JP3014256B2 - Continuous casting of thin slabs - Google Patents

Continuous casting of thin slabs

Info

Publication number
JP3014256B2
JP3014256B2 JP5264907A JP26490793A JP3014256B2 JP 3014256 B2 JP3014256 B2 JP 3014256B2 JP 5264907 A JP5264907 A JP 5264907A JP 26490793 A JP26490793 A JP 26490793A JP 3014256 B2 JP3014256 B2 JP 3014256B2
Authority
JP
Japan
Prior art keywords
cooling drum
sleeve
peripheral surface
temperature
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5264907A
Other languages
Japanese (ja)
Other versions
JPH07116785A (en
Inventor
貴士 新井
衛 山田
千博 山地
功 水地
邦政 佐々木
恵一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5264907A priority Critical patent/JP3014256B2/en
Publication of JPH07116785A publication Critical patent/JPH07116785A/en
Application granted granted Critical
Publication of JP3014256B2 publication Critical patent/JP3014256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼、合金
鋼、珪素鋼、普通鋼およびその他金属の溶湯から直接に
薄鋳片を製造する単ドラム式連続鋳造機や双ドラム式連
続鋳造機を用いた鋳造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-drum continuous caster and a twin-drum continuous caster for producing thin slabs directly from a molten metal of stainless steel, alloy steel, silicon steel, ordinary steel and other metals. It relates to the casting method used.

【0002】[0002]

【従来の技術】金属溶湯から直接に薄鋳片(板厚約1〜
10mm)を製造する装置として、金属溶湯を回転する冷
却ドラムの周面に供給して冷却凝固する方法が知られて
いる。このような薄鋳片連続鋳造機としては、冷却ドラ
ムを1つ用いる単ドラム式連続鋳造機と、冷却ドラムを
2つ用いる双ドラム式連続鋳造機とがある。そのうちの
双ドラム式連続鋳造機については、図1に示すように、
互いに反対方向に回転する一対の冷却ドラム1を水平
に、かつ所定の間隙を置いて互いに平行になるように対
向配設するとともに、冷却ドラム1の両端面に一対のサ
イド堰2を圧着して冷却ドラムの間隙の上部に湯溜まり
部3を画成し、湯溜まり部3に金属溶湯(以下単に溶湯
という)を注入し、溶湯を冷却ドラム1の外周面で冷却
して凝固シェルGを形成させ、凝固シェルGを冷却ドラ
ム1の間隙で圧着することで薄鋳片Sを鋳造する。
2. Description of the Related Art Thin cast slabs (plate thickness of about 1 to
As a device for producing a molten metal (10 mm), there is known a method in which a molten metal is supplied to the peripheral surface of a rotating cooling drum and solidified by cooling. Such a thin slab continuous caster includes a single-drum continuous caster using one cooling drum and a twin-drum continuous caster using two cooling drums. As for the twin drum type continuous casting machine, as shown in FIG.
A pair of cooling drums 1 rotating in opposite directions are arranged horizontally and opposed to each other so as to be parallel to each other with a predetermined gap therebetween, and a pair of side weirs 2 are crimped to both end surfaces of the cooling drum 1. A pool 3 is defined above the gap between the cooling drums, a molten metal (hereinafter simply referred to as “molten metal”) is poured into the pool 3, and the molten metal is cooled on the outer peripheral surface of the cooling drum 1 to form a solidified shell G. Then, the thin cast piece S is cast by pressing the solidified shell G in the gap between the cooling drums 1.

【0003】このような連続鋳造機の冷却ドラムは、外
筒部1Aの周面にて凝固シェルGを形成させるために、
外筒部1Aは熱伝導性の良い銅あるいは銅合金などの銅
系の材料が用いられており、外筒部1Aの内面には冷却
媒体が循環されている。また銅系の外筒部(以下Cuス
リーブと称す)は長時間の操業を行うと、その表面に微
細割れが発生するため、Cuスリーブの周面にはめっき
や溶射によってニッケル層が付着されている。さらに
は、溶湯が冷却ドラム周面に接触し急冷されて形成され
た凝固シェルの表面は、急冷による収縮応力を受けて亀
裂が発生し易い。この亀裂発生を防止するために、冷却
ドラム周面には多数のディンプル(窪み)が設けられて
いる場合がある。
[0003] The cooling drum of such a continuous casting machine is used to form a solidified shell G on the peripheral surface of the outer cylindrical portion 1A.
The outer cylinder 1A is made of a copper-based material such as copper or a copper alloy having good thermal conductivity, and a cooling medium is circulated on the inner surface of the outer cylinder 1A. In addition, when the copper-based outer cylinder (hereinafter referred to as Cu sleeve) is operated for a long time, a fine crack is generated on the surface thereof. Therefore, a nickel layer is adhered to the peripheral surface of the Cu sleeve by plating or thermal spraying. I have. Further, the surface of the solidified shell formed by the molten metal contacting the peripheral surface of the cooling drum and rapidly quenched is liable to crack due to contraction stress caused by the quenching. In order to prevent the occurrence of cracks, there are cases where a large number of dimples (dents) are provided on the peripheral surface of the cooling drum.

【0004】従来の冷却ドラムとして、Cuスリーブの
周面に厚さ2mm以上のニッケル層を付着させることで、
溶湯の急冷による薄鋳片の板厚むら発生を防止する方法
が、例えば特開平1−166862号公報に開示されて
いる。しかしながら、このような冷却ドラムを用いて鋳
造を行うと、ニッケル層が損傷して冷却ドラムの寿命が
短くなるという問題が生じた。特に冷却ドラムの周面に
ディンプルを設けた場合は、ディンプルが損傷して冷却
ドラムの寿命が著しく短くなり、且つ鋳造した薄鋳片に
微細割れが発生するという問題が生じた。
As a conventional cooling drum, a nickel layer having a thickness of 2 mm or more is adhered to a peripheral surface of a Cu sleeve,
A method for preventing the occurrence of unevenness in the thickness of a thin slab due to rapid cooling of a molten metal is disclosed in, for example, Japanese Patent Application Laid-Open No. 1-166962. However, when casting is performed using such a cooling drum, there is a problem that the nickel layer is damaged and the life of the cooling drum is shortened. In particular, when dimples are provided on the peripheral surface of the cooling drum, the dimples are damaged, the life of the cooling drum is remarkably shortened, and fine cracks occur in the cast thin slab.

【0005】[0005]

【発明が解決しようとする課題】本発明は、溶湯から直
接に薄鋳片を製造する連続鋳造機用冷却ドラム周面の損
耗を防止して寿命を延長させるとともに、薄鋳片の割れ
発生を防止することを課題とする。
DISCLOSURE OF THE INVENTION The present invention is to prevent the wear of a cooling drum for a continuous casting machine for producing a thin cast piece directly from a molten metal, to prolong the life of the cooling drum and to prevent the thin cast piece from cracking. The task is to prevent it.

【0006】[0006]

【課題を解決するための手段】本発明者らは、薄鋳片連
続鋳造機の冷却ドラム周面に付着したニッケル層は損傷
し易いこと、および、ニッケル層を付着した冷却ドラム
を用いて鋳造した薄鋳片には微細割れが発生し易いこと
の原因について研究を重ねた結果、これらの問題を解決
するためには、冷却ドラム周面の最高温度を所定の範囲
に調整することが有効であり、冷却ドラム周面の温度を
調整するためには、冷却ドラムの熱流束やニッケル層の
厚さを調整することが有効であるとの知見を得た。すな
わち、本発明の薄鋳片の連続鋳造方法は、外筒部にCu
スリーブを有し、該Cuスリーブの周面にニッケル層を
有する冷却ドラムを用いて薄鋳片を連続鋳造する方法に
おいて、図1の凝固シェルと接触しない位置Pにおける
前記冷却ドラム周面の表面温度TNPを検知し、予め求め
ておいた凝固シェルと接触する冷却ドラム周面の表面最
高温度TNSと検知した表面温度TNPとの温度差ΔTN
NS−TNPの関係より、TNS=TNP+ΔTN を算出し、
このTNSの値を350〜450℃の範囲に維持して鋳造
することを特徴とする。また、前記薄鋳片を連続鋳造す
る方法において、前記冷却ドラムの熱流束q(cal/
sec・cm2 )、ニッケル層の厚みtNi(mm)および凝
固シェルと接触する周面直下のCuスリーブの表面最高
温度TCSが(1)式の関係にあることを特徴とする。 350≦TCS+0.3×q×tNi≦450 ………(1)式 また、前記薄鋳片を連続鋳造する方法において、前記C
uスリーブと厚みtNi(mm)のニッケル層との界面直下の
Cuスリーブに熱電対を配設し、凝固シェルと接触する
周面直下のCuスリーブ表面最高温度TCSを検知し、T
CSが(1)式を満たすように冷却ドラムの熱流束q(c
al/sec・cm2 )およびニッケルめっき厚みtNi
を調整することを特徴とする。 350≦TCS+0.3×q×tNi≦450 ………(1)式
DISCLOSURE OF THE INVENTION The present inventors have found that a nickel layer adhered to a peripheral surface of a cooling drum of a continuous thin slab caster is easily damaged, and that the nickel layer adhered to the casting drum using the nickel layer-adhered cooling drum. In order to solve these problems, it was effective to adjust the maximum temperature of the cooling drum peripheral surface to a predetermined range in order to solve these problems. In addition, it has been found that it is effective to adjust the heat flux of the cooling drum and the thickness of the nickel layer in order to adjust the temperature of the peripheral surface of the cooling drum. That is, the continuous casting method for thin slabs of the present invention uses
In a method of continuously casting thin slabs using a cooling drum having a sleeve and a nickel layer on the peripheral surface of the Cu sleeve, the surface temperature of the peripheral surface of the cooling drum at a position P not in contact with the solidified shell in FIG. T NP is detected, and a temperature difference ΔT N between the maximum surface temperature T NS of the cooling drum peripheral surface that comes into contact with the solidified shell and the detected surface temperature T NP is determined in advance.
From the relationship of T NS −T NP , T NS = T NP + ΔT N is calculated,
The casting is performed while maintaining the value of T NS in the range of 350 to 450 ° C. In the method of continuously casting the thin slab, the heat flux q (cal /
sec · cm 2 ), the thickness t Ni (mm) of the nickel layer, and the maximum surface temperature T CS of the Cu sleeve immediately below the peripheral surface in contact with the solidified shell are expressed by the following equation (1). 350 ≦ T CS + 0.3 × q × t Ni ≦ 450 Expression (1) In the method for continuously casting the thin cast piece,
A thermocouple is disposed on the Cu sleeve immediately below the interface between the u-sleeve and the nickel layer having a thickness of t Ni (mm) to detect the maximum temperature T CS of the surface of the Cu sleeve immediately below the peripheral surface in contact with the solidified shell.
The heat flux q (c) of the cooling drum so that CS satisfies the expression (1)
al / sec · cm 2 ) and nickel plating thickness t Ni
Is adjusted. 350 ≦ T CS + 0.3 × q × t Ni ≦ 450 Equation (1)

【0007】[0007]

【作用】薄鋳片連続鋳造機の冷却ドラム周面に施したニ
ッケルめっきは、鋳造中において、その温度が450℃
を超えると損耗量が大きくなる。またニッケルめっき表
面最高温度が450℃超および350℃未満では、鋳造
した薄鋳片に微細割れが発生する。そこで本発明はニッ
ケルめっきの表面最高温度、すなわち冷却ドラム周面の
表面温度を350〜450℃の範囲に維持して鋳造する
ことで、ニッケルめっき表面の損耗を防止して冷却ドラ
ムの寿命を延長させ、また鋳造した薄鋳片の微細割れ発
生を防止することができる。
The temperature of the nickel plating applied to the peripheral surface of the cooling drum of the continuous cast slab is 450 ° C during casting.
If it exceeds, the amount of wear increases. If the maximum temperature of the nickel plating surface is higher than 450 ° C. and lower than 350 ° C., fine cracks occur in the cast thin slab. Therefore, the present invention prevents the wear of the nickel plating surface and prolongs the life of the cooling drum by casting while maintaining the nickel plating surface maximum temperature, that is, the surface temperature of the cooling drum peripheral surface in the range of 350 to 450 ° C. In addition, it is possible to prevent the occurrence of fine cracks in the cast thin slab.

【0008】図2は、冷却ドラムのCuスリーブ周面に
ニッケルめっきを施した後、このニッケルめっきの表面
に深さ40〜60μmのディンプルを設け、この冷却ド
ラムを装着した双ドラム式連続鋳造機を用いてステンレ
ス鋼を鋳造した場合の、鋳造中におけるニッケルめっき
表面温度、すなわち冷却ドラム周面の表面最高温度と鋳
造後の冷却ドラム周面損傷部のディンプル平均深さとの
関係を示している。また図3は、図2と同様の鋳造を行
った場合の、冷却ドラム周面の表面最高温度と鋳造した
薄鋳片の微細割れ発生量の関係を示している。図2にお
いては、鋳造中における冷却ドラム周面の表面最高温度
が450℃を超えるとディンプルの損傷が大きくなっ
て、その深さが急激に浅くなり冷却ドラムは寿命に達し
ている。冷却ドラムの寿命を延長させるためには、鋳造
中における冷却ドラム周面の表面最高温度を450℃以
下に維持して鋳造することが必要である。
FIG. 2 shows a twin-drum continuous casting machine in which a nickel plating is applied to a peripheral surface of a Cu sleeve of a cooling drum, dimples having a depth of 40 to 60 μm are provided on the surface of the nickel plating, and the cooling drum is mounted. 3 shows the relationship between the surface temperature of nickel plating during casting, that is, the maximum surface temperature of the cooling drum peripheral surface, and the average depth of dimples in the damaged portion of the cooling drum peripheral surface after casting when stainless steel is cast by using FIG. FIG. 3 shows the relationship between the maximum surface temperature of the peripheral surface of the cooling drum and the amount of fine cracks generated in the cast thin slab when the same casting as in FIG. 2 is performed. In FIG. 2, when the maximum surface temperature of the peripheral surface of the cooling drum during casting exceeds 450 ° C., the damage to the dimples increases, the depth becomes sharply shallow, and the cooling drum reaches the end of its life. In order to extend the life of the cooling drum, it is necessary to perform casting while maintaining the maximum surface temperature of the cooling drum peripheral surface at 450 ° C. or less during casting.

【0009】図3においては、鋳造中における冷却ドラ
ム周面の表面温度が350℃未満では、鋳片表面の冷却
速度が大きく、冷却時の歪みにより微細割れが発生す
る。また450℃超では、ディンプル損傷部に微細割れ
が発生する。薄鋳片の微細割れ発生量を小さくするため
には、鋳造中における冷却ドラム周面の表面最高温度を
350〜450℃の範囲に維持して鋳造することが必要
である。図2および図3から、冷却ドラムの寿命を延長
させ、且つ薄鋳片の微細割れ発生を防止するには、鋳造
中における冷却ドラム周面の表面最高温度を350〜4
50℃の範囲に維持して鋳造することが必要である。
In FIG. 3, when the surface temperature of the peripheral surface of the cooling drum during casting is lower than 350 ° C., the cooling speed of the slab surface is large, and fine cracks are generated due to distortion during cooling. On the other hand, when the temperature exceeds 450 ° C., fine cracks are generated in the damaged portion of the dimple. In order to reduce the amount of fine cracks generated in the thin slab, it is necessary to perform casting while maintaining the maximum surface temperature of the cooling drum peripheral surface in the range of 350 to 450 ° C. during casting. From FIGS. 2 and 3, in order to extend the life of the cooling drum and to prevent the occurrence of microcracks in the thin slab, the maximum surface temperature of the peripheral surface of the cooling drum during casting is set to 350 to 4
It is necessary to maintain the temperature in the range of 50 ° C. for casting.

【0010】鋳造中における冷却ドラム周面の表面温度
を350〜450℃の範囲に維持して鋳造する手段とし
ては、例えば図1に示す、凝固シェルと接触しない位置
Pにおける冷却ドラム周面の表面温度TNPを例えば赤外
線放射温度計によって検知し、予め求めておいた凝固シ
ェルと接触する冷却ドラム周面の表面最高温度TNSと検
知した表面温度TNPとの温度差ΔTN =TNS−TNPの関
係より、TNS=TNP+ΔTN を求め、この値を350〜
450℃の範囲に維持して鋳造する。鋳造中における冷
却ドラム周面の表面最高温度を350〜450℃の範囲
に維持して鋳造する他の手段としては、例えば冷却ドラ
ムのCuスリーブのニッケルめっきとの界面直下に熱電
対を埋設してCuスリーブの表面最高温度Tcsを測定
し、下記(2)式を用いて冷却ドラム周面の表面最高温
度TNSを推定し、この値を350〜450℃に維持して
鋳造する。 TNS=Tcs+α×(q/λ)×(1/10)tNi………(2) 但し、 TNS;凝固シェルと接触する冷却ドラム周面の表面最高
温度(℃) Tcs;凝固シェルと接触する冷却ドラム周面直下のCu
スリーブの表面最高温度(℃) tNi;ニッケルめっき厚み(mm) λ;ニッケルめっき熱伝導率(=0.18cal/se
c・cm・K) このニッケルめっき熱伝導率λは温度により変化する
が、溶湯と接触しているときのニッケルめっき層の平均
温度は厳密に推定することは難しい。温度範囲として
は、約100〜450℃(但し表面)であるので、10
0℃、300℃の各々における熱伝導率の中間値を採用
した。なお若干の誤差は下記の補正係数(α)により修
正されるので問題ない。 q;ニッケルめっき平均熱流束(cal/sec・c
m2 ) α;補正係数(=0.54) なお、この補正係数は鋳造弧角(溶湯との接触角度、図
1のθ)により変化するが、通常の鋳造範囲である30
〜50degにおいて適合するように2次元非定常伝熱
解析により合わせ込んだ値である。 (2)式に数値を代入すると、 TNS=Tcs+0.3×q×tNi………(3) したがって、冷却ドラム周面の表面最高温度TNSを35
0〜450℃の範囲に維持するためには、凝固シェルと
接触する周面直下のCuスリーブの表面最高温度Tcs
(1)式を満たすように冷却ドラムの熱流束qおよびニ
ッケルめっき厚みtNiを調整する。 350≦Tcs+0.3×q×tNi≦450………(1) 冷却ドラムの熱流束qを調整する手段としては、Cuス
リーブ直下に設けられた冷却水路に供給する冷却水量を
調整するか、またはニッケルめっき厚みtNiを調整する
ことが好ましい。ニッケルは銅と比べて熱伝導率が小さ
いため、熱流束qの調整手段としては、ニッケルめっき
厚みtNiを調整することが最も有効である。ニッケルめ
っき厚みtNiを調整するための具体的方法は、ニッケル
めっき厚みtNiが下記(1)式を満足すればよい。 (350−Tcs)/(0.3×q)≦tNi≦(450−Tcs)/(0.3×q )………(4) 但し、tNi;ニッケルめっき厚み(mm) Tcs;凝固シェルと接触する冷却ドラム周面直下のCu
スリーブの表面最高温度(℃) q ;ニッケルめっき平均熱流束(cal/sec・cm
2 ) なおTcsの測定においては、冷却ドラムのCuスリーブ
とニッケルめっきとの界面に埋設する熱電対により行
う。
Means for casting while maintaining the surface temperature of the cooling drum peripheral surface in the range of 350 to 450 ° C. during casting include, for example, the surface of the cooling drum peripheral surface at a position P not in contact with the solidified shell as shown in FIG. The temperature T NP is detected by, for example, an infrared radiation thermometer, and a temperature difference ΔT N = T NS − between a previously determined maximum surface temperature T NS of the cooling drum peripheral surface in contact with the solidified shell and the detected surface temperature T NP. From the relationship of T NP , T NS = T NP + ΔT N is obtained, and this value is set to 350 to
Casting is maintained at 450 ° C. As another means for casting while maintaining the maximum surface temperature of the cooling drum peripheral surface in the range of 350 to 450 ° C. during casting, for example, a thermocouple is buried immediately below the interface between the cooling drum and the nickel plating of the Cu sleeve. The maximum surface temperature T cs of the Cu sleeve is measured, the maximum surface temperature T NS of the cooling drum peripheral surface is estimated using the following equation (2), and the casting is performed while maintaining this value at 350 to 450 ° C. T NS = T cs + α × (q / λ) × (1/10) t Ni (2) where T NS ; maximum surface temperature of cooling drum peripheral surface in contact with solidified shell (° C.) T cs ; Cu just below the peripheral surface of the cooling drum in contact with the solidified shell
Maximum surface temperature of sleeve (° C) t Ni ; Nickel plating thickness (mm) λ; Nickel plating thermal conductivity (= 0.18 cal / sec)
c · cm · K) The nickel plating thermal conductivity λ changes with temperature, but it is difficult to accurately estimate the average temperature of the nickel plating layer when in contact with the molten metal. The temperature range is about 100 to 450 ° C. (however, the surface).
The intermediate value of the thermal conductivity at each of 0 ° C. and 300 ° C. was adopted. There is no problem because a slight error is corrected by the following correction coefficient (α). q: Nickel plating average heat flux (cal / sec · c
m 2 ) α; correction coefficient (= 0.54) Note that this correction coefficient varies depending on the casting arc angle (the contact angle with the molten metal, θ in FIG. 1), but is within the normal casting range of 30.
This is a value adjusted by a two-dimensional unsteady heat transfer analysis so as to be fit at 5050 deg. When a numerical value is substituted into the equation (2), T NS = T cs + 0.3 × q × t Ni (3) Therefore, the maximum surface temperature T NS of the cooling drum peripheral surface is 35.
In order to maintain the temperature in the range of 0 to 450 ° C., the heat flux q of the cooling drum and the nickel plating thickness t are set so that the maximum surface temperature T cs of the Cu sleeve immediately below the peripheral surface in contact with the solidified shell satisfies the expression (1). Adjust Ni . 350 ≦ T cs + 0.3 × q × t Ni ≦ 450 (1) As means for adjusting the heat flux q of the cooling drum, the amount of cooling water supplied to the cooling water channel provided immediately below the Cu sleeve is adjusted. Alternatively, it is preferable to adjust the nickel plating thickness t Ni . Since nickel has a smaller thermal conductivity than copper, the most effective way to adjust the heat flux q is to adjust the nickel plating thickness t Ni . A specific method for adjusting the nickel plating thickness t Ni is that the nickel plating thickness t Ni satisfies the following expression (1). (350−T cs ) / (0.3 × q) ≦ t Ni ≦ (450−T cs ) / (0.3 × q) (4) where, t Ni ; nickel plating thickness (mm) T cs ; Cu immediately below the peripheral surface of the cooling drum in contact with the solidified shell
Sleeve surface maximum temperature (° C) q; Nickel plating average heat flux (cal / sec · cm)
2 ) T cs is measured by a thermocouple buried at the interface between the Cu sleeve of the cooling drum and the nickel plating.

【0011】[0011]

【実施例】表1および2は、図1に示した双ドラム式連
続鋳造機用冷却ドラムのCuスリーブ周面に種々厚みの
ニッケルめっきを施した後、深さ40〜60μmのディ
ンプルを設けた冷却ドラムを用いて、SUS304ステ
ンレス鋼を累計で約200ton鋳造した結果を示す。
Examples Tables 1 and 2 show that the peripheral surface of the Cu sleeve of the cooling drum for the twin-drum type continuous casting machine shown in FIG. 1 was plated with nickel of various thicknesses and then provided with dimples having a depth of 40 to 60 μm. The results of casting a total of about 200 tons of SUS304 stainless steel using a cooling drum are shown.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】表1および2において、冷却ドラム周面の
表面最高温度は(3)式によって求めた値である。また
ニッケルめっき表面の損傷面積率は冷却ドラム全周面に
占める損傷部面積の比率であり、鋳片の微細割れ発生量
は鋳片表面1m2 当たりに発生した割れの総長である。
In Tables 1 and 2, the maximum surface temperature of the peripheral surface of the cooling drum is a value obtained by equation (3). The damage area ratio of the nickel plating surface is the ratio of the area of the damaged portion to the entire peripheral surface of the cooling drum, and the amount of fine cracks generated in the slab is the total length of cracks generated per 1 m 2 of the slab surface.

【0015】No.1およびNo.2では、ニッケルめ
っきが厚いため、冷却ドラム周面の温度が高くなり過ぎ
てニッケルめっきが軟化しディンプルが潰れて、その部
分に対応する薄鋳片に微細割れが発生した。No.10
では、ニッケルめっきが薄いため、ニッケルめっきの軟
化は起こらないが、冷却ドラム周面の温度が低下し過ぎ
て薄鋳片の冷却速度が大きくなり薄鋳片に微細割れが発
生した。またニッケルめっきが薄いため、めっき厚みの
精度保証が難しい。No.3〜11では、ニッケルめっ
き厚み、あるいは冷却水量が適切であるため、冷却ドラ
ム周面の温度が適当に低く、ニッケルめっきの軟化は起
こらなかった。また薄鋳片に微細割れは殆ど(10cm/
2 以下)発生しなかった。
No. 1 and No. In No. 2, since the nickel plating was thick, the temperature of the peripheral surface of the cooling drum was too high, the nickel plating was softened, the dimples were crushed, and fine cracks occurred in the thin slab corresponding to that portion. No. 10
However, since the nickel plating was thin, the nickel plating did not soften, but the temperature of the cooling drum peripheral surface was too low, and the cooling rate of the thin slab was increased, so that fine cracks occurred in the thin slab. Also, since the nickel plating is thin, it is difficult to guarantee the accuracy of the plating thickness. No. In Nos. 3 to 11, since the nickel plating thickness or the amount of cooling water was appropriate, the temperature of the cooling drum peripheral surface was appropriately low, and the nickel plating did not soften. Also, most of the fine cracks in the thin slab (10cm /
m 2 or less) did not occur.

【0016】[0016]

【発明の効果】本発明は、冷却ドラム周面の損傷を防止
して、その寿命を大幅に延長することができ、また薄鋳
片の微細割れ発生を皆無にして表面品質を大幅に向上す
ることができる。
According to the present invention, the peripheral surface of the cooling drum can be prevented from being damaged, the life thereof can be greatly extended, and the surface quality can be greatly improved by eliminating the occurrence of fine cracks in the thin slab. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る双ドラム式連続鋳造機を示す正面
図である。
FIG. 1 is a front view showing a twin-drum continuous casting machine according to the present invention.

【図2】冷却ドラム周面の表面温度とディンプル平均深
さの関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between a surface temperature of a cooling drum peripheral surface and an average dimple depth.

【図3】冷却ドラム周面の表面温度と薄鋳片の微細割れ
発生量の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the surface temperature of the peripheral surface of a cooling drum and the amount of micro-cracks generated in thin slabs.

【符号の説明】[Explanation of symbols]

1…冷却ドラム 1A…冷却ドラムの外筒部(Cuスリーブ) 2…サイド堰 3…湯溜まり部 G…凝固シェル S…薄鋳片 P…ドラム表面温度検知位置 DESCRIPTION OF SYMBOLS 1 ... Cooling drum 1A ... Outer cylinder part (Cu sleeve) of a cooling drum 2 ... Side dam 3 ... Hot water pool part G ... Solidified shell S ... Thin cast piece P ... Drum surface temperature detection position

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山地 千博 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (72)発明者 水地 功 山口県光市大字島田3434番地 新日本製 鐵株式会社 光製鐵所内 (72)発明者 佐々木 邦政 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島製作所内 (72)発明者 山本 恵一 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (56)参考文献 特開 平1−166862(JP,A) 特開 平3−90250(JP,A) 特開 平2−165849(JP,A) 特開 平3−230847(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Chihiro Yamaji 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Isao Mizuchi 3434 Shimada, Oaza, Hikari-shi, Yamaguchi Prefecture Inside Nippon Steel Corporation Hikari Works (72) Inventor Kunimasa Sasaki 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd.Hiroshima Works (72) Inventor Keiichi Yamamoto Kan-on, Nishi-ku, Hiroshima 4-6-22 Shinmachi Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory (56) References JP-A-1-166686 (JP, A) JP-A-3-90250 (JP, A) JP-A-2-165649 (JP, A A) JP-A-3-230847 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外筒部にCuスリーブを有し、該Cuス
リーブの周面にニッケル層を有する冷却ドラムを用いて
薄鋳片を連続鋳造する方法において、凝固シェルと接触
しない位置Pにおける前記冷却ドラム周面の表面温度T
NPを検知し、予め求めておいた凝固シェルと接触する冷
却ドラム周面の表面最高温度TNSと検知した表面温度T
NPとの温度差ΔTN =TNS−TNPの関係より、TNS=T
NP+ΔTN を算出し、このTNSの値を350〜450℃
の範囲に維持して鋳造することを特徴とする薄鋳片の連
続鋳造方法。
In a method of continuously casting thin slabs using a cooling drum having a Cu sleeve on an outer cylinder portion and a nickel layer on a peripheral surface of the Cu sleeve, the method includes the steps of: Surface temperature T of cooling drum peripheral surface
NP is detected, and the maximum surface temperature T NS of the cooling drum peripheral surface that comes into contact with the solidified shell determined in advance and the detected surface temperature T
From the relationship of temperature difference ΔT N = T NS −T NP with NP , T NS = T N
Calculates the NP + [Delta] T N, the value of this T NS 350 to 450 ° C.
A continuous casting method for thin cast slabs, wherein the casting is performed while maintaining the thickness in the range described above.
【請求項2】 外筒部にCuスリーブを有し、該Cuス
リーブの周面にニッケル層を有する冷却ドラムを用いて
薄鋳片を連続鋳造する方法において、前記冷却ドラムの
熱流束q(cal/sec・cm2 )、ニッケル層の厚
みtNi(mm)および凝固シェルと接触する周面直下のCu
スリーブの表面最高温度TCSが(1)式の関係にあるこ
とを特徴とする薄鋳片の連続鋳造方法。 350≦TCS+0.3×q×tNi≦450 ………(1)式
2. A method of continuously casting thin slabs using a cooling drum having a Cu sleeve in an outer cylinder portion and a nickel layer on a peripheral surface of the Cu sleeve, wherein the heat flux q (cal) of the cooling drum is provided. / Sec · cm 2 ), thickness of the nickel layer t Ni (mm) and Cu just below the peripheral surface in contact with the solidified shell
A continuous casting method for a thin cast piece, wherein the maximum surface temperature T CS of the sleeve is in the relationship of the formula (1). 350 ≦ T CS + 0.3 × q × t Ni ≦ 450 Equation (1)
【請求項3】 外筒部にCuスリーブを有し、該Cuス
リーブの周面にニッケル層を有する冷却ドラムを用いて
薄鋳片を連続鋳造する方法において、前記Cuスリーブ
と厚みtNi(mm)のニッケル層との界面直下のCuスリー
ブに熱電対を配設し、凝固シェルと接触する周面直下の
Cuスリーブ表面最高温度TCSを検知し、TCSが(1)
式を満たすように冷却ドラムの熱流束q(cal/se
c・cm2 )およびニッケルめっき厚みtNiを調整する
ことを特徴とする薄鋳片の連続鋳造方法。 350≦TCS+0.3×q×tNi≦450 ………(1)式
3. A method of continuously casting thin slabs using a cooling drum having a Cu sleeve on an outer cylinder portion and a nickel layer on a peripheral surface of the Cu sleeve, wherein the Cu sleeve and a thickness t Ni (mm ) of the thermocouple is disposed on the Cu sleeve immediately below the interface between the nickel layer, it detects the Cu sleeve surface maximum temperature T CS immediately below the circumferential surface in contact with the solidified shell, T CS is (1)
The heat flux q of the cooling drum (cal / se
c · cm 2 ) and a nickel plating thickness t Ni . 350 ≦ T CS + 0.3 × q × t Ni ≦ 450 Equation (1)
JP5264907A 1993-10-22 1993-10-22 Continuous casting of thin slabs Expired - Fee Related JP3014256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5264907A JP3014256B2 (en) 1993-10-22 1993-10-22 Continuous casting of thin slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5264907A JP3014256B2 (en) 1993-10-22 1993-10-22 Continuous casting of thin slabs

Publications (2)

Publication Number Publication Date
JPH07116785A JPH07116785A (en) 1995-05-09
JP3014256B2 true JP3014256B2 (en) 2000-02-28

Family

ID=17409875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5264907A Expired - Fee Related JP3014256B2 (en) 1993-10-22 1993-10-22 Continuous casting of thin slabs

Country Status (1)

Country Link
JP (1) JP3014256B2 (en)

Also Published As

Publication number Publication date
JPH07116785A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
KR100756768B1 (en) Feeding strip material
JP3058185B2 (en) Austenitic stainless steel continuous cast slab
JP3014256B2 (en) Continuous casting of thin slabs
JPH06182499A (en) Cooling roll in continuous casting apparatus and manufacture thereof
JPS60162557A (en) Continuous casting device for thin plate
JPH08150442A (en) Roll for continuously casting metallic strip
JPH09327753A (en) Cooling drum of thin cast slab continuous casting apparatus
KR100971971B1 (en) A twin roll of strip casting apparatus
JP2000280049A (en) Twin drum type continuous casting method and device
JP2962634B2 (en) Processing method of cooling drum for twin drum type continuous casting equipment
JP2001058245A (en) Method for brushing cooling rolls
JP2555440B2 (en) How to judge cracks in thin cast slabs
JP3135282B2 (en) Thin plate continuous casting method
KR101010631B1 (en) apparatus and method for roll in twin roll strip casting machine
JPH05220547A (en) Method for estimating plate crown in twin roll type strip continuous casting and continuous casting
JP3085820B2 (en) Cooling drum for continuous casting of thin cast slab, continuous casting method, and continuous cast slab
JPH01166862A (en) Roll mold in twin roll type continuous casting machine
JPH0790335B2 (en) Twin roll type continuous casting machine
JP7180387B2 (en) Scum weir, twin-roll continuous casting apparatus, and method for producing thin cast slab
JP3380425B2 (en) Twin drum type continuous casting drum
JPS6227877Y2 (en)
JPH09103850A (en) Recessed part forming method for cooling roll of thin slab casting machine
KR100406376B1 (en) Method For Manufacturing Homogeneous As-Cast Strip In Strip Casting Process
JP2000000640A (en) Twin-roll continuous casting equipment
KR100489015B1 (en) A cooling roll for twin roll-strip caster

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991109

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees