JPS6227877Y2 - - Google Patents

Info

Publication number
JPS6227877Y2
JPS6227877Y2 JP2520780U JP2520780U JPS6227877Y2 JP S6227877 Y2 JPS6227877 Y2 JP S6227877Y2 JP 2520780 U JP2520780 U JP 2520780U JP 2520780 U JP2520780 U JP 2520780U JP S6227877 Y2 JPS6227877 Y2 JP S6227877Y2
Authority
JP
Japan
Prior art keywords
boat
copying
electromagnetic ultrasonic
slab
ultrasonic generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2520780U
Other languages
Japanese (ja)
Other versions
JPS56126559U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2520780U priority Critical patent/JPS6227877Y2/ja
Publication of JPS56126559U publication Critical patent/JPS56126559U/ja
Application granted granted Critical
Publication of JPS6227877Y2 publication Critical patent/JPS6227877Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 本考案は電磁超音波発生検出器を高温鋼片表面
で走査する際に、高温鋼片表面と一定の間隙を保
持すると共に、起伏や凹凸(スケール、ヘゲ疵等
を含む)による機械的損傷や高温から電磁超音波
発生検出器を保護する倣いボートに関するもので
ある。
[Detailed description of the invention] This invention maintains a constant gap with the surface of a high-temperature steel piece when an electromagnetic ultrasonic generation detector scans the surface of a high-temperature steel piece, and also prevents undulations and irregularities (scale, baldness, etc.). The invention relates to a copying boat that protects electromagnetic ultrasonic generation detectors from mechanical damage and high temperatures caused by

既に本考案者等が提案しているように(特開昭
52−123650号)、測定対象に非接触で超音波を適
用し、対象の内部欠陥の検出、厚さ測定等を行な
う技術がある。この技術は電磁的エネルギを対象
内で機械的振動エネルギに変換するものであり、
非接触で超音波を対象内に発生させ、これを受信
することができるから、対象が高温であるために
従来の超音波発受信技術の場合のように音響結合
媒体の適用が不可能な対象に対しても、超音波の
発生検出ができる特徴がある。
As already proposed by the present inventors (Japanese Patent Application Laid-Open No.
52-123650), there is a technology that applies ultrasonic waves to a measurement object in a non-contact manner to detect internal defects in the object, measure thickness, etc. This technology converts electromagnetic energy into mechanical vibration energy within the target.
Ultrasonic waves can be generated within a target and received without contact, so it can be used for targets where acoustic coupling media cannot be applied as in the case of conventional ultrasonic transmission/reception technology due to the high temperature of the target. It also has the feature of being able to detect the generation of ultrasonic waves.

近年、この電磁超音波発受信技術は各種導電性
材料の欠陥探傷、厚み測定、材質伴定などへの応
用がなされている。電磁超音波の発生検出は電磁
誘導的であることから、電磁超音波を各種測定に
利用する場合、原理的には測定対象に非接触で適
用することができる。特に高温鋼片(例えば、ス
ラブ、ブルーム、ビレツト、条鋼、管など)への
適用が有効である。
In recent years, this electromagnetic ultrasonic transmission and reception technology has been applied to defect detection, thickness measurement, material quality determination, etc. of various conductive materials. Since the generation and detection of electromagnetic ultrasonic waves is performed by electromagnetic induction, when electromagnetic ultrasonic waves are used for various measurements, they can in principle be applied without contacting the object to be measured. It is particularly effective to apply to high-temperature steel pieces (for example, slabs, blooms, billets, bars, pipes, etc.).

しかし、電磁超音波発生検出器と測定対象との
間隔は大きくなるほどその検出信号の感度は低下
するため、通常数mm以下に保持する必要がある。
However, as the distance between the electromagnetic ultrasonic generation detector and the object to be measured increases, the sensitivity of the detection signal decreases, so it is usually necessary to maintain the distance to a few mm or less.

上記の、たとえば1000℃以上の高温鋼片に対し
て電磁超音波を適用する場合、鋼片内での伝播過
程において超音波は冷片に比べ大きく減衰するた
め、その超音波信号の検出感度は著しく低下する
ことが知られている。また、この様な鋼片の表面
性状(例えば凹凸、スケール、ヘゲ疵などの存在
は極めて悪い場合が通常である。
For example, when applying electromagnetic ultrasound to a high-temperature steel slab above 1000°C, the ultrasonic wave is attenuated more during the propagation process within the steel slab compared to a cold slab, so the detection sensitivity of the ultrasonic signal is It is known that there is a significant decrease in Further, the surface properties of such steel pieces (for example, the presence of irregularities, scales, scuff marks, etc.) are usually extremely poor.

従つて、通常1000℃以上の高温鋼片の欠陥探傷
等に電磁超音波発生検出器を用いる場合、電磁超
音波発生検出器と高温鋼片との間隙はできるだけ
小さく保持し、且つ鋼片表面の起伏に倣わせなが
ら走差する必要がある。この際、鋼片から受ける
高温や鋼片表面に存在する凹凸やスケール、ヘゲ
疵等から受けるであろう機械的損傷から電磁超音
波発生検出器を保護することも必要である。
Therefore, when using an electromagnetic ultrasonic generation detector for defect detection of high-temperature steel pieces of 1000℃ or higher, the gap between the electromagnetic ultrasonic generation detector and the high-temperature steel pieces should be kept as small as possible, and the surface of the steel pieces should be kept as small as possible. It is necessary to run while following the ups and downs. At this time, it is also necessary to protect the electromagnetic ultrasonic generation detector from mechanical damage that may be caused by the high temperature received from the steel piece and from unevenness, scale, sludge, etc. existing on the surface of the steel piece.

従来は、高温鋼片に対して電磁超音波発生検出
器と同等な各種検出端を微少な間隙にて保持し且
つ走査することを可能とする方法として、例え
ば、水、空気等の流体を用いて浮上、保持させる
方法、あるいは、特願昭51−116608号に述べたよ
うに間接的な機械的保持機構を用いる方法や直接
的な車輪やシユーを用いる方法がある。
Conventionally, as a method that enables various detection ends equivalent to electromagnetic ultrasonic generation detectors to be held and scanned against a high-temperature steel piece with a minute gap, for example, a fluid such as water or air has been used. There is a method of floating and holding it, a method of using an indirect mechanical holding mechanism as described in Japanese Patent Application No. 51-116608, or a method of using a direct wheel or shoe.

しかし、前者は実用に供する場合に水、空気を
供給する設備が大がかりになりやすく、設備費や
供給コストの面で実用上の不利がある。また、高
温鋼片の表面性状は通常、製品材と比べ著しく悪
いので、流体浮上によつて適正な間隙を保持し且
つ走査をさせることは困難な場合が多い。
However, when the former is put into practical use, the equipment for supplying water and air tends to be large-scale, which has a practical disadvantage in terms of equipment and supply costs. Furthermore, since the surface quality of high-temperature steel pieces is usually significantly worse than that of product materials, it is often difficult to maintain an appropriate gap and perform scanning using fluid flotation.

後者では、高温鋼片表面の微細なスケールやキ
ズ、粉塵等あるいは、高温による焼付きが原因と
なつて車輪の円滑な回転が不能となつたり、機械
的な損傷、摩耗により使用不可となる場合が多
い。
In the latter case, the wheel cannot rotate smoothly due to fine scale, scratches, dust, etc. on the surface of the high-temperature steel piece, or seizure due to high temperature, or the wheel becomes unusable due to mechanical damage or wear. There are many.

本考案は高温鋼片に対して直接接触方式で構造
お簡素且つ安価な倣いボートを製作し、この倣い
ボートに電磁超音波発生検出器を収納することに
よつて微小な一定間隔で保持し、且つ走査を可能
としたものである。また、前述のような鋼片表面
性状の悪さに起因して生ずる機械的障害をも克服
することを可能とするものである。以下、実施例
を用いて具体的に説明する。
The present invention is to manufacture a copying boat with a simple structure and low cost using a direct contact method against a high-temperature steel piece, and by storing an electromagnetic ultrasonic generation detector in this copying boat, it can be held at a minute constant interval. Moreover, it is capable of scanning. Furthermore, it is possible to overcome the mechanical failure caused by the poor surface properties of the steel piece as described above. Hereinafter, this will be explained in detail using examples.

第1図は、本考案の一実施例、すなわち電磁超
音波発生検出器を収納した倣いボート1及びその
保持機構の概略図を示しており、分塊圧延後の高
温スラブ2の内部欠陥2′の探傷状況を併せて示
している。倣いボート1に収納された電磁超音波
発生検出器3は高温スラブ2の表面との間にギヤ
ツプ4を保持するように押えバネ5にて倣いボー
ト1の収納用段差6に向けて軽度の圧下がかけら
れ、これによつて電磁超音波発生検出器3の走査
時のバタツキをも防止している。電磁超音波発生
検出器3とスラブ面とのギヤツプ4は、ギヤツプ
調整用スペーサ7を交換することによつて妊意に
設定できる。倣いボート全体はボート保持用吊り
金具8によつて保持され、スラブ2の大きな起状
や凹凸等に対して倣うためには倣いボート走査方
向に対して平行に付設された軸ジヨイント9部で
のローリング及びスライド用凸部10が吊り金具
8に付設されたスライド用スリツト11を上下す
ることによつて、また、スラブ面に対する小さな
起伏や凹凸に対してはスライド用凸部9がスライ
ド面の有する曲率によつて倣うことが可能であ
る。吊り金具8は軸ジヨイント9を介してフラン
ジ12に接続され、フランジ12は倣いボート1
を走査させるための支持アーム13に接続され、
支持アーム13全体はその走査用駆動装置に連接
されている。なお、倣いボート1底面には電磁超
音波発生検出器3から噴射される冷却水を排水す
るための排出用スリツト14が付設されている。
この排水は、倣いボート1底面部の冷却の役割り
を果している。
FIG. 1 shows an embodiment of the present invention, that is, a schematic diagram of a copying boat 1 housing an electromagnetic ultrasonic generation detector and its holding mechanism, and shows an internal defect 2' of a hot slab 2 after blooming. The flaw detection status is also shown. The electromagnetic ultrasonic generation detector 3 housed in the copying boat 1 is slightly pressed down toward the storage step 6 of the copying boat 1 by a presser spring 5 so as to maintain a gap 4 between it and the surface of the high-temperature slab 2. This also prevents the electromagnetic ultrasonic wave generator 3 from fluttering during scanning. The gap 4 between the electromagnetic ultrasonic generation detector 3 and the slab surface can be set appropriately by replacing the gap adjustment spacer 7. The entire copying boat is held by a boat holding hanging bracket 8, and in order to copy large undulations and irregularities on the slab 2, a shaft joint 9 attached parallel to the scanning direction of the copying boat is used. By moving the rolling and sliding convex part 10 up and down the sliding slit 11 attached to the hanging bracket 8, the sliding convex part 9 can move up and down the sliding slit 11 attached to the hanging metal fitting 8, and the sliding convex part 9 can move up and down against small undulations and irregularities on the slab surface. It is possible to imitate by curvature. The hanging fitting 8 is connected to the flange 12 via the shaft joint 9, and the flange 12 is connected to the copying boat 1.
connected to a support arm 13 for scanning,
The entire support arm 13 is connected to its scanning drive. Incidentally, a discharge slit 14 is attached to the bottom surface of the copying boat 1 for draining the cooling water jetted from the electromagnetic ultrasonic generation detector 3.
This drainage serves to cool the bottom of the copying boat 1.

第2a図および第2b図に、電磁超音波発生検
出器3を収納した倣いボート1の正面図及び底面
図の概略図を示す。電磁超音波発生検出器3の対
スラブ面には、冷却水噴出スリツト15が付設さ
れ、電磁超音波発生検出器3を構成するマグネツ
ト16、超音波発生コイル17、検出コイル18
および保護ケース19の対スラブ面を高温から遮
熱するために冷却水が噴出するようになつてい
る。倣いボート1の底面即ち高温スラブ2との接
触面の前後および左右端には、スラブの起伏や凹
凸に倣い易くする配慮から適度の曲率をもたせて
ある。また、倣いボート1の底面はスラブ表面を
走査するとかなり摩耗するので、耐熱および耐摩
耗性の特殊合金層20を底面部に溶射し製作仕上
げられている。
2a and 2b show schematic diagrams of a front view and a bottom view of the copying boat 1 in which the electromagnetic ultrasonic generation detector 3 is housed. A cooling water jetting slit 15 is attached to the slab facing surface of the electromagnetic ultrasonic generation detector 3, and a magnet 16, an ultrasonic generation coil 17, and a detection coil 18 that constitute the electromagnetic ultrasonic generation detector 3 are attached.
Cooling water is ejected to insulate the slab-facing surface of the protective case 19 from high temperatures. The bottom surface of the copying boat 1, that is, the contact surface with the high-temperature slab 2, has an appropriate curvature at the front, rear, left and right ends to make it easier to follow the undulations and irregularities of the slab. Furthermore, since the bottom surface of the copying boat 1 is considerably worn when scanning the slab surface, a heat-resistant and wear-resistant special alloy layer 20 is thermally sprayed on the bottom surface.

このような倣いボート1に収納した電磁超音波
発生検出器3を用いて第1図に示すような分塊圧
延直後の1000℃以上の高温スラブ2の内部欠陥
2′の探傷をしたところ、電磁超音波発生検出器
3は高温に対しても何ら熱的な損傷を受けること
なく探傷することが可能であつた。これは倣いボ
ート1によつて電磁超音波発生検出器3とスラブ
表面間に形成される微小ギヤツプ4に電磁超音波
発生検出器3から噴出する冷却水によつて水膜が
形成されるため、スラブの高温を遮熱できたもの
と考えられる。また、高温スラブ2の表面の起伏
や凹凸、スケールおよびキズ等に対しても電磁超
音波発生検出器3に何ら機械的損傷を与えること
なく倣わせることが可能であつた。この際、倣い
ボート1によつて電磁超音波発生検出器3と高温
スラブ2との間隙は1〜2mmに設定保持した。電
磁超音波発生検出器3から噴出される冷却水量は
3〜4/mmであり、この場合、電磁超音波発生
検出器3の対スラブ面の温度は150℃以下であ
る。また、ボート自体の底面温度も最下面から30
mm上部域で約60℃以下に保たれる。倣いボート1
本体としてはステンレス鋳鋼を使用し、ボート底
面の耐熱および耐摩耗性の特殊合金属はNi−Cr
−W−Fe系合金を溶射したものである。倣いボ
ート1の吊り金具8等はSUS27ステンレス鋼を使
用した。
When the electromagnetic ultrasonic generation detector 3 housed in the copying boat 1 was used to detect internal defects 2' in the high-temperature slab 2 of 1000°C or higher immediately after blooming as shown in Fig. 1, electromagnetic and ultrasonic waves were detected. The ultrasonic generation detector 3 was able to perform flaw detection even at high temperatures without suffering any thermal damage. This is because a water film is formed by the cooling water jetted from the electromagnetic ultrasonic generator 3 on the minute gap 4 formed by the copying boat 1 between the electromagnetic ultrasonic generator 3 and the slab surface. It is thought that the high temperature of the slab was able to be insulated. Furthermore, it was possible to make the electromagnetic ultrasonic wave generating detector 3 follow the undulations, irregularities, scales, scratches, etc. on the surface of the high-temperature slab 2 without causing any mechanical damage. At this time, the gap between the electromagnetic ultrasonic generation detector 3 and the high-temperature slab 2 was set and maintained at 1 to 2 mm by the copying boat 1. The amount of cooling water jetted from the electromagnetic ultrasonic generation detector 3 is 3 to 4/mm, and in this case, the temperature of the surface of the electromagnetic ultrasonic generation detector 3 facing the slab is 150° C. or less. Also, the bottom temperature of the boat itself is 30 degrees from the bottom.
The temperature is maintained below approximately 60℃ in the upper mm region. Copy boat 1
The main body is made of cast stainless steel, and the bottom of the boat is made of a special heat-resistant and wear-resistant alloy alloy of Ni-Cr.
-It is thermally sprayed with W-Fe alloy. The hanging fittings 8, etc. of copying boat 1 were made of SUS27 stainless steel.

以上のように、本考案による倣いボートに電磁
超音波発生検出器3を収納して、高温スラブ2の
内部欠陥2′の探傷を行なえば、電磁超音波発生
検出器3を高温スラブ2に対して一定の微小間隙
を保持しかつ、適正に倣わせることが可能であ
り、スラブ2からの高温及び機械的損傷について
も何ら実用上の問題を有しないところの、構造の
簡素且つ、安価な倣いボート1を供することがで
きる。
As described above, if the electromagnetic ultrasonic generation detector 3 is housed in the copying boat according to the present invention and the internal defects 2' of the high temperature slab 2 are detected, the electromagnetic ultrasonic generation detector 3 can be placed against the high temperature slab 2. It has a simple structure and is inexpensive, and it is possible to maintain a certain minute gap and make it conform properly, and there is no practical problem with regard to high temperature and mechanical damage from the slab 2. A copy boat 1 can be provided.

なお、実施例では高温スラブ2の内部欠陥探傷
に本倣いボート1を使用した場合について説明し
たが、他の高温鋼片、例えばブルーム、ビレツ
ト、管および棒などに適用することも可能であ
る。倣いボート1の形状は船型のものを用いて説
明したが、その形状は丸型、角型など適用対象に
よつて変形することは可能である。例えば、第3
図は丸型倣いボート21の前後端にコロ22を付
設した場合を示している。このコロは倣いボート
走査時にボート底面とスラブ表面間の摩擦を軽減
するのに有効であり、凹凸やスケールなどに対す
る走査性も良好となる。
In the embodiment, a case has been described in which the copying boat 1 is used to detect internal defects in a high-temperature slab 2, but it can also be applied to other high-temperature steel pieces, such as blooms, billets, pipes, and bars. Although the shape of the copying boat 1 has been explained using a ship-shaped one, the shape can be changed depending on the object of application, such as round or square. For example, the third
The figure shows a case where rollers 22 are attached to the front and rear ends of a round copying boat 21. These rollers are effective in reducing friction between the bottom of the boat and the surface of the slab during scanning of the copying boat, and also provide good scanning performance for unevenness, scale, etc.

なお、倣いボートの保持方法は特に制限しない
が、いずれの場合においても本考案は有効であ
る。
There are no particular limitations on the method of holding the copy boat, but the present invention is effective in any case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の一実施例である、電磁超音
波発生検出器を収納した倣いボート及びその保持
機構の概略を示す、一部を破断した側面図、第2
a図および第2b図は電磁超音波発生検出器を収
納した倣いボートの断面図及び底面図である。第
3図は本考案の他の実施例を示す側面図である。 1:倣いボート、2:高温スラブ、3:電磁超
音波発生検出器、4:ギヤツプ、5:押えバネ、
6:段差、7:スペーサ、8:吊り金具、9:軸
ジヨイント、10:スライド用凸部、11:スラ
イド用スリツト、12:フランジ、13:支持ア
ーム、14:排出用スリツト、15:冷却水噴出
スリツト、16:マグネツト、17:超音波発生
コイル、18:検出コイル、19:保護ケース、
20:特殊合金層、21:丸型倣いボート、2
2:コロ。
FIG. 1 is a partially cutaway side view schematically showing a copying boat housing an electromagnetic ultrasonic generation detector and its holding mechanism, which is an embodiment of the present invention;
Figures a and 2b are a sectional view and a bottom view of a copying boat housing an electromagnetic ultrasonic generation detector. FIG. 3 is a side view showing another embodiment of the present invention. 1: Copying boat, 2: High temperature slab, 3: Electromagnetic ultrasonic generation detector, 4: Gap, 5: Presser spring,
6: Step, 7: Spacer, 8: Hanging bracket, 9: Shaft joint, 10: Convex part for slide, 11: Slit for slide, 12: Flange, 13: Support arm, 14: Slit for discharge, 15: Cooling water Ejection slit, 16: magnet, 17: ultrasonic generation coil, 18: detection coil, 19: protective case,
20: Special alloy layer, 21: Round copying boat, 2
2: Coro.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] その内部に段差6を有し、押えばね5によつ
て、電磁超音波発生検出器3を、被検体2表面に
所定間隔をおいて前記段差6に嵌合、押圧する如
く収納するとともに、その底面に耐熱合金属20
を有し、さらに、検出器3からの冷却水を案内し
排出する、排出用スリツト14を設けるととも
に、ローリングスライド用凸部10により、揺動
自在に支持アーム13に懸吊する如く構成してな
る、高温材料を検査するための超磁超音波発生検
出器を収納する倣いボート。
It has a step 6 inside, and the electromagnetic ultrasonic generation detector 3 is housed in the surface of the subject 2 at a predetermined interval so as to fit and press into the step 6 by means of a pressing spring 5. Heat-resistant alloy metal 20 on the bottom
Further, it is provided with a discharge slit 14 for guiding and discharging the cooling water from the detector 3, and is configured to be swingably suspended from the support arm 13 by the rolling slide protrusion 10. A copying boat that houses a supermagnetic ultrasonic generation detector for inspecting high-temperature materials.
JP2520780U 1980-02-28 1980-02-28 Expired JPS6227877Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2520780U JPS6227877Y2 (en) 1980-02-28 1980-02-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2520780U JPS6227877Y2 (en) 1980-02-28 1980-02-28

Publications (2)

Publication Number Publication Date
JPS56126559U JPS56126559U (en) 1981-09-26
JPS6227877Y2 true JPS6227877Y2 (en) 1987-07-17

Family

ID=29621262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2520780U Expired JPS6227877Y2 (en) 1980-02-28 1980-02-28

Country Status (1)

Country Link
JP (1) JPS6227877Y2 (en)

Also Published As

Publication number Publication date
JPS56126559U (en) 1981-09-26

Similar Documents

Publication Publication Date Title
CA2326269A1 (en) Method and device for contactless online measuring of the wall thickness of hot-rolled pipes
EP0081243A3 (en) Articulated test probe mechanism with fluid bearing in roll gap
US3483721A (en) Material tester
JPS6227877Y2 (en)
JPS60133954A (en) Test apparatus for detecting damage of casting belt of mold for continuous casting
JP5104247B2 (en) Manufacturing method of continuous cast slab
US5086827A (en) Method and apparatus for sensing the condition of casting belt and belt coating in a continuous metal casting machine
ES2119427T3 (en) PROCEDURE FOR INTRODUCING AN EARLY CHANGE OF COIL.
CN113176338B (en) Method for detecting bonding quality of bearing bush alloy material by ultrasonic guided wave
JPS6036856B2 (en) Insulated roll
JPH05281213A (en) Oblique-angle probe for ultrasonic flaw detection
US20080011449A1 (en) Method and apparatus for controlling the formation of crocodile skin surface roughness on thin cast strip
JP3014256B2 (en) Continuous casting of thin slabs
JP3583901B2 (en) Continuously cast thin slab and casting method thereof
JPH086295Y2 (en) Flaw detector
JPH05312652A (en) Pressure roller surface temperature measuring device
JPS5946702B2 (en) Continuous casting mold
JPH0921679A (en) Apparatus for detecting surface level of molten metal
JPH0526742A (en) Temperature sensor roll with improved temperature-measuring accuracy
JPS6167550A (en) Instrument for measuring bulging of steel ingot
JPS5972055A (en) Method for quality inspection of metallic material
JPH0429410Y2 (en)
JPS58168465A (en) Detection of surface condition of continuous casting ingot
JPS6118131B2 (en)
TANAKA et al. New Radiation Thermometry Systems for Continuous Annealing and Continuous Galvanizing Lines