JPH04183831A - Refining of copper - Google Patents
Refining of copperInfo
- Publication number
- JPH04183831A JPH04183831A JP31467590A JP31467590A JPH04183831A JP H04183831 A JPH04183831 A JP H04183831A JP 31467590 A JP31467590 A JP 31467590A JP 31467590 A JP31467590 A JP 31467590A JP H04183831 A JPH04183831 A JP H04183831A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- copper
- refining
- refining furnace
- molten
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 99
- 238000007670 refining Methods 0.000 title claims abstract description 81
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 73
- 239000010949 copper Substances 0.000 title claims abstract description 73
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 28
- 230000003647 oxidation Effects 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 3
- 238000007664 blowing Methods 0.000 claims description 2
- 238000011946 reduction process Methods 0.000 claims 1
- 238000003723 Smelting Methods 0.000 abstract description 16
- 239000002184 metal Substances 0.000 abstract description 15
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 238000005266 casting Methods 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 238000000926 separation method Methods 0.000 abstract description 6
- 238000006722 reduction reaction Methods 0.000 abstract description 2
- 238000009628 steelmaking Methods 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、銅の製錬工程において、粗銅をより高い銅品
位の精製銅に精製するための銅の精製方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a copper refining method for refining blister copper into refined copper of higher copper grade in a copper smelting process.
[従来の技術]
従来、銅を製錬する装置としては、例えば第11図に示
すような複数炉方式による製錬装置が知られている。[Prior Art] Conventionally, as an apparatus for smelting copper, a multi-furnace smelting apparatus as shown in FIG. 11, for example, is known.
これは、酸素富化空気とともに供給された銅精鉱を熔解
、酸化し、硫化銅おにび硫化鉄の混合物を主成分とする
カワMと、銅精鉱中の脈石や溶剤、および酸化鉄等から
なるカラミSとを生成する溶錬炉1と、この溶錬炉Iで
生成されたカワMとカラミSとを分離する分離炉2と、
分離されたカワMをさらに酸化して粗銅Cを生成する製
銅炉3と、この製鋼炉3で生成された粗銅Cを精製して
、より銅品位の高い精製銅を生成する精製炉4.4 よ
り構成されている。溶錬炉1および製銅炉3には、二重
管構造を有するランス5・・・がこれらの炉の天井を挿
通して昇降自在に設けられており、このランス5・・・
を介して銅精鉱、酸素富化空気、溶剤等が各炉内に供給
される。分離炉2は、電極6を備えた電気炉である。This melts and oxidizes copper concentrate supplied with oxygen-enriched air, and produces Kawa M, which is mainly composed of a mixture of copper sulfide and iron sulfide, as well as gangue and solvent in the copper concentrate, and oxidized copper concentrate. A smelting furnace 1 that produces a sinter S made of iron or the like; a separation furnace 2 that separates the sinter M and the sinter S produced in the smelting furnace I;
A copper making furnace 3 that further oxidizes the separated steel M to produce blister copper C; and a refining furnace 4 that refines the blister copper C produced in this steel making furnace 3 to produce refined copper with higher copper quality. It is composed of 4. In the smelting furnace 1 and the copper making furnace 3, lances 5... having a double pipe structure are installed through the ceilings of these furnaces so as to be able to rise and fall freely, and the lances 5...
Copper concentrate, oxygen-enriched air, solvent, etc. are supplied to each furnace through the furnace. Separation furnace 2 is an electric furnace equipped with electrodes 6.
そして、これら溶練炉11分離炉2、および製銅炉3は
、この順に高低差が付けられているとともに、溶湯の流
路である樋7A、7B によって連絡されていて、溶
湯はこの樋7A、7B を重力によって流下するように
なっている。The smelting furnace 11, the separation furnace 2, and the copper making furnace 3 have height differences in this order, and are connected by gutter 7A, 7B, which is a flow path for the molten metal, and the molten metal flows through the gutter 7A. , 7B flowing down by gravity.
製鋼炉3において連続的に生成された粗銅Cは、−旦保
温炉8に保持された後、レードル9に移され、クレーン
lOによって移送されて精製炉4の」二面に開口する装
入口より精製炉4に注入され、通常、酸化処理および還
元処理を行って最終的な銅品位の調整を行うようにして
いる。The blister copper C continuously produced in the steelmaking furnace 3 is first held in a heat-retaining furnace 8, then transferred to a ladle 9, and then transferred by a crane 10 through a charging port that opens on two sides of the refining furnace 4. The copper is poured into the refining furnace 4, and is usually subjected to oxidation treatment and reduction treatment to adjust the final copper grade.
しかしながら、このような構成の銅の製錬装置では、精
製工程がバッチ処理であるから、生成された粗銅Cを保
温炉8によって一旦保持しなければならず、そのため、
保温炉8はもとより、保温炉8から精製炉4に粗銅を移
送するためのし一ドル9やクレーンIO等の設備、また
この間において溶湯を保温するためのエネルギーの供給
が必要となっている。このため、結果的にこれらの設備
の分、製錬設備の建設費用やランニングしストの低廉化
、および製錬設備のコンパクト化が制限されてしまうこ
とになる。However, in a copper smelting apparatus having such a configuration, since the refining process is a batch process, the generated blister copper C must be temporarily held in the heat retention furnace 8.
In addition to the heat retention furnace 8, equipment such as a dropper 9 and a crane IO for transferring the blister copper from the heat retention furnace 8 to the refining furnace 4, and the supply of energy to keep the molten metal warm during this time are required. As a result, these facilities limit the reduction in construction costs and running costs of smelting facilities, and the ability to make smelting facilities more compact.
そこで、保温炉8を廃し、複数の精製炉4を上記製鋼炉
3に対して溶湯流路を介して接続し、この溶湯流路を介
して製鋼炉3から精製炉4に溶銅を送るようなシステム
が考えられる。Therefore, the heat retention furnace 8 is abolished, and a plurality of refining furnaces 4 are connected to the steel making furnace 3 via molten metal flow paths, and molten copper is sent from the steel making furnace 3 to the refining furnace 4 via the molten metal flow paths. A system can be considered.
[発明が解決しようとする課題]
ところで、このような精製炉・4では、炉内の溶湯を最
終的な目標成分に調整するために必然的にバッチ処理と
なり、精製fP4の容量に合わせた所定の量を受け入れ
た後上記の処理を行う。例えば1基の製鋼炉3に対して
2基の精製炉4を接続し、交互に溶銅を供給し、処理を
行う場合、受け入れと精製処理の総計の時間がサイクル
タイムとなり、この時間内に1基の精製炉4で処理され
る量の2倍が製鋼炉3の生産能力になるように設定され
ている。そこで、もし、製銅炉3からの生産量が」二重
に変動した場合、精製炉4の処理量にフレキシビリティ
が無いとすると、製鋼炉3にそのまま保持する、あるい
は、他の保持設備に緊急的に貯留するなどの必要が生じ
、結局は保温炉8を無くした」1記のシステムが円滑に
作動しないことになる。[Problem to be solved by the invention] By the way, in such a refining furnace 4, in order to adjust the molten metal in the furnace to the final target composition, batch processing is inevitably performed, and a predetermined process according to the capacity of the refining fP4 is performed. After accepting the amount of , perform the above processing. For example, when two refining furnaces 4 are connected to one steelmaking furnace 3 and molten copper is alternately supplied and processed, the total time for receiving and refining processing is the cycle time, and within this time The production capacity of the steelmaking furnace 3 is set to be twice the amount processed by one refining furnace 4. Therefore, if the production volume from the copper-making furnace 3 fluctuates double, and there is no flexibility in the throughput of the refining furnace 4, it should be kept in the steel-making furnace 3 as it is, or transferred to other holding equipment. The need for emergency storage arose, and in the end, the insulating furnace 8 was eliminated.''The system described in item 1 would no longer operate smoothly.
[課題を解決するための手段〕
本発明は、」1記の課題を解決するためになされたもの
で、第1請求項の発明は、溶銅を精製炉に受け入れる工
程と、精製炉内で溶銅を酸化処理する工程と、精製炉内
で溶銅を還元処理する工程と、この還元処理が終了した
溶銅を精製炉より排出する工程からなる銅の精製方法に
おいて、受け入れ工程と酸化処理工程とをその少なくと
も一部を重複させて行うようにしたものである。[Means for Solving the Problems] The present invention has been made to solve the problems set forth in item 1. In a copper refining method that consists of a step of oxidizing molten copper, a step of reducing the molten copper in a refining furnace, and a step of discharging the molten copper from the refining furnace after the reduction treatment, the receiving step and the oxidation treatment are The steps are performed at least partially overlapping each other.
第2請求項の発明は、第1請求項の発明において、精製
炉の炉体に内面に開口する羽口を設け、受け入れた溶銅
の深さに応じて炉体を傾動させて羽口の浸漬深さを調整
しながら羽口より酸化性気体を吹き込むようにしたもの
である。The invention of claim 2 is the invention of claim 1, in which the furnace body of the refining furnace is provided with a tuyere that opens on the inner surface, and the furnace body is tilted according to the depth of the received molten copper to open the tuyere. Oxidizing gas is blown into the tuyere while adjusting the immersion depth.
また、第3請求項の発明は、上記の酸化工程の酸化剤と
して酸素を富化した空気を用いるようにしたものである
。酸素の富化率は25〜35vo1%が好適である。Further, the invention according to claim 3 uses oxygen-enriched air as the oxidizing agent in the above-mentioned oxidation step. The oxygen enrichment rate is preferably 25 to 35 vol%.
[作用]
第1請求項の発明では、精製炉への溶銅の受け入れと並
行して、銅の酸化処理が行なわれる。酸化処理は、通常
、炉体に設けられた羽口から酸化剤として空気または酸
化富化した空気を溶銅中に吹き込むことにより行なわれ
るので、受け入れにより精製炉内の溶銅の深さが一定量
を越えた後に酸化を開始する方が良い。[Operation] In the invention of the first claim, the oxidation treatment of the copper is performed in parallel with the reception of the molten copper into the refining furnace. Oxidation treatment is usually performed by blowing air or oxidized enriched air as an oxidizing agent into the molten copper through tuyeres installed in the furnace body, so the depth of the molten copper in the refining furnace is kept constant by receiving it. It is better to start oxidation after exceeding the amount.
第2請求項の発明では、羽口の開口位置が溶銅表面より
下に来るように、溶銅深さに応じて炉体を傾動させなが
ら酸化性気体が羽口より溶銅中に吹き込まれる。羽口か
ら吹き込まれた酸化性気体は、溶銅中を溶銅の表面にほ
ぼ平行に吹き込まれ、溶銅と充分に反応するとともに、
溶銅を過度に撹拌することなく安定な反応を行わせる。In the invention of the second claim, the oxidizing gas is blown into the molten copper from the tuyere while tilting the furnace body according to the depth of the molten copper so that the opening position of the tuyere is below the surface of the molten copper. . The oxidizing gas blown through the tuyere is blown into the molten copper almost parallel to the surface of the molten copper, reacts sufficiently with the molten copper, and
To perform a stable reaction without excessively stirring molten copper.
これによリ、溶銅量が少ないときから酸化処理が可能で
あり、また、常に吹き込まれる空気の反応効率が高い状
態で酸化処理がなされる。As a result, oxidation treatment can be performed even when the amount of molten copper is small, and the oxidation treatment can be performed in a state where the reaction efficiency of the blown air is always high.
第3請求項の発明では、酸素を富化した空気を酸化剤と
して用いることにより、反応の熱バランスや酸化反応効
率か状況に応じて制御される。In the third aspect of the invention, by using oxygen-enriched air as an oxidizing agent, the heat balance of the reaction and the oxidation reaction efficiency are controlled depending on the situation.
[実施例]
第1図は、本発明の方法を行うための装置の一実施例を
示すものであり、第11図と同じ部分には同一の符号を
配して説明を省略する。[Embodiment] FIG. 1 shows an embodiment of an apparatus for carrying out the method of the present invention, and the same parts as in FIG. 11 are denoted by the same reference numerals, and a description thereof will be omitted.
製鋼炉3と精製炉4とは溶湯流路である樋IIにより接
続されており、製鋼炉3で生成された粗銅Cは、この樋
11を通って精製炉4に流下する。The steelmaking furnace 3 and the refining furnace 4 are connected by a gutter II, which is a molten metal flow path, and the blister copper C produced in the steelmaking furnace 3 flows down into the refining furnace 4 through the gutter 11.
精製炉4は2基設けられており、これらは互いに並列に
配置されている。樋11は、中途部に設けられた分岐点
を経て2流路に分岐するもので、主樋11Aとこれから
分岐してそれぞれが精製炉4゜4に接続された二つの分
岐樋11B、11B とから成っている。この分岐樋
11Bと主樋11Aとの接続箇所近傍は底部がやや浅く
なっており、この部分にキャスタブルまたは塊状の耐火
物を落とし込むことによって、一方の分岐樋11Bへの
溶湯の流れを遮断し、他方の分岐樋11Bへと溶湯を流
下せしめる溶湯流路の切換装置12をなしている。なお
、これらの樋は、他の炉をつなぐ樋7A、7 B も
含めて、上部に蓋等が設置されており、必要箇所にバー
ナーなどの保温装置や、雰囲気調整のための設備が備え
られており、これによって樋内を流下する溶湯は比較的
高い密閉状態に維持されるようになっている。Two refining furnaces 4 are provided, and these are arranged in parallel to each other. The gutter 11 branches into two channels through a branch point provided in the middle, a main gutter 11A, and two branch gutter 11B, 11B branched from this and each connected to the refining furnace 4°4. It consists of The bottom near the connection point between the branch gutter 11B and the main gutter 11A is slightly shallow, and by dropping castable or lump-like refractories into this part, the flow of molten metal to the one branch gutter 11B is blocked. It constitutes a switching device 12 for a molten metal flow path that causes the molten metal to flow down to the other branch gutter 11B. These gutters, including gutters 7A and 7B that connect other furnaces, have lids installed on top, and are equipped with heat retention devices such as burners and equipment for atmosphere adjustment where necessary. This allows the molten metal flowing down the gutter to be maintained in a relatively highly sealed state.
精製炉4は、第2図ないし第4図に示すように、両端部
の鏡板21aと胴部21bとからなる閉塞された円筒状
の炉体21を有するものであり、その胴部21bに設け
られたガイドリング22.22に接する複数の支持輪2
3・・・により、軸線を水平にして軸線まわりに回動自
在に支持され、炉体21の一端側に設置された傾動歯車
24と、この傾動歯車24に接続される駆動装置25に
よって傾動されるようになっている。また、この炉体2
1の一方の鏡板21aには炉体21内に向って炉内の溶
湯温度を保持するバーナー26が設置されており、胴部
21bには炉内に空気または酸素富化空気や還元剤を供
給するための羽口27,27 七精製された銅をアノ
ードに鋳込む際の出湯口28がそれぞれ対向する側に設
置されている。さらに、この精製炉4の胴部21bの上
側はぼ中央には、アノード屑などの塊状物を炉内に装入
するための装入口29が設(jられている。また、胴部
211)のバーナー26とは反対側の端部上側には、第
4図に示すように、炉の通常位置における頂点から出湯
口28側に向けて周方向に沿って長円状に延びて開口す
る煙道口30が形成されている。As shown in FIGS. 2 to 4, the refining furnace 4 has a closed cylindrical furnace body 21 consisting of end plates 21a at both ends and a body 21b. A plurality of support wheels 2 in contact with the guide rings 22 and 22
3... is supported rotatably around the axis with its axis horizontal, and is tilted by a tilting gear 24 installed on one end side of the furnace body 21 and a drive device 25 connected to this tilting gear 24. It has become so. In addition, this furnace body 2
A burner 26 is installed on one end plate 21a of the furnace body 21 to maintain the temperature of the molten metal in the furnace, and the body 21b is equipped with a burner 26 for supplying air or oxygen-enriched air or a reducing agent into the furnace. Tuyeres 27, 27 for pouring the refined copper into the anode are installed on opposite sides. Furthermore, a charging port 29 for charging lumps such as anode waste into the furnace is provided at the upper center of the body 21b of the refining furnace 4. As shown in FIG. 4, on the upper side of the end opposite to the burner 26, there is a smoke opening extending in an oval shape along the circumferential direction from the apex at the normal position of the furnace toward the tap outlet 28 side. A road entrance 30 is formed.
この煙道口30を覆うように排気ダクトの末端のカバー
31が開口して設けられている。これは、第5図に示す
ように、炉体21の傾動の範囲において煙道口30の全
部を覆うような角度で開口している。そして、粗銅Cの
流下する溶湯流路である樋11Bがカバー31の側面よ
り挿入され、その端部11Cを上記煙道口の上方に臨ま
せて位置させている。この端部樋11Gは、カバー31
と同様に水冷ジャケット構造となっている。A cover 31 at the end of the exhaust duct is open and provided to cover the flue port 30. As shown in FIG. 5, this is opened at an angle that covers the entire flue opening 30 within the tilting range of the furnace body 21. A gutter 11B, which is a molten metal flow path through which the blister copper C flows down, is inserted from the side surface of the cover 31, and its end portion 11C is positioned facing above the flue opening. This end gutter 11G has a cover 31
It also has a water-cooled jacket structure.
上記のような構成の製錬装置においては、溶錬炉1、分
離炉2および製銅炉3からなる連続製銅設備により溶融
粗銅Cが連続的に製造され、製鋼炉3から樋+1Aを流
下し、分岐樋11の切換装置12によって樋11B、1
1B のいずれか一方に流下して端部11Cから煙道口
30より精製炉4に受け入れられる。In the smelting equipment configured as described above, molten blister copper C is continuously produced by continuous copper making equipment consisting of a smelting furnace 1, a separation furnace 2, and a copper making furnace 3, and flows down from the steel making furnace 3 through a gutter +1A. Then, by the switching device 12 of the branch gutter 11, the gutter 11B, 1
1B and is received into the refining furnace 4 through the flue opening 30 from the end 11C.
通常の受け入れは、炉体21を直立させて第6図に示す
状態で行なわれ、粗銅Cの受け入れが終了した後、駆動
装置25によって炉体21を傾動し、第7図に示すよう
に羽口27.27 が溶湯面より下に来るような傾転
状態にする。この状態で、炉体21内に羽口27.27
から、まず空気あるいは酸素富化空気等を供給して粗
銅Cを所定の時間酸化させ、鋼中の硫黄濃度を目標値に
近付ける。Normal reception is carried out with the furnace body 21 standing upright as shown in FIG. Tilt it so that the opening 27.27 is below the molten metal surface. In this state, the tuyere 27.27 is placed inside the furnace body 21.
First, air or oxygen-enriched air is supplied to oxidize the blister copper C for a predetermined period of time to bring the sulfur concentration in the steel closer to the target value.
さらに炭化水素と空気との混合体を主成分とする還元剤
を供給して還元処理を行い、鋼中の酸素濃度を所定の値
に近付ける。なお、この際発生する排煙ガスは煙道口3
0、カバー31を介して排気ダクトに回収され、処理さ
れる。また、カラミSは装入口29より排出される。Further, a reducing agent mainly composed of a mixture of hydrocarbons and air is supplied to perform a reduction treatment, and bring the oxygen concentration in the steel close to a predetermined value. In addition, the flue gas generated at this time is from the flue port 3.
0, is collected into the exhaust duct via the cover 31 and processed. Further, the karami S is discharged from the charging port 29.
こうして炉内の粗銅Cは精製されて、より銅品位の高い
精製鋼になると、再び駆動装置25を作動して炉体21
をさらに傾動し、第8図に示すような傾転状態にして、
出湯口28より溶銅をrlt出して中間取鍋を介してア
ノード鋳型に注ぎ込み、陽極板(アノード)に鋳造して
電解処理工程へと移送する。In this way, when the blister copper C in the furnace is refined and becomes refined steel with higher copper quality, the drive device 25 is operated again to move the furnace body 21.
Tilt further to bring it into the tilted state shown in Figure 8,
Molten copper is discharged from the tap 28 and poured into an anode mold through an intermediate ladle, cast into an anode plate, and transferred to an electrolytic treatment process.
精製炉4は2基設けられており、製鋼炉3で生成された
粗銅Cは、溶湯流路である分岐樋11に設けられた切換
装置12によって、これら2基の精製炉4.4 の一方
に択一的に流下せしめられる。Two refining furnaces 4 are provided, and the blister copper C produced in the steelmaking furnace 3 is transferred to one of these two refining furnaces 4. It is forced to flow down selectively.
一方の精製炉4に粗銅Cが受け入れられている間、他方
の精製炉4では受け入れられた粗銅Cを酸化、還元して
精製し、アノードとして鋳造する作業を並行して行って
いる。While one refining furnace 4 is receiving blister copper C, the other refining furnace 4 is oxidizing, reducing, refining, and casting the received blister copper C as an anode in parallel.
以下、2基の精製炉4によって粗銅を受(ジ入れ、酸化
、還元、鋳造する場合の精製方法について、第9図およ
び第10図を参照して説明する。Hereinafter, a refining method in which blister copper is received (injected, oxidized, reduced, and cast) using two refining furnaces 4 will be described with reference to FIGS. 9 and 10.
第9図に示すのは精製炉の処理能力と製鋼炉の処理能力
が等しいときの従来の方法の場合のものである。FIG. 9 shows the case of the conventional method when the processing capacity of the refining furnace and the processing capacity of the steelmaking furnace are equal.
一方の精製炉(1)で粗銅Cの受け入れが行なわれてい
る間、他方の精製炉(2)では前工程で受け入れられた
粗銅Cの酸化、還元、鋳造およびこれらに伴う付帯作業
が行なわれる。この例では、粗銅Cの酸化に2時間、還
元に2時間、および鋳造に4時間を要し、また、粗銅C
の酸化と還元の間には30分の羽口掃除が、還元と鋳造
の間には1時間の鋳造準備が、そして鋳造から次工程の
受け入れの間には30分の鋳造片付けが、それぞれ付帯
作業として行なわれる。すなわち、受け入れられた粗銅
を精製し、アノードとして鋳造して、次の粗銅を受け入
れる準備が整うまでには10時間を要し、これは受け入
れの時間と等しい。従って、精製炉4では鋳造および片
付けの後、次の受け入れ工程の間にほとんど待ち時間が
無い。While one refining furnace (1) is receiving blister copper C, the other refining furnace (2) is performing oxidation, reduction, and casting of the blister copper C received in the previous process, as well as associated operations. . In this example, it takes 2 hours to oxidize the blister copper C, 2 hours to reduce it, and 4 hours to cast the blister copper C.
30 minutes of tuyere cleaning between oxidation and reduction, 1 hour of casting preparation between reduction and casting, and 30 minutes of casting cleanup between casting and acceptance of the next process. It is done as a work. That is, it takes 10 hours to refine the received blister copper, cast it as an anode, and make it ready to accept the next blister copper, which is equal to the time of reception. Therefore, in the refining furnace 4, after casting and clearing, there is almost no waiting time between the next receiving steps.
第1O図の例は、製鋼炉の能力が精製炉の処理能力より
大きい場合の本発明の方法を示すもので、精製能力を上
げるために、受け入れ工程の終盤で、粗銅Cの受1′J
入れと並行して、炉内に受ζノ入れられた粗銅Cの酸化
が行なわれる。すなわち、この例では、製鋼炉から精製
炉への受け入れは85時間で行なわれるのに対し、酸化
から鋳造片イ」けまての作業は10時間を要するので、
受け入れ工程と酸化工程を重複させることによりその時
間を節約している。The example of FIG.
In parallel with the charging, the blister copper C received in the furnace is oxidized. In other words, in this example, it takes 85 hours to receive the steel from the steelmaking furnace to the refining furnace, but the process from oxidation to the casting piece takes 10 hours.
The time is saved by duplicating the receiving and oxidation steps.
この受け入れ酸化は、駆動装置25によって炉体21を
第6図の位置から第7図の位置に変えてから行なわれ、
精製炉(+)での粗銅Cの受fJ入れが終了した後も続
けられる。This receiving oxidation is performed after the furnace body 21 is changed from the position shown in FIG. 6 to the position shown in FIG. 7 by the drive device 25.
This process continues even after the receiving fJ of blister copper C in the refining furnace (+) is completed.
このようにすれば、受け入れと酸化とが並行して行なわ
れ、そのオーバーラツプした時間だc′J1粗銅の精製
時間が短縮されるから、精製炉自体の処理能力の向−1
−が図られ、前工程の製錬能力が向」ニジた場合に、こ
れに対応して設備全体の生産速度を高めることが可能と
なる。In this way, receiving and oxidation are carried out in parallel, and the overlapping time for refining c'J1 blister copper is shortened, which improves the throughput of the refining furnace itself.
- is achieved and the smelting capacity of the previous process improves, it becomes possible to correspondingly increase the production speed of the entire facility.
なお、これらの第9図ないし第1O図に示したタイムテ
ーブルは精製炉の操業サイクルの一例であり、精製炉の
数や容量、精製能力、および各工程の処理時間等の変化
に応じて適宜のものが選択されるべきである。The timetables shown in Figures 9 to 1O are examples of the operating cycles of refining furnaces, and may be changed as appropriate depending on changes in the number and capacity of refining furnaces, refining capacity, processing time of each process, etc. should be selected.
また、第1O図の場合における粗銅の受け入れと酸化処
理とのオーバーラツプする時間についても、粗銅の生成
速度や精製炉の酸化処理能力等を検討した上で、適当に
設定されるべきである。Furthermore, the overlapping time between receiving blister copper and oxidation treatment in the case of Figure 1O should be appropriately set after considering the blister production rate, the oxidation treatment capacity of the refining furnace, etc.
[発明の効果]
第1請求項の発明は、溶銅を精製炉に受け入れる工程と
、精製炉内で溶銅を酸化処理する工程と、精製炉内で溶
銅を還元処理する工程と、この還元処理が終了した溶銅
を精製炉より排出する工程からなる銅の精製方法におい
て、受け入れ工程と酸化処理工程とをその少なくとも一
部を重複させて行うようにしたものであるので、重複す
る時間だけ精製炉の処理時間を早く終わらせることがで
きるから、結果的に精製炉の処理能力を向上させること
ができる。そして、予め処理能力が決められた装置にお
いて前工程の変動に対して、よりフレキシブルに対応で
きるから、保温炉をなくして製銅炉を精製炉と直結した
ようなシステムにおいても装置全体の安定操業の推進に
寄与するものである。[Effect of the invention] The invention of the first claim includes a step of receiving molten copper into a refining furnace, a step of oxidizing the molten copper in the refining furnace, a step of reducing the molten copper in the refining furnace, and a step of receiving the molten copper into a refining furnace. In a copper refining method consisting of a step of discharging molten copper that has undergone reduction treatment from a refining furnace, the receiving step and oxidation treatment step are performed at least partially overlapping each other, so that the overlapping time is Since the processing time of the refining furnace can be ended quickly, the processing capacity of the refining furnace can be improved as a result. In addition, since equipment with a predetermined processing capacity can more flexibly respond to fluctuations in the previous process, stable operation of the entire equipment can be achieved even in systems where the copper-making furnace is directly connected to the refining furnace without the need for a heat-retaining furnace. This will contribute to the promotion of
第2請求項の発明は、精製炉の炉体に内面に開口する羽
口を設け、受(プ入れた溶銅の深さに応じて炉体を傾動
させて羽1コの浸漬深さを調整しながら羽口より酸化性
気体を吹き込むようにしたものであるので、酸化性気体
は、溶銅中に溶銅と充分に反応するような方向に吹き込
むことが可能であり、これにより、溶銅量が少ないとき
から、常に吹き込まれる空気の反応効率が高い状態で酸
化処理を行うことができる。The invention of claim 2 provides a refining furnace with a tuyere that opens on the inner surface, and tilts the furnace body according to the depth of the molten copper put into the refining furnace to adjust the immersion depth of one blade. Since the oxidizing gas is blown into the tuyeres while being adjusted, the oxidizing gas can be blown into the molten copper in a direction where it fully reacts with the molten copper. Even when the amount of copper is small, oxidation treatment can be performed in a state where the reaction efficiency of the air constantly blown is high.
第3請求項の発明では、酸素を富化した空気を酸化剤と
して用いることにより、反応の熱バランスや酸化反応効
率が状況に応じて制御され、またより効率的に反応が進
行するから生産能率を向」ニさせることができる。In the invention of claim 3, by using oxygen-enriched air as an oxidizing agent, the heat balance of the reaction and the oxidation reaction efficiency are controlled depending on the situation, and the reaction proceeds more efficiently, thereby increasing production efficiency. It is possible to direct the
第1図は本発明の方法の実施に好適な連続製銅設備の概
要を示す平面図、第2図ないし第5図はこのような製鋼
設備に用いられる精製炉を示す図、第6図ないし第8図
は、このような精製炉における粗銅の受け入れ、酸化、
還元、およびアノードの鋳造での傾転状態を示す断面図
、第9図はこのような精製炉における操業の一例を表す
タイムテーブル、第10図は本発明の方法を示すタイム
テーブル、第11図は、従来の銅の製錬装置の一例を示
す断面図である。
■・・・溶錬炉、
2・・・分離炉、
3・・・製鋼炉、
4・・・精製炉、
5・・・ランス、6・・電極、
7A、7B・・・樋、
8・・・保温炉、
9・・・し−ドル、IO・・・クレーン、11・・・分
岐樋、
11A、IIB・・樋、llC・・・排出口、12・・
・切換装置、
21・・炉体、
21a・・・鏡板、21b・・胴部、
22・・・ガイドリング、
23 ・支持輪、24・・傾転歯車、
25・・・駆動装置、26・・・バーナー、27・・・
羽口、28・・出湯口、29・・装入口、30・煙道口
、31・・・カバー、
M・・・カワ、S・カラミ、C・・・粗銅。FIG. 1 is a plan view showing an overview of continuous copper manufacturing equipment suitable for carrying out the method of the present invention, FIGS. 2 to 5 are diagrams showing refining furnaces used in such steel manufacturing equipment, and FIGS. Figure 8 shows the reception, oxidation, and oxidation of blister copper in such a refining furnace.
A sectional view showing the tilting state during reduction and anode casting, FIG. 9 is a timetable showing an example of operation in such a refining furnace, FIG. 10 is a timetable showing the method of the present invention, and FIG. 11 1 is a sectional view showing an example of a conventional copper smelting apparatus. ■... Smelting furnace, 2... Separation furnace, 3... Steel making furnace, 4... Refining furnace, 5... Lance, 6... Electrode, 7A, 7B... Gutter, 8...・・Heating furnace, 9・・Dollar, IO・・Crane, 11・・Branch gutter, 11A, IIB・・Gutter, 11C・・Discharge port, 12・・・
- Switching device, 21... Furnace body, 21a... End plate, 21b... Body, 22... Guide ring, 23 - Support wheel, 24... Tilting gear, 25... Drive device, 26... ...Burner, 27...
Tuyere, 28...Tue spout, 29...Charging port, 30...Flue opening, 31...Cover, M...Kawa, S...Karami, C...Blunt copper.
Claims (3)
銅を酸化処理する工程と、精製炉内で溶銅を還元処理す
る工程と、この還元処理が終了した溶銅を精製炉より排
出する工程からなる銅の精製方法において、 上記受け入れ工程と酸化処理工程とを、少なくともその
一部を重複させて行うことを特徴とする銅の精製方法。(1) A process of receiving molten copper into a refining furnace, a process of oxidizing the molten copper in the refining furnace, a process of reducing the molten copper in the refining furnace, and transferring the molten copper after the reduction process to the refining furnace. A copper refining method comprising a step of discharging copper, characterized in that the receiving step and the oxidation treatment step are performed at least partially overlappingly.
設けられ、受け入れた溶銅の深さに応じて炉体を傾動さ
せて羽口の浸漬深さを調整しながら羽口より酸化性気体
を吹き込むことを特徴とする請求項1に記載の銅の精製
方法。(2) The furnace body of the above-mentioned refining furnace is provided with a tuyere that opens on its inner surface, and the tuyere The method for refining copper according to claim 1, characterized in that a more oxidizing gas is blown into the copper.
酸化処理を行うことを特徴とする請求項1または2に記
載の銅の精製方法。(3) The method for refining copper according to claim 1 or 2, characterized in that the oxidation treatment is carried out by blowing oxygen-enriched air into the molten copper.
Priority Applications (39)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2314675A JP3013437B2 (en) | 1990-11-20 | 1990-11-20 | Copper purification method |
MYPI91002125A MY110307A (en) | 1990-11-20 | 1991-11-18 | Apparatus for continuous copper smelting |
FI915454A FI101813B (en) | 1990-11-20 | 1991-11-19 | Method for smelting copper |
SU915010366A RU2092599C1 (en) | 1990-11-20 | 1991-11-19 | Plant for continuously melting copper |
EP94119082A EP0648849B2 (en) | 1990-11-20 | 1991-11-19 | Copper refining furnace |
DE69124665T DE69124665T2 (en) | 1990-11-20 | 1991-11-19 | Process for the continuous melting of copper |
BG95501A BG60276B2 (en) | 1990-11-20 | 1991-11-19 | Method for continuous melting of copper |
RO148788A RO109560B1 (en) | 1990-11-20 | 1991-11-19 | Pyro metallurgic continuous process for the copper separation from sulphurous concentrates |
CA002055842A CA2055842C (en) | 1990-11-20 | 1991-11-19 | Process for continuous copper smelting |
PT99546A PT99546B (en) | 1990-11-20 | 1991-11-19 | COPPER EXTRACTION SYSTEM FOR CONTINUOUS FUSION |
AU88008/91A AU641572B2 (en) | 1990-11-20 | 1991-11-19 | Apparatus for continuous copper smelting |
PL91292446A PL169695B1 (en) | 1990-11-20 | 1991-11-19 | Continuous copper smelting process |
PL91292445A PL168577B1 (en) | 1990-11-20 | 1991-11-19 | Continuous copper smelting apparatus |
EP91119730A EP0487032B1 (en) | 1990-11-20 | 1991-11-19 | Apparatus for continuous copper smelting |
BR919105022A BR9105022A (en) | 1990-11-20 | 1991-11-19 | COPPER CONTINUOUS FUSION PROCESS |
MX9102132A MX9102132A (en) | 1990-11-20 | 1991-11-19 | PROCESS FOR THE CONTINUOUS COPPER MELTING. |
CA002055841A CA2055841C (en) | 1990-11-20 | 1991-11-19 | Apparatus for continuous copper smelting |
RO148789A RO109561B1 (en) | 1990-11-20 | 1991-11-19 | Copper continuous melting apparatus |
BG095500A BG60327B2 (en) | 1990-11-20 | 1991-11-19 | Continuous copper melting plant |
BR919105021A BR9105021A (en) | 1990-11-20 | 1991-11-19 | APPLIANCE FOR CONTINUOUS COPPER FUSION |
DE69109061T DE69109061T2 (en) | 1990-11-20 | 1991-11-19 | Plant for the continuous melting of copper. |
EP91119729A EP0487031B1 (en) | 1990-11-20 | 1991-11-19 | Process for continuous copper smelting |
MYPI91002129A MY110479A (en) | 1990-11-20 | 1991-11-19 | Process for continuous copper smelting |
DE69132590T DE69132590T3 (en) | 1990-11-20 | 1991-11-19 | Refining furnace for copper |
FI915453A FI101812B (en) | 1990-11-20 | 1991-11-19 | Continuous copper smelting device |
PT99547A PT99547B (en) | 1990-11-20 | 1991-11-19 | COPPER EXTRACTION PROCESS FOR CONTINUOUS FUSION |
AU88006/91A AU647207B2 (en) | 1990-11-20 | 1991-11-19 | Process for continuous copper smelting |
SU915010324A RU2039106C1 (en) | 1990-11-20 | 1991-11-19 | Method for continuous copper smelting |
US07/797,116 US5205859A (en) | 1990-11-20 | 1991-11-20 | Apparatus for continuous copper smelting |
KR1019910020729A KR0150008B1 (en) | 1990-11-20 | 1991-11-20 | Apparatus for continuous copper smelting |
US07/795,335 US5217527A (en) | 1990-11-20 | 1991-11-20 | Process for continuous copper smelting |
KR1019910020730A KR0150009B1 (en) | 1990-11-20 | 1991-11-20 | Process for continuous copper smelting |
TW080110109A TW203103B (en) | 1990-11-20 | 1991-12-24 | |
US08/031,191 US5320799A (en) | 1990-11-20 | 1993-03-12 | Apparatus for continuous copper smelting |
US08/040,999 US5380353A (en) | 1990-11-20 | 1993-03-31 | Copper smelting apparatus |
US08/040,986 US5374298A (en) | 1990-11-20 | 1993-03-31 | Copper smelting process |
US08/056,780 US5320662A (en) | 1990-11-20 | 1993-05-04 | Process for continuous copper smelting |
US08/143,118 US5398915A (en) | 1990-11-20 | 1993-10-29 | Apparatus for continuous copper smelting |
FI974334A FI104382B (en) | 1990-11-20 | 1997-11-26 | Device for purifying blister copper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2314675A JP3013437B2 (en) | 1990-11-20 | 1990-11-20 | Copper purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04183831A true JPH04183831A (en) | 1992-06-30 |
JP3013437B2 JP3013437B2 (en) | 2000-02-28 |
Family
ID=18056196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2314675A Expired - Lifetime JP3013437B2 (en) | 1990-11-20 | 1990-11-20 | Copper purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3013437B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012502247A (en) * | 2008-09-05 | 2012-01-26 | シュトピンク・アクティーエンゲゼルシャフト | Copper anode furnace and operating method thereof |
-
1990
- 1990-11-20 JP JP2314675A patent/JP3013437B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012502247A (en) * | 2008-09-05 | 2012-01-26 | シュトピンク・アクティーエンゲゼルシャフト | Copper anode furnace and operating method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3013437B2 (en) | 2000-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2039106C1 (en) | Method for continuous copper smelting | |
FI75602B (en) | FOERFARANDE OCH ANORDNING FOER KONTINUERLIG KONVERTERING AV KOPPAR- OCH ICKE-JAERNMETALLSTENAR. | |
US5398915A (en) | Apparatus for continuous copper smelting | |
US7618582B2 (en) | Continuous steel production and apparatus | |
SU1669403A3 (en) | Continuous steelmaking unit | |
JP3237040B2 (en) | Copper smelting equipment | |
US5882578A (en) | Tilting metallurgical unit comprising several vessels | |
CN1062556A (en) | The method of continuous copper smelting | |
JPH04187729A (en) | Copper refining furnace | |
JPH04183831A (en) | Refining of copper | |
US5380353A (en) | Copper smelting apparatus | |
JPH04183827A (en) | Smelting device for copper | |
US5374298A (en) | Copper smelting process | |
JP3257674B2 (en) | Copper smelting equipment | |
FI104382B (en) | Device for purifying blister copper | |
US789133A (en) | Apparatus for distributing molten slag in blast-furnaces. | |
SU655881A1 (en) | Electric furnace for retreating slags | |
Jung | Recovery of Precious Metals from Lead Bullion | |
CZ20032954A3 (en) | Process for producing liquid steel from solid charge and apparatus for making the same | |
JPH01156415A (en) | Continuous steelmaking apparatus | |
JPH0630151U (en) | Copper refining furnace | |
JPS62294141A (en) | Horizontal converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |