOFFして遮断器
通過電流を限流要素に移行させ、限流要素通過電流を大
気中ギャップで遮断させる方法とするか、または、前記
交流電源が、短絡電流を出力するための短絡電源と,ヒ
ューズを溶融気化させる電流を出力する補助電源とから
なり、試験回路が、該短絡電源に避雷装置が直列に接続
されてなる主回路と,ヒューズと並列に補助電源が遮断
器を介して接続された補助回路とからなり、該遮断器を
ONして補助電源からヒューズに電流を供給して溶融気
化させ、該溶融気化の直前に避雷装置を短絡電源に接続
するとともに遮断器をOFFし、短絡電源から限流要素
を通過して流れる電流を大気中ギャップで遮断させる方
法とする。そして、補助電源を短絡電源と併用する方法
では、補助電源を短絡電源より短絡容量の小さい短絡発
電機とするか、短絡電源を1次側に有する変圧器とすれ
ば好適である。
According to the present invention, there is provided a lightning arrester for a transmission line comprising a current limiting element and an air gap in series. , A follow-up cutoff test for a lightning arrester for a transmission line, which verifies the breaking ability of the air gap when the current from the operating frequency power supply following the impulsive lightning current passed in series with As a method, only an AC power supply is used as a test power supply, the fuse in the atmosphere is short-circuited with a fuse, and the fuse is melted and vaporized by the AC power supply. The following flow interruption test method to interrupt at the gap,
The AC current comprises a short-circuit power supply for outputting a short-circuit current, the test circuit comprises a main circuit in which a lightning arrester is connected in series to the short-circuit power supply, and an auxiliary circuit in which a circuit breaker is connected in parallel with a current limiting element. With the circuit breaker turned on, a short-circuit current is supplied to the fuse from the short-circuit power supply to melt and vaporize the fuse, and at the same time as the melt-vaporization, the circuit breaker is turned off and the circuit breaker passing current is transferred to the current limiting element. Or a method in which the current passing through the current-limiting element is interrupted at the gap in the atmosphere, or the AC power supply comprises a short-circuit power supply for outputting a short-circuit current and an auxiliary power supply for outputting a current for melting and vaporizing the fuse. The test circuit comprises a main circuit in which a lightning arrester is connected in series to the short-circuit power supply, and an auxiliary circuit in which an auxiliary power supply is connected in parallel with a fuse via a circuit breaker. Or auxiliary power A current is supplied to the fuse to melt and vaporize, and immediately before the melt and vaporization, the lightning arrester is connected to the short-circuit power supply and the circuit breaker is turned off, and the current flowing from the short-circuit power supply through the current-limiting element is cut off at the air gap. Method. In the method of using the auxiliary power supply together with the short-circuit power supply, it is preferable that the auxiliary power supply be a short-circuit generator having a short-circuit capacity smaller than that of the short-circuit power supply or a transformer having the short-circuit power supply on the primary side.

【0008】[0008]

【作用】この発明は、限流要素を構成する非線形素子を
通過する電流が、避雷装置の定格電圧に等しい交流電源
のもとでは、その非線形特性に基づいて通常1A以下と
非常に小さく、かつ限流要素の絶縁筒外周面の汚損に基
づく表面もれ電流が、波高値としては10A前後とかな
り大きいものの、不規則なパルスの繰返し波形を示し、
一定時間内にヒューズに供給されるエネルギーにばらつ
きが避けられず、これがヒューズ溶断時間のばらつきを
もたらす原因となっていることに着目したものである。
従って、ヒューズの溶断に安定した正弦波電流を用い、
かつその電流値を、ヒューズの溶断時間にばらつきが生
じはじめる電流以上の電流としてヒューズを溶断させる
ことにより、溶断時間にばらつきがなくなり、各電流ご
との溶断時間、もしくはヒューズへの正弦波電流通電開
始から大気中ギャップにおける最終遮断までの時間内に
ギャップ電極間に注入されたエネルギーと大気中ギャッ
プの遮断の成否との関係と、大気中ギャップの電極間隔
を小さくするとともに、これに対応した高さに積み重ね
た非線形抵抗素子を用い、交流電源とインパルス電源と
を併用してヒューズなしで続流遮断を行ったときのギャ
ップ電極間への注入エネルギーと遮断の成否との関係と
を対比させる等の手段により、大気中ギャップの続流遮
断能力の判定をより正しく行うことができる。さらに、
従来では溶断時間のばらつきが大きく、限流要素通過電
流の継続時間が異常に長くなって限流要素中の非線形抵
抗素子が熱破壊を生じ、試験の中断に到るごときケース
がなくなり、試験の効率も向上する。
According to the present invention, a current passing through a non-linear element constituting a current limiting element is very small, usually 1 A or less, based on the non-linear characteristic under an AC power supply equal to the rated voltage of the lightning arrester. The surface leakage current based on the contamination of the outer peripheral surface of the insulating cylinder of the current limiting element has a peak value of about 10 A, which is considerably large, but shows a repetitive waveform of an irregular pulse,
The inventors pay attention to the fact that the energy supplied to the fuse within a certain period of time is inevitable, and this causes the variation of the fuse blowing time.
Therefore, a stable sine wave current is used to blow the fuse,
In addition, by fusing the fuse as a current equal to or greater than the current at which the fusing time of the fuse begins to fluctuate, the fusing time no longer varies, and the fusing time for each current or the start of sine wave current flow to the fuse The relationship between the energy injected between the gap electrodes and the success or failure of the air gap interruption during the time from the time until the final interruption in the air gap to the air gap, the electrode gap in the air gap is reduced, and the height corresponding to this is reduced. Using the non-linear resistance element stacked in the above, the AC power supply and the impulse power supply are used together, and when the continuity interruption is performed without a fuse, the relation between the injected energy between the gap electrodes and the success or failure of the interruption is compared. By this means, it is possible to more correctly determine the ability to block the downstream flow of the air gap. further,
Conventionally, the fusing time fluctuates greatly, the duration of the current flowing through the current-limiting element becomes abnormally long, and the nonlinear resistance element in the current-limiting element causes thermal destruction. Efficiency is also improved.

【0009】また、特に、交流電流として、短絡電源と
補助電源とを用いる方法では、補助電源として短絡電源
より短絡容量の小さい短絡発電機もしくは1次側に短絡
電源を有する, 短絡電源より小容量の変圧器を用いるこ
とにより、ヒューズに供給する電流を調整するリアクト
ルが小形となることから、電流を小ピッチで変化させて
供給することが容易となり、数多くの試験データが容易
に得られ、続流遮断能力の判定がより正確に可能となる
利点がある。
In particular, in the method using a short-circuit power supply and an auxiliary power supply as the AC current, a short-circuit generator having a short-circuit capacity smaller than the short-circuit power supply as the auxiliary power supply or a short-circuit power supply on the primary side is provided. By using a transformer of the type described above, the reactor for adjusting the current supplied to the fuse becomes small, so that it is easy to supply the current by changing it at a small pitch, and a large amount of test data can be easily obtained. There is an advantage that the flow blocking ability can be determined more accurately.

【0010】[0010]

【実施例】図1に本発明の方法に基づいた試験回路構成
の第1の実施例を示す。図において、図5と同一の回路
要素には同一符号を付して説明を省略する。試験回路
は、短絡発電機2と保護遮断器3と投入開閉器4と電流
調整用リアクトル5と昇圧変圧器6とからなり昇圧変圧
器6の2次側端子から短絡電流を出力する短絡電源1と
避雷装置とが直列に接続されてなる主回路と、避雷装
の限流要素7Aに遮断器9を並列に接続した補助回
路とで構成されている。従って、短絡電源1と避雷装置
との電気的接続は、昇圧変圧器6の1次側で保護遮断
器3を閉路状態とした後、投入開閉器4を投入すること
により行われる。この回路構成による試験は以下のよう
に行われる。
FIG. 1 shows a first embodiment of a test circuit configuration based on the method of the present invention. In the figure, the same circuit elements as those in FIG. The test circuit includes a short-circuit generator 2, a protective circuit breaker 3, a closing switch 4, a current regulating reactor 5, and a step-up transformer 6, and a short-circuit power supply 1 that outputs a short-circuit current from a secondary terminal of the step-up transformer 6. And a lightning arrester 7 connected in series, and an auxiliary circuit in which a circuit breaker 9 is connected in parallel to a current limiting element 7A of the lightning arrester 7 . Therefore, the short-circuit power supply 1 and the lightning arrester
The electrical connection with 7 is made by closing the protection circuit breaker 3 on the primary side of the step-up transformer 6 and then closing the closing switch 4. A test using this circuit configuration is performed as follows.

【0011】まず、試験に先立ち、避雷装置の大気中
ギャップ7Bをヒューズ8で短絡し、また、昇圧変圧器
6の2次側に避雷装置の定格電圧が出力されるよう、
1次側または2次側巻線のタップ切替えを行う。次に、
保護遮断器3 (図2のSW1) を投入して短絡発電機2
を始動させ、短絡発電機2の端子電圧が所定値に達する
と投入開閉器4 (図2のSW2) を投入する。この投入
時点T1 ( 図2) から遮断器9を介してヒューズ8に短
絡電流I1 が流れ、この電流によりヒューズ8が時点T
2 で溶断する。ヒューズ8の溶断直前に遮断器9をOF
Fさせると、遮断器9内の短絡電流I1 はその零点で遮
断され、以後、限流要素6Aを通過する電流I2 のみ
が、ヒューズが溶融気化した大気中ギャップ7B中を流
れ、かつ大気中ギャップ7Bで遮断されることになる。
図2における電流I3 は、大気中ギャップ7Bを通過す
る電流の全時間経過を示す。
First, prior to the test, the air gap 7B of the lightning arrester 7 is short-circuited with a fuse 8, and the rated voltage of the lightning arrester 7 is output to the secondary side of the step-up transformer 6.
The primary or secondary winding tap is switched. next,
The protection circuit breaker 3 (SW1 in FIG. 2) is turned on and the short circuit generator 2 is turned on.
When the terminal voltage of the short-circuit generator 2 reaches a predetermined value, the closing switch 4 (SW2 in FIG. 2) is turned on. From this closing time T 1 (FIG. 2), a short-circuit current I 1 flows to the fuse 8 via the circuit breaker 9, and this fuse causes the fuse 8 to move at the time T 1.
Fusing at 2 The breaker 9 is turned off immediately before the fuse 8 is blown.
F, the short-circuit current I 1 in the circuit breaker 9 is cut off at its zero point, and thereafter, only the current I 2 passing through the current limiting element 6A flows through the air gap 7B where the fuse is melted and vaporized, and It will be cut off by the middle gap 7B.
Current I 3 in FIG. 2 shows the entire time course of the current passing through the air in the gap 7B.

【0012】遮断器9を介してヒューズ8に供給する電
流を、ヒューズ8の溶断時間にばらつきが生じはじめる
電流以上とすることにより、ヒューズ8は電流ごとに一
定の溶断時間を示し、この溶断時間と関連する,溶断後
の限流要素通過電流の継続時間のばらつきも僅少とな
り、大気中ギャップの続流遮断能力判定のための試験結
果の評価が容易となる。また、従来では溶断時間のばら
つきが大きく、限流要素通過電流の継続時間が異常に長
くなって限流要素中の非線形抵抗素子が熱破壊を生じ、
試験の中断に到るごときケースがなくなり、試験の効率
も向上する。
By setting the current supplied to the fuse 8 via the circuit breaker 9 to a value equal to or greater than the current at which the fusing time of the fuse 8 begins to vary, the fuse 8 exhibits a constant fusing time for each current. The variation in the duration of the current flowing through the current limiting element after fusing is also small, and the evaluation of the test result for determining the ability to interrupt the downstream flow of the air gap becomes easy. Conventionally, the fusing time greatly fluctuates, the duration of the current flowing through the current limiting element becomes abnormally long, and the nonlinear resistance element in the current limiting element causes thermal destruction.
There are no cases where testing is interrupted, and testing efficiency is improved.

【0013】図3に本発明の方法に基づいた試験回路構
成の第2の実施例を示す。この実施例では、試験回路は
第1の実施例と同じ主回路と、ヒューズを溶断させる電
流を供給する補助電源11が避雷装置の大気中ギャッ
プ7Bに並列に遮断器10とリアクトル12とを介して
接続された補助回路とで構成されている。通常、工場の
短絡試験場では、大容量の短絡発電機と小容量の短絡発
電機とを備えており、小容量の短絡発電機を補助電源1
1として使用することができる。また、短絡発電機2を
電源とした小形の変圧器を補助電源とすることももちろ
ん可能である。補助電源11からヒューズ8に供給する
電流を調整するリアクトル12は、主回路のリアクトル
5よりも小形なため、切替え操作が容易で、電流を小ピ
ッチで多段に切替えることが容易にでき、多くのデータ
を容易に得ることができる。試験は以下のように行われ
る。
FIG. 3 shows a second embodiment of the test circuit configuration based on the method of the present invention. In this embodiment, the test circuit comprises the same main circuit as in the first embodiment, and an auxiliary power supply 11 for supplying a current for blowing a fuse comprises a circuit breaker 10 and a reactor 12 in parallel with an air gap 7B of a lightning arrester 7. And an auxiliary circuit connected thereto. Usually, a short-circuit test site in a factory is provided with a large-capacity short-circuit generator and a small-capacity short-circuit generator, and the small-capacity short-circuit generator is connected to the auxiliary power supply 1.
Can be used as 1. In addition, it is of course possible to use a small transformer using the short-circuit generator 2 as a power supply as an auxiliary power supply. Since the reactor 12 for adjusting the current supplied from the auxiliary power supply 11 to the fuse 8 is smaller than the reactor 5 of the main circuit, the switching operation is easy, and the current can be easily switched in multiple stages at a small pitch. Data can be obtained easily. The test is performed as follows.

【0014】まず、試験に先立ち、避雷装置の大気中
ギャップ7Bをヒューズ8で短絡し、また、昇圧変圧器
6の2次側に避雷装置の定格電圧が出力されるよう、
1次側または2次側巻線のタップ切替えを行う。次に保
護遮断器3 (図4のSW1)を投入して短絡発電機2を
始動させ、短絡発電機2に所定の端子電圧を発生させて
投入開閉器4 (図4のSW2) に投入を待機させる。補
助電源11に短絡発電機2とは別の短絡発電機を用いる
場合には、この発電機の端子電圧も短絡発電機2とほぼ
同時に所定値に上昇させる。両発電機の端子電圧がとも
に所定値に上昇したところで時刻T1 ( 図4) に遮断器
10を投入してヒューズ8に電流を供給する。ヒューズ
8はこの電流により時刻T2 で溶断して高抵抗に変化す
る。時刻T2 よりわずか前、すなわちヒューズ8がまだ
溶断していない時点で投入開閉器4を投入すると、ヒュ
ーズ8には短絡電源1から限流要素7Aを通過した電流
1 ( 図4参照) が補助電源11からの電流I3 に重畳
して流れる。この時点ではヒューズ8の端子電圧は低
く、補助電源11に昇圧変圧器6の高電圧がかかること
はない。遮断器10をヒューズ8の溶断時点T2 の直前
に開き、つづいてヒューズ8が溶断すると、以後、ヒュ
ーズ溶断後の大気中ギャップ7Bに限流要素通過電流が
流れる。
First, prior to the test, the lightning arrester7In the atmosphere
The gap 7B is short-circuited by the fuse 8, and the step-up transformer
Lightning arrester on the secondary side of 67So that the rated voltage of
The primary or secondary winding tap is switched. Next,
Protection circuit breaker 3 (SW1 in FIG. 4)
Start and generate a predetermined terminal voltage in the short-circuit generator 2
The closing switch 4 (SW2 in FIG. 4) waits for closing. Supplement
A short-circuit generator different from the short-circuit generator 2 is used as the auxiliary power supply 11
In this case, the terminal voltage of this generator is almost the same as that of the short-circuit generator 2.
At the same time, it is raised to a predetermined value. Both generator terminal voltages are
At the point where the value has risen to the predetermined value at time T1(Fig. 4)
10 is supplied to supply a current to the fuse 8. fuse
8 at time TTwoFusing and changes to high resistance
You. Time TTwoJust before, that is, fuse 8 is still
When the closing switch 4 is turned on at the time when it is not blown,
Current flowing through the current limiting element 7A from the short-circuit power supply 1
I 1(See FIG. 4) is the current I from the auxiliary power supply 11ThreeSuperimposed on
And flow At this time, the terminal voltage of the fuse 8 is low.
That the high voltage of the step-up transformer 6 is applied to the auxiliary power supply 11
There is no. The breaker 10 is disconnected from the fuse 8 at the time TTwoJust before
When the fuse 8 is blown, the fuse
Current through the current limiting element in the air gap 7B
Flows.

【0015】以上の試験をリアクトル12を切り替えな
がら、ヒューズ8の溶断時間にばらつきを生じない大き
さの多くの電流値を用いて行うことにより、大気中ギャ
ップの続流遮断能力の判定に有用な多くのデータを得る
ことができる。
By performing the above test while switching the reactor 12 and using a large current value that does not cause a variation in the fusing time of the fuse 8, it is useful for determining the ability of the air gap to follow the downstream flow. A lot of data can be obtained.

【0016】[0016]

【発明の効果】以上に述べたように、本発明において
は、限流要素と大気中ギャップとを直列に備えてなる送
電線用避雷装置において、限流要素と大気中ギャップと
を直列に通過した衝撃性雷電流につづく運転周波数電源
からの電流が前記大気中ギャップで遮断される際の該大
気中ギャップの遮断能力を検証する,送電線用避雷装置
の続流遮断試験方法として、試験用電源に交流電源のみ
を用い、大気中ギャップをヒューズで短絡して交流電源
でヒューズを溶融気化させ、該溶融気化後に大気中ギャ
ップを通過する限流要素通過電流を該大気中ギャップで
遮断させる続流遮断試験方法を、前記交流電流が短絡電
流を出力するための短絡電源からなり、試験回路が、該
短絡電源に避雷装置が直列に接続されてなる主回路と,
限流要素と並列に遮断器が接続された補助回路とからな
り、該遮断器をONした状態で短絡電源からヒューズに
短絡電流を供給して溶融気化させ、該溶融気化とほぼ同
時に遮断器をOFFして遮断器通過電流を限流要素に移
行させ、限流要素通過電流を大気中ギャップで遮断させ
るようにするか、あるいは、前記交流電源が、短絡電流
を出力するための短絡電源と,ヒューズを溶融気化させ
る電流を出力する補助電源とからなり、試験回路が、該
短絡電源に避雷装置が直列に接続されてなる主回路と,
ヒューズと並列に補助電源が遮断器を介して接続された
補助回路とからなり、該遮断器をONして補助電源から
ヒューズに電流を供給して溶融気化させ、該溶融気化の
直前に避雷装置を短絡電源に接続するとともに遮断器を
OFFし、短絡電源から限流要素を通過して流れる電流
を大気中ギャップで遮断させる方法としたので、ヒュー
ズが安定した正弦波電流でばらつきなく溶断し、大気中
ギャップの続流遮断能力判定のための試験結果の評価が
より容易となった。さらに、従来では溶断時間のばらつ
きが大きく、限流要素通過電流の継続時間が異常に長く
なって限流要素中の非線形抵抗素子が熱破壊を生じ、試
験の中断に到るごときケースがなくなり、試験の効率も
向上することとなった。
As described above, according to the present invention, in a lightning arrester for a transmission line having a current limiting element and an air gap in series, the lightning arrester for a transmission line passes through the current limiting element and the air gap in series. As a method for testing the continuity interruption of a lightning arrester for a transmission line, a method for verifying the interruption capability of the air gap when the current from the operating frequency power supply following the impact shock lightning current interrupted at the air gap is used. Only the AC power supply is used as the power supply, the fuse in the atmosphere is short-circuited with a fuse, and the fuse is melted and vaporized with the AC power supply. A current interruption test method, wherein the alternating current comprises a short-circuit power supply for outputting a short-circuit current, and a test circuit comprises: a main circuit comprising a lightning arrester connected in series to the short-circuit power supply;
An auxiliary circuit in which a circuit breaker is connected in parallel with the current limiting element. When the circuit breaker is ON, a short-circuit current is supplied from a short-circuit power supply to a fuse to melt and vaporize the fuse. OFF to transfer the current passing through the circuit breaker to the current limiting element so that the current passing through the current limiting element is interrupted at the gap in the atmosphere, or the AC power supply includes a short-circuit power supply for outputting a short-circuit current; An auxiliary power supply for outputting a current for melting and vaporizing the fuse; a test circuit comprising: a main circuit in which a lightning arrester is connected in series to the short-circuit power supply;
An auxiliary circuit in which an auxiliary power supply is connected in parallel with the fuse through a circuit breaker. The circuit breaker is turned on, a current is supplied from the auxiliary power supply to the fuse, and the fuse is vaporized. Is connected to the short-circuit power supply and the circuit breaker is turned off, so that the current flowing from the short-circuit power supply through the current limiting element is cut off at the gap in the atmosphere. The evaluation of the test results for the determination of the downstream flow blocking ability of the air gap became easier. Furthermore, in the conventional case, the fusing time greatly fluctuates, the duration of the current flowing through the current limiting element becomes abnormally long, and the nonlinear resistance element in the current limiting element causes thermal destruction. The test efficiency was also improved.

【0017】また、特に、ヒューズの溶断電流を補助電
源から供給する方法では、評価の対象となる試験データ
が容易に数多く得られ、続流遮断能力の判定がより正確
に可能となる。
In particular, in the method in which the fuse blowing current is supplied from the auxiliary power supply, a large number of test data to be evaluated can be easily obtained, and the determination of the ability to interrupt the downstream current can be performed more accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法に基づいた試験回路構成の第1の
実施例を示す回路図
FIG. 1 is a circuit diagram showing a first embodiment of a test circuit configuration based on the method of the present invention.

【図2】図1に示す試験回路の制御内容とその時間順序
とを示す制御シーケンスと、各制御段階ごとの各部の電
流波形とを対比させて示す説明図
FIG. 2 is an explanatory diagram comparing a control sequence showing the control contents of the test circuit shown in FIG. 1 and its time sequence with a current waveform of each part in each control stage.

【図3】本発明の方法に基づいた試験回路構成の第2の
実施例を示す回路図
FIG. 3 is a circuit diagram showing a second embodiment of the test circuit configuration based on the method of the present invention.

【図4】図3に示す試験回路の制御内容とその時間順序
とを示す制御シーケンスと、各制御段階ごとの各部の電
流波形とを対比させて示す説明図
FIG. 4 is an explanatory diagram showing a comparison between a control sequence of the test circuit shown in FIG. 3 and a time sequence thereof, and a current waveform of each unit in each control stage.

【図5】従来の試験回路構成の一例を示す回路図FIG. 5 is a circuit diagram showing an example of a conventional test circuit configuration.

【符号の説明】[Explanation of symbols]

1 短絡電源 2 短絡発電機 3 保護遮断器 4 投入開閉器 5 リアクトル 6 昇圧変圧器 避雷装置(送電線用避雷装置) 7A 限流要素 7B 大気中ギャップ 8 ヒューズ 9 遮断器 10 遮断器 11 補助電源DESCRIPTION OF SYMBOLS 1 Short-circuit power supply 2 Short-circuit generator 3 Protection circuit breaker 4 Closing switch 5 Reactor 6 Step-up transformer 7 Lightning arrester (lightning arrester for transmission line) 7A Current limiting element 7B Atmospheric gap 8 Fuse 9 Circuit breaker 10 Circuit breaker 11 Auxiliary power supply

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】限流要素と大気中ギャップとを直列に備え
てなる送電線用避雷装置において、限流要素と大気中ギ
ャップとを直列に通過した衝撃性雷電流につづく運転周
波数電源からの電流が前記大気中ギャップで遮断される
際の該大気中ギャップの遮断能力を検証する送電線用避
雷装置の続流遮断試験方法として、試験用電源に交流電
源のみを用い、大気中ギャップをヒューズで短絡して交
流電源でヒューズを溶融気化させ、該溶融気化後に大気
中ギャップを通過する限流要素通過電流を該大気中ギャ
ップで遮断させる続流遮断試験方法において、前記交流
電流が短絡電流を出力するための短絡電源からなり、試
験回路が、該短絡電源に避雷装置が直列に接続されてな
る主回路と,限流要素と並列に遮断器が接続された補助
回路とからなり、該遮断器をONした状態で短絡電源か
らヒューズに短絡電流を供給して溶融気化させ、該溶融
気化とほぼ同時に遮断器をOFFして遮断器通過電流を
限流要素に移行させ、限流要素通過電流を大気中ギャッ
プで遮断させることを特徴とする送電線用避雷装置の続
流遮断試験方法。
1. A lightning arrester for a power transmission line comprising a current limiting element and an air gap in series, wherein a lightning current from an operating frequency power source following an impulsive lightning current passing through the current limiting element and the air gap in series is provided. As a method for testing the shunt current of a lightning arrester for a transmission line, which verifies the interrupting ability of the air gap when the current is interrupted at the air gap, only an AC power supply is used as a test power supply, and the air gap is fused. A fuse is melted and vaporized by an AC power supply by short-circuiting in the AC current, and the current limiting element passing current passing through the air gap after the melting and vaporization is interrupted by the air gap. A test circuit comprising: a main circuit in which a lightning arrester is connected in series to the short-circuit power supply; and an auxiliary circuit in which a circuit breaker is connected in parallel with the current limiting element. With the circuit breaker turned on, a short-circuit current is supplied to the fuse from the short-circuit power supply to melt and vaporize, and almost simultaneously with the melt-vaporization, the circuit breaker is turned off to transfer the circuit breaker passing current to the current limiting element and pass the current limiting element. A method for testing the continuity of a lightning arrester for a transmission line, wherein the current is interrupted at a gap in the atmosphere.
【請求項2】限流要素と大気中ギャップとを直列に備え
てなる送電線用避雷装置において、限流要素と大気中ギ
ャップとを直列に通過した衝撃性雷電流につづく運転周
波数電源からの電流が前記大気中ギャップで遮断される
際の該大気中ギャップの遮断能力を検証する送電線用避
雷装置の続流遮断試験方法として、試験用電源に交流電
源のみを用い、大気中ギャップをヒューズで短絡して交
流電源でヒューズを溶融気化させ、該溶融気化後に大気
中ギャップを通過する限流要素通過電流を該大気中ギャ
ップで遮断させる続流遮断試験方法において、前記交流
電源が、短絡電流を出力するための短絡電源と,ヒュー
ズを溶融気化させる電流を出力する補助電源とからな
り、試験回路が、該短絡電源に避雷装置が直列に接続さ
れてなる主回路と,ヒューズと並列に補助電源が遮断器
を介して接続された補助回路とからなり、該遮断器をO
Nして補助電源からヒューズに電流を供給して溶融気化
させ、該溶融気化の直前に避雷装置を短絡電源に接続す
るとともに遮断器をOFFし、短絡電源から限流要素を
通過して流れる電流を大気中ギャップで遮断させること
を特徴とする送電線用避雷装置の続流遮断試験方法。
2. A lightning arrester for a transmission line comprising a current limiting element and an air gap in series, wherein the lightning current from the operating frequency power source is based on an impact lightning current passing in series with the current limiting element and the air gap. As a method for testing the shunt current of a lightning arrester for a transmission line, which verifies the interrupting ability of the air gap when the current is interrupted at the air gap, only an AC power supply is used as a test power supply, and the air gap is fused. A fuse is melted and vaporized by an AC power supply at the AC power supply, and the current limiting element passing current passing through the air gap after the melt vaporization is cut off by the air gap. A short-circuit power supply for outputting a current, and an auxiliary power supply for outputting a current for melting and vaporizing the fuse, wherein a test circuit comprises: a main circuit having a lightning arrester connected in series to the short-circuit power supply; Consists auxiliary circuit auxiliary power in parallel with the Yuzu is connected via a circuit breaker, the breaker O
N, a current is supplied from the auxiliary power supply to the fuse to melt and vaporize, and immediately before the fusion and vaporization, the lightning arrester is connected to the short-circuit power supply, the circuit breaker is turned off, and the current flowing from the short-circuit power supply through the current-limiting element. A method for testing the continuity of lightning arresters for power transmission lines, characterized in that the airflow is interrupted by an air gap.
【請求項3】請求項第2項に記載の続流遮断試験方法に
おいて、遮断器を介してヒューズと並列に接続される補
助電源が主回路の短絡電源より短絡容量の小さい短絡発
電機であることを特徴とする送電線用避雷装置の続流遮
断試験方法。
3. The method according to claim 2, wherein the auxiliary power supply connected in parallel with the fuse via the circuit breaker is a short-circuit generator having a short-circuit capacity smaller than the short-circuit power supply of the main circuit. A method for testing a lightning arrester for a transmission line, comprising:
【請求項4】請求項第2項に記載の続流遮断試験方法に
おいて、遮断器を介してヒューズと並列に接続される補
助電源が、主回路の短絡電源を1次側に有する変圧器で
あることを特徴とする送電線用避雷装置の続流遮断試験
方法。
4. The method of claim 2, wherein the auxiliary power supply connected in parallel with the fuse via the circuit breaker is a transformer having a short circuit power supply of a main circuit on a primary side. A method for testing a lightning arrester for a power transmission line, comprising:
JP3323518A 1991-12-09 1991-12-09 Test method for follow-up interruption of lightning arrester for transmission line Expired - Fee Related JP3019560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323518A JP3019560B2 (en) 1991-12-09 1991-12-09 Test method for follow-up interruption of lightning arrester for transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323518A JP3019560B2 (en) 1991-12-09 1991-12-09 Test method for follow-up interruption of lightning arrester for transmission line

Publications (2)

Publication Number Publication Date
JPH05157788A JPH05157788A (en) 1993-06-25
JP3019560B2 true JP3019560B2 (en) 2000-03-13

Family

ID=18155587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323518A Expired - Fee Related JP3019560B2 (en) 1991-12-09 1991-12-09 Test method for follow-up interruption of lightning arrester for transmission line

Country Status (1)

Country Link
JP (1) JP3019560B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376864B2 (en) * 2008-08-08 2013-12-25 株式会社日立製作所 Load test method for series multiple inverter device
CN102933973B (en) * 2010-06-17 2015-08-05 三菱电机株式会社 The method for detecting abnormality of capacity load device and capacity load device
CN102967777B (en) * 2012-10-15 2015-09-02 江苏省如高高压电器有限公司 The load testing electric power supply control system of disconnector motor drive mechanism
CN108896865B (en) * 2018-09-11 2020-09-04 奇瑞汽车股份有限公司 Fuse determination method and device for automobile and storage medium

Also Published As

Publication number Publication date
JPH05157788A (en) 1993-06-25

Similar Documents

Publication Publication Date Title
KR101550374B1 (en) High-voltage DC circuit breaker
CA1294327C (en) Contact arc suppressor arrangement for a reactor switch
EP2639805A2 (en) Method, circuit breaker and switching unit for switching off high-voltage DC currents
WO2018109889A1 (en) Testing apparatus for dc circuit breaker
JP5650914B2 (en) System and method for protecting a series capacitor bank
JP3019560B2 (en) Test method for follow-up interruption of lightning arrester for transmission line
JPH03202793A (en) Testing apparatus for circuit breaker
US20050168889A1 (en) Device and method for triggering a spark gap
JP2550046B2 (en) Inspection circuit
JPH05205849A (en) Testing method for lightning arrester
US4454476A (en) Method of and apparatus for synthetic testing of a multi-break circuit breaker
JP3103262B2 (en) Circuit breaker test circuit for switchgear
JPH08271596A (en) Synthetic equivalent test method for circuit breaker
Stoetzel et al. Fault mitigation of arc-caused short-circuits in a MMC-based multiterminal HVDC system
JPH08278349A (en) Method for synthetic equalization testing of breaker
CA1058694A (en) Discharge gap device
JPH06186309A (en) Interruption test circuit for switch
JP2675649B2 (en) Switchgear test method and device
CA1309487C (en) Apparatus for reducing stresses that initiate restrike of breakers in disconnecting capacitor banks
JPH0797124B2 (en) Continuity current interruption characteristic test device of lightning arrester device with series gap
JPH0568328A (en) Protector for superconducting coil
JPH0519029A (en) Composite equivalent test circuit of circuit breaker
JPH0454820A (en) Protective unit for superconducting coil
Clark et al. Current limiting protector for industrial applications
SU892519A1 (en) Device for switchability testing of safety cut-outs

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees