JP3013437B2 - Copper purification method - Google Patents

Copper purification method

Info

Publication number
JP3013437B2
JP3013437B2 JP2314675A JP31467590A JP3013437B2 JP 3013437 B2 JP3013437 B2 JP 3013437B2 JP 2314675 A JP2314675 A JP 2314675A JP 31467590 A JP31467590 A JP 31467590A JP 3013437 B2 JP3013437 B2 JP 3013437B2
Authority
JP
Japan
Prior art keywords
copper
furnace
refining
molten
refining furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2314675A
Other languages
Japanese (ja)
Other versions
JPH04183831A (en
Inventor
修 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2314675A priority Critical patent/JP3013437B2/en
Priority to MYPI91002125A priority patent/MY110307A/en
Priority to RO148789A priority patent/RO109561B1/en
Priority to SU915010366A priority patent/RU2092599C1/en
Priority to AU88006/91A priority patent/AU647207B2/en
Priority to BR919105021A priority patent/BR9105021A/en
Priority to BR919105022A priority patent/BR9105022A/en
Priority to PT99546A priority patent/PT99546B/en
Priority to SU915010324A priority patent/RU2039106C1/en
Priority to DE69124665T priority patent/DE69124665T2/en
Priority to CA002055842A priority patent/CA2055842C/en
Priority to EP91119730A priority patent/EP0487032B1/en
Priority to EP94119082A priority patent/EP0648849B2/en
Priority to CA002055841A priority patent/CA2055841C/en
Priority to MX9102132A priority patent/MX9102132A/en
Priority to BG095500A priority patent/BG60327B2/en
Priority to FI915454A priority patent/FI101813B1/en
Priority to MYPI91002129A priority patent/MY110479A/en
Priority to FI915453A priority patent/FI101812B/en
Priority to DE69109061T priority patent/DE69109061T2/en
Priority to PL91292445A priority patent/PL168577B1/en
Priority to DE69132590T priority patent/DE69132590T3/en
Priority to PL91292446A priority patent/PL169695B1/en
Priority to EP91119729A priority patent/EP0487031B1/en
Priority to RO148788A priority patent/RO109560B1/en
Priority to BG95501A priority patent/BG60276B2/en
Priority to AU88008/91A priority patent/AU641572B2/en
Priority to PT99547A priority patent/PT99547B/en
Priority to US07/795,335 priority patent/US5217527A/en
Priority to KR1019910020730A priority patent/KR0150009B1/en
Priority to US07/797,116 priority patent/US5205859A/en
Priority to KR1019910020729A priority patent/KR0150008B1/en
Priority to TW080110109A priority patent/TW203103B/zh
Publication of JPH04183831A publication Critical patent/JPH04183831A/en
Priority to US08/031,191 priority patent/US5320799A/en
Priority to US08/040,986 priority patent/US5374298A/en
Priority to US08/040,999 priority patent/US5380353A/en
Priority to US08/056,780 priority patent/US5320662A/en
Priority to US08/143,118 priority patent/US5398915A/en
Priority to FI974334A priority patent/FI104382B/en
Application granted granted Critical
Publication of JP3013437B2 publication Critical patent/JP3013437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、銅の製錬工程において、粗銅をより高い銅
品位の精製銅に精製するための銅の精製方法に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for purifying copper for purifying crude copper into purified copper having a higher copper grade in a copper smelting process.

[従来の技術] 従来、銅を製錬する装置としては、例えば第11図に示
すような複数炉方式による製錬装置が知られている。
[Prior Art] Conventionally, as an apparatus for smelting copper, for example, a smelting apparatus using a multiple furnace system as shown in FIG. 11 is known.

これは、酸素富化空気とともに供給された銅精鉱を熔
解、酸化し、硫化銅および硫化鉄の混合物を主成分とす
るカワMと、銅精鉱中の脈石や溶剤、および酸化鉄等か
らなるカラミSとを生成する熔錬炉1と、この熔錬炉1
で生成されたカワMとカラミSとを分離する分離炉2
と、分離されたカワMをさらに酸化して粗銅Cを生成す
る製銅炉3と、この製銅炉3で生成された粗銅Cを精製
して、より銅品位の高い精製銅を生成する精製炉4,4よ
り構成されている。熔錬炉1および製銅炉3には、二重
管構造を有するランス5…がこれらの炉の天井を挿通し
て昇降自在に設けられており、このランス5…を介して
銅精鉱、酸素富化空気、溶剤等が各炉内に供給される。
分離炉2は、電極6を備えた電気炉である。
It melts and oxidizes copper concentrate supplied together with oxygen-enriched air, and contains Kawa M mainly composed of a mixture of copper sulfide and iron sulfide, gangue and solvent in copper concentrate, iron oxide, etc. Smelting furnace 1 for producing Karami S consisting of
Furnace 2 for separating Kawa M and Karami S generated in
And a copper making furnace 3 for further oxidizing the separated Kawa M to produce blister copper C, and purifying the blister copper C generated in the copper making furnace 3 to produce purified copper with higher copper quality. It is composed of furnaces 4,4. The smelting furnace 1 and the copper making furnace 3 are provided with lances 5 having a double-pipe structure so as to be able to move up and down by passing through the ceiling of these furnaces. Oxygen-enriched air, solvents, etc. are supplied into each furnace.
The separation furnace 2 is an electric furnace provided with the electrodes 6.

そして、これら熔錬炉1、分離炉2、および製銅炉3
は、この順に高低差が付けられているとともに、溶湯の
流路である樋7A,7Bによって連絡されていて、溶湯はこ
の樋7A,7Bを重力によって流下するようになっている。
And, these smelting furnace 1, separation furnace 2, and copper making furnace 3
Are arranged in this order, and are connected by troughs 7A and 7B, which are flow paths of the molten metal, so that the molten metal flows down the troughs 7A and 7B by gravity.

製銅炉3において連続的に生成された粗銅Cは、一旦
保温炉8に保持された後、レードル9に移され、クレー
ン10によって移送されて精製炉4の上面に開口する装入
口より精製炉4に注入され、通常、酸化処理および還元
処理を行って最終的な銅品位の調整を行うようにしてい
る。
The blister copper C continuously produced in the copper making furnace 3 is once held in a heat retaining furnace 8, then transferred to a ladle 9, transferred by a crane 10 and passed through a charging opening opening on the upper surface of the refining furnace 4. 4 and is usually subjected to an oxidation treatment and a reduction treatment to adjust the final copper quality.

しかしながら、このような構成の銅の製錬装置では、
精製工程がバッチ処理であるから、生成された粗銅Cを
保温炉8によって一旦保持しなければならず、そのた
め、保温炉8はもとより、保温炉8から精製炉4に粗銅
を移送するためのレードル9やクレーン10等の設備、ま
たこの間において溶湯を保温するためのエネルギーの供
給が必要となっている。このため、結果的にこれらの設
備の分、製錬設備の建設費用やランニングコストの低廉
化、および製錬設備のコンパクト化が制限されてしまう
ことになる。
However, in the copper smelting apparatus having such a configuration,
Since the refining process is a batch process, the generated blister copper C must be once held by the heat retaining furnace 8, and therefore, a ladle for transferring the blister copper from the heat retaining furnace 8 to the refining furnace 4 as well as the heat retaining furnace 8. It is necessary to supply equipment such as a crane 9 and a crane 10, and to supply energy for keeping the molten metal warm during this time. Therefore, as a result, the reduction of the construction cost and running cost of the smelting equipment and the downsizing of the smelting equipment are limited by these equipments.

そこで、保温炉8を廃し、複数の精製炉4を上記製銅
炉3に対して溶湯流路を介して接続し、この溶湯流路を
介して製銅炉3から精製炉4に溶銅を送るようなシステ
ムが考えられる。
Therefore, the heat retaining furnace 8 is abolished, and the plurality of refining furnaces 4 are connected to the copper making furnace 3 via a molten metal flow path, and molten copper is transferred from the copper making furnace 3 to the refining furnace 4 through the molten metal flow path. A system such as sending is conceivable.

[発明が解決しようとする課題] ところで、このような精製炉4では、炉内の溶湯を最
終的な目標成分に調整するために必然的にバッチ処理と
なり、精製炉4の容量に合わせた所定の量を受け入れた
後上記の処理を行う。例えば1基の製銅炉3に対して2
基の精製炉4を接続し、交互に溶銅を供給し、処理を行
う場合、受け入れと精製処理の総計の時間がサイクルタ
イムとなり、この時間内に1基の精製炉4で処理される
量の2倍が精銅炉3の生産能力になるように設定されて
いる。そこで、もし、製銅炉3からの生産量が上方に変
動した場合、精製炉4の処理量にフレキシビリティが無
いとすると、製銅炉3にそのまま保持する、あるいは、
他の保持設備に緊急的に貯留するなどの必要が生じ、結
局は保温炉8を無くした上記のシステムが円滑に作動し
ないことになる。
[Problems to be Solved by the Invention] In such a refining furnace 4, batch processing is inevitably performed in order to adjust the molten metal in the furnace to a final target component. The above processing is performed after receiving the amount of. For example, 2 for one copper making furnace 3
In the case where the primary refining furnace 4 is connected and the molten copper is supplied alternately and the processing is performed, the total time of the receiving and refining processing becomes the cycle time, and the amount processed in one refining furnace 4 during this time Is set to be twice the production capacity of the copper furnace 3. Therefore, if the production amount from the copper furnace 3 fluctuates upward, if there is no flexibility in the throughput of the refining furnace 4, it is held in the copper furnace 3 as it is, or
The need for urgent storage in other holding facilities arises, and eventually, the above-described system without the heat retaining furnace 8 does not operate smoothly.

[課題を解決するための手段] 本発明は、上記の課題を解決するためになされたもの
で、溶銅を精製炉に受け入れる工程と、精製炉内で溶銅
を酸化処理する工程と、精製炉内で溶銅を還元処理する
工程と、この還元処理が終了した溶銅を精製炉より排出
する工程からなる銅の精製方法において、上記精製炉の
炉体にはその内面に開口する羽口が設けられ、受け入れ
た溶銅の深さに応じて炉体を傾動させて、羽口の開口位
置が溶銅表面より下に来るように羽口の浸漬深さを調整
しながら、溶銅中に羽口より溶銅表面にほぼ平行に酸化
性気体を吹き込むことにより、上記受け入れ工程と酸化
処理工程とをその少なくとも一部を重複させて行うよう
にしたものである。
Means for Solving the Problems The present invention has been made to solve the above problems, and includes a step of receiving molten copper in a refining furnace, a step of oxidizing the molten copper in the refining furnace, and a step of refining. In a copper refining method comprising a step of reducing molten copper in a furnace and a step of discharging the molten copper after the reduction treatment from the refining furnace, the tuyere opening to the inner surface of the furnace body of the refining furnace is provided. The furnace body is tilted according to the depth of the molten copper that has been received, and the immersion depth of the tuyere is adjusted so that the tuyere opening position is below the surface of the molten copper. An oxidizing gas is blown from the tuyere to the surface of the molten copper substantially in parallel, so that the receiving step and the oxidizing step are performed at least in part.

なお、上記の酸化工程の酸化剤として酸素を富化した
空気を用いるようにした場合、酸素の富化率は25〜35vo
l%が好適である。
When oxygen-enriched air is used as the oxidizing agent in the oxidation step, the oxygen enrichment rate is 25 to 35 vo.
l% is preferred.

[作用] 本発明では、精製炉への溶銅の受け入れと並行して、
銅の酸化処理が行なわれる。酸化処理は、通常、炉体に
設けられた羽口から酸化剤として空気または酸化富化し
た空気を溶銅中に吹き込むことにより行なわれるので、
受け入れにより精製炉内の溶銅の深さが一定量を越えた
後に酸化を開始する方が良い。
[Action] In the present invention, in parallel with the reception of molten copper to the refining furnace,
An oxidation treatment of copper is performed. Since the oxidation treatment is usually performed by blowing air or oxidized air as an oxidant into molten copper from a tuyere provided in the furnace body,
It is better to start oxidation after the depth of molten copper in the refining furnace exceeds a certain amount by acceptance.

ここで,本発明では、羽口の開口位置が溶銅表面より
下に来るように、溶銅深さに応じて炉体を傾動させなが
ら酸化性気体が羽口より溶銅中に吹き込まれる。羽口か
ら吹き込まれた酸化性気体は、溶銅中を溶銅の表面にほ
ぼ平行に吹き込まれ、溶銅と充分に反応するとともに、
溶銅を過度に撹拌することなく安定な反応を行わせる。
これにより、溶銅量が少ないときから酸化処理が可能で
あり、また、常に吹き込まれる空気の反応効率が高い状
態で酸化処理がなされる。
Here, in the present invention, the oxidizing gas is blown into the molten copper from the tuyere while tilting the furnace body according to the molten copper depth such that the opening position of the tuyere is below the surface of the molten copper. The oxidizing gas blown from the tuyere is blown in the molten copper almost parallel to the surface of the molten copper, and reacts sufficiently with the molten copper,
A stable reaction is performed without excessively stirring the molten copper.
Thus, the oxidation treatment can be performed even when the amount of molten copper is small, and the oxidation treatment is always performed in a state where the reaction efficiency of the blown air is high.

なお,この際、酸素を富化した空気を酸化剤として用
いることにより、反応の熱バランスや酸化反応効率が状
況に応じて制御される。
At this time, by using oxygen-enriched air as the oxidizing agent, the heat balance of the reaction and the oxidation reaction efficiency are controlled according to the situation.

[実施例] 第1図は、本発明の方法を行うための装置の一実施例
を示すものであり、第11図と同じ部分には同一の符号を
配して説明を省略する。
[Embodiment] Fig. 1 shows an embodiment of an apparatus for performing the method of the present invention.

製銅炉3と精製炉4とは溶湯流路である樋11により接
続されており、製銅炉3で生成された粗銅Cは、この樋
11を通って精製炉4に流下する。精製炉4は2基設けら
れており、これらは互いに並列に配置されている。樋11
は、中途部に設けられた分岐点を経て2流路に分岐する
もので、主樋11Aとこれから分岐してそれぞれが精製炉
4,4に接続された二つの分岐樋11B,11Bとから成ってい
る。この分岐樋11Bと主樋11Aとの接続箇所近傍は底部が
やや浅くなっており、この部分にキャスタブルまたは塊
状の耐火物を落とし込むことによって、一方の分岐樋11
Bへの溶湯の流れを遮断し、他方の分岐樋11Bへと溶湯を
流下せしめる溶湯流路の切換装置12をなしている。な
お、これらの樋は、他の炉をつなぐ樋7A,7Bも含めて、
上部に蓋等が設置されており、必要箇所にバーナーなど
の保温装置や、雰囲気調整のための設備が備えられてお
り、これによって樋内を流下する溶湯は比較的高い密閉
状態に維持されるようになっている。
The copper making furnace 3 and the refining furnace 4 are connected by a gutter 11 which is a molten metal flow path, and the blister copper C generated in the copper making furnace 3
It flows down to the purification furnace 4 through 11. Two refining furnaces 4 are provided, and these are arranged in parallel with each other. Gutter 11
Is divided into two flow paths through a branch point provided in the middle, and the main gutter 11A and a branch from the main gutter 11A
4 and 4, two branch gutters 11B and 11B. The vicinity of the connection point between the branch gutter 11B and the main gutter 11A is slightly shallow at the bottom, and a castable or massive refractory is dropped into this portion to form one branch gutter 11B.
A molten metal flow path switching device 12 for blocking the flow of the molten metal to B and causing the molten metal to flow to the other branch trough 11B. In addition, these gutters, including gutters 7A and 7B connecting other furnaces,
A lid and the like are installed at the upper part, and a heat retaining device such as a burner and equipment for adjusting the atmosphere are provided at necessary places, so that the molten metal flowing down the gutter is maintained in a relatively high sealed state. It has become.

精製炉4は、第2図ないし第4図に示すように、両端
部の鏡板21aと胴部21bとからなる閉塞された円筒状の炉
体21を有するものであり、その胴部21bに設けられたガ
イドリング22,22に接する複数の支持輪23…により、軸
線を水平にして軸線まわりに回動自在に支持され、炉体
21の一端側に設置された傾動歯車24と、この傾動歯車24
に接続される駆動装置25によって傾動されるようになっ
ている。また、この炉体21の一方の鏡板21aには炉体21
内に向って炉内の溶湯温度を保持するバーナー26が設置
されており、胴部21bには炉内に空気または酸素富化空
気や還元剤を供給するための羽口27,27と精製された銅
をアノードに鋳込む際の出湯口28がそれぞれ対向する側
に設置されている。さらに、この精製炉4の胴部21bの
上側ほぼ中央には、アノード屑などの塊状物を炉内に装
入するための装入口29が設けられている。また、胴部21
bのバーナー26とは反対側の端部上側には、第4図に示
すように、炉の通常位置における頂点から出湯口28側に
向けて周方向に沿って長円状に延びて開口する煙道口30
が形成されている。
As shown in FIGS. 2 to 4, the refining furnace 4 has a closed cylindrical furnace body 21 including end plates 21a at both ends and a body 21b, and is provided on the body 21b. The plurality of support rings 23 contacting the guide rings 22, 22 are supported so as to be rotatable around the axis with the axis horizontal.
A tilt gear 24 installed at one end of the tilt gear 21;
Is tilted by a driving device 25 connected to the motor. Further, one end plate 21a of the furnace body 21 has a furnace body 21a.
A burner 26 for maintaining the temperature of the molten metal in the furnace is installed toward the inside, and a tuyere 27, 27 for supplying air or oxygen-enriched air or a reducing agent into the furnace is purified in the body 21b. Tap holes 28 for casting cast copper into the anode are provided on opposite sides. Further, a charging port 29 for charging a lump such as anode dust into the furnace is provided substantially at the center of the upper side of the body 21b of the refining furnace 4. Also, the torso 21
As shown in FIG. 4, the upper side of the end opposite to the burner 26 of b opens in an oval shape along the circumferential direction from the vertex at the normal position of the furnace toward the tap hole 28 side. Flue exit 30
Are formed.

この煙道口30を覆うように排気ダクトの末端のカバー
31が開口して設けられている。これは、第5図に示すよ
うに、炉体21の傾動の範囲において煙道口30の全部を覆
うような角度で開口している。そして、粗銅Cの流下す
る溶湯流路である樋11Bがカバー31の側面より挿入さ
れ、その端部11Cを上記煙道口の上方に臨ませて位置さ
せている。この端部樋11Cは、カバー31と同様に水冷ジ
ャケット構造となっている。
Cover the end of the exhaust duct so as to cover this flue port 30
An opening 31 is provided. As shown in FIG. 5, the opening is formed at an angle so as to cover the entire flue port 30 in the range of the tilting of the furnace body 21. A gutter 11B, which is a flow path of the molten metal in which the blister copper C flows, is inserted from a side surface of the cover 31, and its end 11C is positioned facing the above-mentioned flue port. The end gutter 11C has a water-cooled jacket structure like the cover 31.

上記のような構成の製錬装置においては、熔錬炉1、
分離炉2および製銅炉3からなる連続製銅設備により溶
融粗銅Cが連続的に製造され、製銅炉3から樋11Aを流
下し、分岐樋11の切換装置12によって樋11B,11Bのいず
れか一方に流下して端部11Cから煙道口30より精製炉4
に受け入れられる。
In the smelting apparatus having the above configuration, the smelting furnace 1
Molten blister copper C is continuously produced by a continuous copper making facility consisting of a separation furnace 2 and a copper making furnace 3 and flows down a gutter 11A from the copper making furnace 3; Refining furnace 4 from end 11C and flue port 30
Accepted to.

通常の受け入れは、炉体21を直立させて第6図に示す
状態で行なわれ、粗銅Cの受け入れが終了した後、駆動
装置25によって炉体21を傾動し、第7図に示すように羽
口27,27が溶湯面より下に来るような傾転状態にする。
この状態で、炉体21内に羽口27,27から、まず空気ある
いは酸素富化空気等を供給して粗銅Cを所定の時間酸化
させ、銅中の硫黄濃度を目標値に近付ける。さらに炭化
水素と空気との混合体を主成分とする還元剤を供給して
還元処理を行い、銅中の酸素濃度を所定の値に近付け
る。なお、この際発生する排煙ガスは煙道口30、カバー
31を介して排気ダクトに回収され、処理される。また、
カラミSは装入口29より排出される。
Normal reception is performed in the state shown in FIG. 6 with the furnace body 21 standing upright. After the reception of the blister copper C is completed, the furnace body 21 is tilted by the driving device 25, and the blades are moved as shown in FIG. The mouths 27, 27 are tilted so that they are below the surface of the molten metal.
In this state, first, air or oxygen-enriched air is supplied from the tuyere 27, 27 into the furnace body 21 to oxidize the crude copper C for a predetermined time, thereby bringing the sulfur concentration in the copper closer to the target value. Further, a reducing agent containing a mixture of hydrocarbon and air as a main component is supplied to perform a reducing treatment, so that the oxygen concentration in the copper approaches a predetermined value. The flue gas generated at this time is covered by the flue
Collected in the exhaust duct via 31 and processed. Also,
Karami S is discharged from the charging port 29.

こうして炉内の粗銅Cは精製されて、より銅品位の高
い精製銅になると、再び駆動装置25を作動して炉体21を
さらに傾動し、第8図に示すような傾転状態にして、出
湯口28より溶銅を注出して中間取鍋を介してアノード鋳
型に注ぎ込み、陽極板(アノード)に鋳造して電解処理
工程へと移送する。
In this way, the crude copper C in the furnace is refined to become refined copper having a higher copper quality. Then, the driving device 25 is operated again to further tilt the furnace body 21 to a tilting state as shown in FIG. Molten copper is poured from the tap hole 28, poured into an anode mold via an intermediate ladle, cast on an anode plate (anode), and transferred to an electrolytic treatment step.

精製炉4は2基設けられており、製銅炉3で生成され
た粗銅Cは、溶湯流路である分岐樋11に設けられた切換
装置12によって、これら2基の精製炉4,4の一方に択一
的に流下せしめられる。一方の精製炉4に粗銅Cが受け
入れられている間、他方の精製炉4では受け入れられた
粗銅Cを酸化、還元して精製し、アノードとして鋳造す
る作業を並行して行っている。
The two purification furnaces 4 are provided, and the blister copper C generated in the copper making furnace 3 is supplied to the two purification furnaces 4 and 4 by a switching device 12 provided in a branch gutter 11 which is a molten metal flow path. It is allowed to flow down to one of them. While the blister copper C is being received in one of the refining furnaces 4, the other refining furnace 4 performs the work of oxidizing and reducing the received blister copper C for purification and casting as an anode in parallel.

以下、2基の精製炉4によって粗銅を受け入れ、酸
化、還元、鋳造する場合の精製方法について、第9図お
よび第10図を参照して説明する。
Hereinafter, a refining method in the case where blister copper is received, oxidized, reduced, and cast by two refining furnaces 4 will be described with reference to FIG. 9 and FIG.

第9図に示すのは精製炉の処理能力と製銅炉の処理能
力が等しいときの従来の方法の場合のものである。
FIG. 9 shows the case of the conventional method when the processing capacity of the refining furnace and the processing capacity of the copper making furnace are equal.

一方の精製炉(1)で粗銅Cの受け入れが行なわれて
いる間、他方の精製炉(2)では前工程で受け入れられ
た粗銅Cの酸化、還元、鋳造およびこれらに伴う付帯作
業が行なわれる。この例では、粗銅Cの酸化に2時間、
還元に2時間、および鋳造に4時間を要し、また、粗銅
Cの酸化と還元の間には30分の羽口掃除が、還元と鋳造
の間には1時間の鋳造準備が、そして鋳造から次工程の
受け入れの間には30分の鋳造片付けが、それぞれ付帯作
業として行なわれる。すなわち、受け入れられた粗銅を
精製し、アノードとして鋳造して、次の粗銅を受け入れ
る準備が整うまでには10時間を要し、これは受け入れの
時間と等しい。従って、精製炉4では鋳造および片付け
の後、次の受け入れ工程の間にほとんど待ち時間が無
い。
While one of the refining furnaces (1) is receiving blister copper C, the other refining furnace (2) performs oxidation, reduction, casting of the blister copper C received in the previous process and accompanying operations. . In this example, the blister copper C is oxidized for 2 hours,
It takes 2 hours for reduction and 4 hours for casting, 30 minutes tuyere cleaning between oxidation and reduction of blister copper C, 1 hour casting preparation between reduction and casting, and casting From the time the next process is accepted, the casting is cleared for 30 minutes as ancillary work. That is, it takes 10 hours for the accepted blister copper to be refined, cast as an anode, and ready to accept the next blister copper, which is equal to the time of acceptance. Thus, in the refining furnace 4, after casting and clearing, there is little waiting time between subsequent receiving steps.

第10図の例は、製銅炉の能力が精製炉の処理能力より
大きい場合の本発明の方法を示すもので、精製能力を上
げるために、受け入れ工程の終盤で、粗銅Cの受け入れ
と並行して、炉内に受け入れられた粗銅Cの酸化が行な
われる。すなわち、この例では、製銅炉から精製炉への
受け入れは8.5時間で行なわれるのに対し、酸化から鋳
造片付けまでの作業は10時間を要するので、受け入れ工
程と酸化工程を重複させることによりその時間を節約し
ている。
The example of FIG. 10 shows the method of the present invention in the case where the capacity of the copper making furnace is larger than the processing capacity of the refining furnace. Then, the blister copper C received in the furnace is oxidized. In other words, in this example, the receiving from the copper making furnace to the refining furnace is performed in 8.5 hours, while the work from oxidation to clearing of the casting takes 10 hours. Saves time.

この受け入れ酸化は、駆動装置25によって炉体21を第
6図の位置から第7図の位置に変えてから、受け入れた
粗銅Cの深さに応じて炉体21を傾動させて、羽口27,27
の開口位置が粗銅Cの溶湯面(溶銅表面)より下に来る
ように羽口27,27の浸漬深さを調整しながら、粗銅C中
に羽口27,27より溶銅表面にほぼ平行に酸化性気体を吹
き込むことにより、行われる。なお、この粗銅Cの酸化
は、精製炉(1)での粗銅Cの受け入れが終了した後も
続けられる。
This receiving oxidation is performed by changing the furnace body 21 from the position shown in FIG. 6 to the position shown in FIG. 7 by the driving device 25 and then tilting the furnace body 21 in accordance with the depth of the received blister copper C, thereby forming the tuyere 27. , 27
While adjusting the immersion depth of the tuyeres 27, 27 so that the opening position of is below the molten metal surface (surface of molten copper) of blister copper C, the tuyeres 27, 27 are almost parallel to the molten copper surface from bladder C This is performed by blowing an oxidizing gas into the device. The oxidation of the blister copper C is continued even after the reception of the blister copper C in the refining furnace (1) is completed.

このようにすれば、受け入れと酸化とが並行して行な
われ、そのオーバーラップした時間だけ、粗銅の精製時
間が短縮されるから、精製炉自体の処理能力の向上が図
られ、前工程の製錬能力が向上した場合に、これに対応
して設備全体の生産速度を高めることが可能となる。
In this way, the receiving and oxidizing are performed in parallel, and the refining time of the blister copper is shortened by the overlap time, so that the processing capacity of the refining furnace itself is improved and the production of the pre-process is performed. When the smelting capacity is improved, the production speed of the entire equipment can be increased correspondingly.

なお、これらの第9図ないし第10図に示したタイムテ
ーブルは精製炉の操業サイクルの一例であり、精製炉の
数や容量、精製能力、および各工程の処理時間等の変化
に応じて適宜のものが選択されるべきである。
The time tables shown in FIGS. 9 to 10 are examples of the operation cycle of the refining furnace, and may be appropriately changed according to changes in the number and capacity of the refining furnace, the refining capacity, and the processing time of each process. Things should be selected.

また、第10図の場合における粗銅の受け入れと酸化処
理とのオーバーラップする時間についても、粗銅の生成
速度や精製炉の酸化処理能力等を検討した上で、適当に
設定されるべきである。
In addition, the overlap time between the reception of blister copper and the oxidation treatment in the case of FIG. 10 should be appropriately set after considering the production speed of blister copper and the oxidation treatment capacity of the refining furnace.

[発明の効果] このように,本発明は、溶銅を精製炉に受け入れる工
程と、精製炉内で溶銅を酸化処理する工程と、精製炉内
で溶銅を還元処理する工程と、この還元処理が終了した
溶銅を精製炉より排出する工程からなる銅の精製方法に
おいて、上記精製炉の炉体にはその内面に開口する羽口
が設けられ、受け入れた溶銅の深さに応じて炉体を傾動
させて、羽口の開口位置が溶銅表面より下に来るように
羽口の浸漬深さを調整しながら、溶銅中に羽口より溶銅
表面にほぼ平行に酸化性気体を吹き込むことにより、上
記受け入れ工程と酸化処理工程とをその少なくとも一部
を重複させて行うようにしたものであるので、重複する
時間だけ精製炉の処理時間を早く終わらせることができ
るから、結果的に精製炉の処理能力を向上させることが
できる。そして、予め処理能力が決められた装置におい
て前工程の変動に対して、よりフレキシブルに対応でき
るから、保温炉をなくして製銅炉を精製炉と直結したよ
うなシステムにおいても装置全体の安定操業の推進に寄
与するものである。
[Effects of the Invention] As described above, the present invention provides a process of receiving molten copper in a refining furnace, a process of oxidizing molten copper in a refining furnace, and a process of reducing molten copper in a refining furnace. In the method for purifying copper, comprising the step of discharging the molten copper having undergone the reduction treatment from the refining furnace, the furnace body of the refining furnace is provided with a tuyere opening on the inner surface thereof, according to the depth of the received molten copper. The furnace body is tilted to adjust the immersion depth of the tuyere so that the tuyere opening position is below the molten copper surface. By injecting the gas, the receiving step and the oxidizing step are performed so as to overlap at least a part thereof, so that the processing time of the refining furnace can be completed earlier by the overlapping time. As a result, the processing capacity of the refining furnace can be improved. You. And, because the equipment with a predetermined processing capacity can respond more flexibly to the fluctuations of the previous process, even in a system where the copper making furnace is directly connected to the refining furnace without the heat insulation furnace, the stable operation of the whole equipment can be achieved. It contributes to the promotion of

そして、酸化性気体は、溶銅中に溶銅と充分に反応す
るような方向に吹き込むことが可能であり、これによ
り、溶銅量が少ないときから、常に吹き込まれる空気の
反応効率が高い状態で酸化処理を行うことができる。
The oxidizing gas can be blown into the molten copper in such a direction as to sufficiently react with the molten copper, so that when the amount of molten copper is small, the reaction efficiency of the blown air is always high. Can be used for oxidation treatment.

なお,この際、酸素を富化した空気を酸化剤として用
いることにより、反応の熱バランスや酸化反応効率が状
況に応じて制御され、またより効率的に反応が進行する
から生産能率を向上させることができる。
At this time, by using oxygen-enriched air as the oxidizing agent, the heat balance of the reaction and the oxidation reaction efficiency are controlled according to the situation, and the reaction proceeds more efficiently, thereby improving the production efficiency. be able to.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法の実施に好適な連続製銅設備の概
要を示す平面図、第2図ないし第5図はこのような製銅
設備に用いられる精製炉を示す図、第6図ないし第8図
は、このような精製炉における粗銅の受け入れ、酸化、
還元、およびアノードの鋳造での傾転状態を示す断面
図、第9図はこのような精製炉における操業の一例を表
すタイムテーブル、第10図は本発明の方法を示すタイム
テーブル、第11図は、従来の銅の製錬装置の一例を示す
断面図である。 1……熔錬炉、 2……分離炉、 3……製銅炉、 4……精製炉、 5……ランス、6……電極、 7A,7B……樋、 8……保温炉、 9……レードル、10……クレーン、 11……分岐樋、 11A,11B……樋、11C……排出口、 12……切換装置、 21……炉体、 21a……鏡板、21b……胴部、 22……ガイドリング、 23……支持輪、24……傾転歯車、 25……駆動装置、26……バーナー、 27……羽口、28……出湯口、29……装入口、 30……煙道口、31……カバー、 M……カワ、S……カラミ、C……粗銅。
FIG. 1 is a plan view showing an outline of a continuous copper making facility suitable for carrying out the method of the present invention, FIGS. 2 to 5 are views showing a refining furnace used in such a copper making facility, and FIG. FIG. 8 to FIG. 8 show the receiving and oxidizing of blister copper in such a refining furnace.
FIG. 9 is a cross-sectional view showing a tilting state in reduction and casting of an anode, FIG. 9 is a time table showing an example of operation in such a refining furnace, FIG. 10 is a time table showing a method of the present invention, FIG. FIG. 1 is a sectional view showing an example of a conventional copper smelting apparatus. DESCRIPTION OF SYMBOLS 1 ... Smelting furnace, 2 ... Separation furnace, 3 ... Copper making furnace, 4 ... Refining furnace, 5 ... Lance, 6 ... Electrode, 7A, 7B ... Gutter, 8 ... Heat insulation furnace, 9 ... ladle, 10 ... crane, 11 ... branch gutter, 11A, 11B ... gutter, 11C ... discharge port, 12 ... switching device, 21 ... furnace body, 21a ... mirror plate, 21b ... body , 22 ... guide ring, 23 ... support wheel, 24 ... tilting gear, 25 ... drive unit, 26 ... burner, 27 ... tuyere, 28 ... taphole, 29 ... inlet, 30 ... flue port, 31 ... cover, M ... Kawa, S ... Karami, C ... blister copper.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶銅を精製炉に受け入れる工程と、精製炉
内で溶銅を酸化処理する工程と、精製炉内で溶銅を還元
処理する工程と、この還元処理が終了した溶銅を精製炉
より排出する工程からなる銅の精製方法において、 上記精製炉の炉体にはその内面に開口する羽口が設けら
れ、受け入れた溶銅の深さに応じて炉体を傾動させて、
羽口の開口位置が溶銅表面より下に来るように羽口の浸
漬深さを調整しながら、溶銅中に羽口より溶銅表面にほ
ぼ平行に酸化性気体を吹き込むことにより、上記受け入
れ工程と酸化処理工程とを、少なくともその一部を重複
させて行うことを特徴とする銅の精製方法。
1. A step of receiving molten copper in a refining furnace, a step of oxidizing molten copper in a refining furnace, a step of reducing molten copper in a refining furnace, and a step of removing the molten copper having been subjected to the reduction processing. In the method for purifying copper comprising a step of discharging from a refining furnace, the furnace body of the refining furnace is provided with a tuyere opening on an inner surface thereof, and the furnace body is tilted according to a depth of the received molten copper,
By adjusting the immersion depth of the tuyere so that the opening position of the tuyere is below the surface of the molten copper, and blowing the oxidizing gas into the molten copper from the tuyere almost parallel to the surface of the molten copper, A method for purifying copper, wherein the step and the oxidation treatment step are performed at least in part.
JP2314675A 1990-11-20 1990-11-20 Copper purification method Expired - Lifetime JP3013437B2 (en)

Priority Applications (39)

Application Number Priority Date Filing Date Title
JP2314675A JP3013437B2 (en) 1990-11-20 1990-11-20 Copper purification method
MYPI91002125A MY110307A (en) 1990-11-20 1991-11-18 Apparatus for continuous copper smelting
EP91119729A EP0487031B1 (en) 1990-11-20 1991-11-19 Process for continuous copper smelting
RO148788A RO109560B1 (en) 1990-11-20 1991-11-19 Pyro metallurgic continuous process for the copper separation from sulphurous concentrates
BR919105021A BR9105021A (en) 1990-11-20 1991-11-19 APPLIANCE FOR CONTINUOUS COPPER FUSION
BR919105022A BR9105022A (en) 1990-11-20 1991-11-19 COPPER CONTINUOUS FUSION PROCESS
PT99546A PT99546B (en) 1990-11-20 1991-11-19 COPPER EXTRACTION SYSTEM FOR CONTINUOUS FUSION
SU915010324A RU2039106C1 (en) 1990-11-20 1991-11-19 Method for continuous copper smelting
SU915010366A RU2092599C1 (en) 1990-11-20 1991-11-19 Plant for continuously melting copper
CA002055842A CA2055842C (en) 1990-11-20 1991-11-19 Process for continuous copper smelting
EP91119730A EP0487032B1 (en) 1990-11-20 1991-11-19 Apparatus for continuous copper smelting
EP94119082A EP0648849B2 (en) 1990-11-20 1991-11-19 Copper refining furnace
CA002055841A CA2055841C (en) 1990-11-20 1991-11-19 Apparatus for continuous copper smelting
PL91292446A PL169695B1 (en) 1990-11-20 1991-11-19 Continuous copper smelting process
BG095500A BG60327B2 (en) 1990-11-20 1991-11-19 Continuous copper melting plant
FI915454A FI101813B1 (en) 1990-11-20 1991-11-19 Method for smelting copper
MYPI91002129A MY110479A (en) 1990-11-20 1991-11-19 Process for continuous copper smelting
FI915453A FI101812B (en) 1990-11-20 1991-11-19 Continuous copper smelting device
DE69109061T DE69109061T2 (en) 1990-11-20 1991-11-19 Plant for the continuous melting of copper.
PL91292445A PL168577B1 (en) 1990-11-20 1991-11-19 Continuous copper smelting apparatus
RO148789A RO109561B1 (en) 1990-11-20 1991-11-19 Copper continuous melting apparatus
MX9102132A MX9102132A (en) 1990-11-20 1991-11-19 PROCESS FOR THE CONTINUOUS COPPER MELTING.
DE69124665T DE69124665T2 (en) 1990-11-20 1991-11-19 Process for the continuous melting of copper
AU88006/91A AU647207B2 (en) 1990-11-20 1991-11-19 Process for continuous copper smelting
BG95501A BG60276B2 (en) 1990-11-20 1991-11-19 Method for continuous melting of copper
AU88008/91A AU641572B2 (en) 1990-11-20 1991-11-19 Apparatus for continuous copper smelting
PT99547A PT99547B (en) 1990-11-20 1991-11-19 COPPER EXTRACTION PROCESS FOR CONTINUOUS FUSION
DE69132590T DE69132590T3 (en) 1990-11-20 1991-11-19 Refining furnace for copper
KR1019910020730A KR0150009B1 (en) 1990-11-20 1991-11-20 Process for continuous copper smelting
US07/797,116 US5205859A (en) 1990-11-20 1991-11-20 Apparatus for continuous copper smelting
US07/795,335 US5217527A (en) 1990-11-20 1991-11-20 Process for continuous copper smelting
KR1019910020729A KR0150008B1 (en) 1990-11-20 1991-11-20 Apparatus for continuous copper smelting
TW080110109A TW203103B (en) 1990-11-20 1991-12-24
US08/031,191 US5320799A (en) 1990-11-20 1993-03-12 Apparatus for continuous copper smelting
US08/040,999 US5380353A (en) 1990-11-20 1993-03-31 Copper smelting apparatus
US08/040,986 US5374298A (en) 1990-11-20 1993-03-31 Copper smelting process
US08/056,780 US5320662A (en) 1990-11-20 1993-05-04 Process for continuous copper smelting
US08/143,118 US5398915A (en) 1990-11-20 1993-10-29 Apparatus for continuous copper smelting
FI974334A FI104382B (en) 1990-11-20 1997-11-26 Device for purifying blister copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314675A JP3013437B2 (en) 1990-11-20 1990-11-20 Copper purification method

Publications (2)

Publication Number Publication Date
JPH04183831A JPH04183831A (en) 1992-06-30
JP3013437B2 true JP3013437B2 (en) 2000-02-28

Family

ID=18056196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314675A Expired - Lifetime JP3013437B2 (en) 1990-11-20 1990-11-20 Copper purification method

Country Status (1)

Country Link
JP (1) JP3013437B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699511A2 (en) * 2008-09-05 2010-03-15 Stopinc Ag Copper anode furnace with sliding closure.

Also Published As

Publication number Publication date
JPH04183831A (en) 1992-06-30

Similar Documents

Publication Publication Date Title
RU2039106C1 (en) Method for continuous copper smelting
EP0487032B1 (en) Apparatus for continuous copper smelting
US3955964A (en) Process for making steel
US3542352A (en) Apparatus for the continuous smelting and converting of copper concentrates to metallic copper
CA2149800C (en) Copper smelting apparatus
CN1026997C (en) Process for continuous copper smelting
JP3013437B2 (en) Copper purification method
US4451291A (en) Method and apparatus for converting matte, particularly high-grade matte
JP3260138B2 (en) Copper refining furnace
US5380353A (en) Copper smelting apparatus
JP3297045B2 (en) Copper smelting equipment
CN1025793C (en) Apparatus for continuous copper smelting
US5374298A (en) Copper smelting process
JP3257674B2 (en) Copper smelting equipment
CN214881767U (en) High-efficient dilution reduction device of nickel smelting sediment
FI104382B (en) Device for purifying blister copper
JPH0630151U (en) Copper refining furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term