JP3011885B2 - Manufacturing method of metal matrix composite material - Google Patents

Manufacturing method of metal matrix composite material

Info

Publication number
JP3011885B2
JP3011885B2 JP8135936A JP13593696A JP3011885B2 JP 3011885 B2 JP3011885 B2 JP 3011885B2 JP 8135936 A JP8135936 A JP 8135936A JP 13593696 A JP13593696 A JP 13593696A JP 3011885 B2 JP3011885 B2 JP 3011885B2
Authority
JP
Japan
Prior art keywords
reinforcing material
metal
metal material
reinforcing
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8135936A
Other languages
Japanese (ja)
Other versions
JPH09295122A (en
Inventor
毅 山口
之欣 附田
龍司 細工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP8135936A priority Critical patent/JP3011885B2/en
Publication of JPH09295122A publication Critical patent/JPH09295122A/en
Application granted granted Critical
Publication of JP3011885B2 publication Critical patent/JP3011885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Devices For Molds (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強化材がマトリッ
クス中に分散した金属基複合材料を射出成形により製造
する金属基複合材料の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal-based composite material in which a reinforcing material is dispersed in a matrix by injection molding.

【0002】[0002]

【従来の技術】金属片を半溶融もしくは溶融状態で射出
成形する方法は、金属を安全にネットシェイプ成形でき
るなどの利点の他に、スクリューによる撹拌効果を用い
て分散性に優れた金属基複合材料を容易に一体成形でき
るという利点を有している。ところで、上記金属基複合
材料を射出成形する場合には、金属片に強化材を均一に
分散させた状態で射出成形機に供給する必要がある。こ
の供給方法としては様々な方法が考えられるが、例え
ば、金属片とセラミックス粒子やウイスカなどの強化材
とを同時に射出成形機のホッパーより投入する方法や、
金属材と強化材とを混合して圧縮成形した後に押出成形
してペレット状にしたものを使用する方法(特開平6−
238422号)が挙げられる。これらの原料を半溶融
もしくは溶融状態で射出成形することによって強化材が
マトリックス中に分散した金属基複合材料を得ることが
できる。
2. Description of the Related Art A method of injection molding a metal piece in a semi-molten or molten state is not only advantageous in that the metal can be safely formed into a net shape, but also has excellent dispersibility using a screw stirring effect. This has the advantage that the material can be easily formed integrally. When the metal-based composite material is injection-molded, it is necessary to supply the metal-based composite material to the injection molding machine in a state where the reinforcing material is uniformly dispersed in the metal pieces. Various methods are conceivable as this supply method, for example, a method of simultaneously charging a metal piece and a reinforcing material such as ceramic particles or whiskers from a hopper of an injection molding machine,
A method in which a metal material and a reinforcing material are mixed, compression-molded, and then extruded to form a pellet (Japanese Patent Application Laid-Open No.
238422). By injection-molding these raw materials in a semi-molten or molten state, a metal-based composite material in which a reinforcing material is dispersed in a matrix can be obtained.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記原料の供
給方法のうち前者の方法では、一般に金属材と強化材の
大きさが異なる(通常は強化材が著しく小さい)ため、
ホッパー内もしくはシリンダ内の金属材未溶解部におい
て、金属材よりも小さい強化材が下部に集積してしま
う。これをスクリューによりフィードすると、溶解撹拌
されてもマトリックスと強化材とが完全に均一分散され
ないまま成形されたり、ショット毎に強化材の含有率が
違うといった現象を引き起こし、その結果、成形品の機
械的特性が悪化したり、ショット毎に機械的特性がばら
つくといった問題が生じる。
However, in the former method among the above-mentioned raw material supply methods, since the size of the metal material and the reinforcement is generally different (usually the reinforcement is extremely small),
In the unmelted portion of the metal material in the hopper or the cylinder, a reinforcing material smaller than the metal material accumulates at the lower portion. When this is fed by a screw, the matrix and the reinforcing material are not completely and uniformly dispersed even when dissolved and agitated, causing a phenomenon that the reinforcing material content is different for each shot, and as a result, the machine of the molded product is caused. However, there arises a problem that the mechanical characteristics deteriorate and the mechanical characteristics vary from shot to shot.

【0004】一方、上記原料の供給方法のうち、特開平
6−238422号に記載された後者の方法では、予め
分散性に優れた原料を用いるため、成形品の強化材の分
散性や含有率のばらつきの問題は小さい。しかし、原料
作製時に材料の混合、圧縮成形、押出成形(加熱)とい
ったプロセスが必要になるため製造工程の増加により製
造コストが上がるという問題がある。また、原料作製時
にマトリックス金属材と強化材とを加熱するため、強化
材とマトリックスとが反応してしまい、成形品の機械的
特性を低下させるという問題もある。
[0004] On the other hand, among the above-mentioned raw material supply methods, in the latter method described in JP-A-6-238422, since a raw material excellent in dispersibility is used in advance, the dispersibility and the content of the reinforcing material in the molded article are reduced. The problem of variation is small. However, there is a problem that processes such as mixing of materials, compression molding, and extrusion molding (heating) are required at the time of raw material production, so that the production cost increases due to an increase in the number of production steps. In addition, since the matrix metal material and the reinforcing material are heated during the production of the raw material, the reinforcing material and the matrix react with each other, and there is a problem that the mechanical properties of the molded product are reduced.

【0005】この他に、MIM(金属粉末射出成形)の
ように有機系のバインダを使用して金属粉末と強化材粒
子とを造粒する方法も考えられるが、バインダが不純物
として含まれてしまうため採用は困難である。すなわ
ち、従来、金属基複合材料を射出成形する際に、強化材
をマトリックス金属材に均一分散させ、これを低コスト
で原料として供給できる有効な方法は見出されていな
い。本発明は、上記事情を背景としてなされたものであ
り、マトリックス金属材と強化材とを均一に分散させた
原料を射出成形機に供給して強化材がマトリックス中に
均一に分散した良好な成形品を低コストで得ることがで
きる金属基複合材料の製造方法を提供することを目的と
する。
[0005] In addition, a method of granulating the metal powder and the reinforcing particles using an organic binder such as MIM (metal powder injection molding) can be considered, but the binder is included as an impurity. Therefore, adoption is difficult. That is, conventionally, when injection-molding a metal matrix composite material, no effective method has been found which can uniformly disperse a reinforcing material in a matrix metal material and supply it as a raw material at low cost. The present invention has been made in view of the above circumstances, and supplies a raw material in which a matrix metal material and a reinforcing material are uniformly dispersed to an injection molding machine so that the reinforcing material is uniformly dispersed in a matrix. It is an object of the present invention to provide a method for producing a metal-based composite material that can obtain a product at low cost.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明の金属基複合材料の製造方法は、小片状また
は粒状のマトリックス金属材と強化材とをボールミル機
により混合してマトリックス金属材に強化材を付着させ
た後、この混合物をふるいにかけて所定寸法以上のもの
を分別し、これを原料に用いて半溶融もしくは溶融状態
にて射出成形することを特徴とする。
In order to solve the above-mentioned problems, a method for producing a metal matrix composite material according to the present invention comprises mixing a small or granular matrix metal material and a reinforcing material with a ball mill to form a matrix metal material. After adhering the reinforcing material to the material, the mixture is sieved to separate those having a predetermined size or more, and the mixture is used as a raw material and injection molded in a semi-molten or molten state.

【0007】第2の発明は、第1の発明において、マト
リックス金属材と強化材とをボールミル機で混合する際
に、金属材と強化材との濡れをよくする補助材を添加す
ることを特徴とする。第3の発明は、第1または第2の
発明において、マトリックス金属材がボールミル機によ
る混合後に1mm以上の大きさを有していることを特徴
とする。
The second invention is characterized in that, in the first invention, when mixing the matrix metal material and the reinforcing material with a ball mill, an auxiliary material for improving the wettability between the metal material and the reinforcing material is added. And A third invention is characterized in that in the first or second invention, the matrix metal material has a size of 1 mm or more after mixing by a ball mill.

【0008】なお、本発明に用いられる、マトリックス
金属材や強化材の種別は、特に限定されるものではな
く、適宜選定される。例えば、金属材としては、Mg,
Al,Zn等が挙げられ、強化材としては、Al23
SiC,MgO等のセラミックス粒子が挙げられる。な
お、上記金属材および強化材には小片状または粒状のも
のが用いられるが、その詳細な形状が特に限定されるも
のではない。ただし、金属材の大きさは、1mm以上が
望ましく、4mm以下が望ましい。これは、1mm未満
の微細な金属材を用いると、ホッパー内で架橋現象が起
き原料が送られなくなったり、取り扱いが困難になるた
めであり、また、4mmを越えると、溶融困難になる
し、切削加工による作製も困難となるためである。また
Mgのように燃えやすい金属材は、危険物にも指定され
ており、微細になるほど取り扱いが困難になる。
The types of the matrix metal material and the reinforcing material used in the present invention are not particularly limited, and are appropriately selected. For example, as a metal material, Mg,
Al, Zn and the like are listed, and as the reinforcing material, Al 2 O 3 ,
Ceramic particles such as SiC and MgO are exemplified. In addition, a small piece or a granular material is used as the metal material and the reinforcing material, but their detailed shapes are not particularly limited. However, the size of the metal material is desirably 1 mm or more and desirably 4 mm or less. This is because when a fine metal material of less than 1 mm is used, a cross-linking phenomenon occurs in the hopper and the raw material is not sent or handling becomes difficult, and when it exceeds 4 mm, melting becomes difficult, This is because production by cutting becomes difficult. A flammable metal material such as Mg is also designated as a dangerous material, and the finer the material, the more difficult it is to handle.

【0009】なお、上記金属材は、全てが上記範囲を満
たしていれば最適ではあるが、実質的に上記範囲内の大
きさを有していればよく、例えば微細なものが僅かに混
入しているものなどを排除するものではない。また、強
化材としては、マトリックス中に微細に均一に分散させ
るという点から、寸法の小さいものが望ましく、1mm
以下、さらには、10μm以下のものが望ましい。な
お、上記マトリックス金属材および強化材の大きさは、
小片状のものにあっては、その長さをいい、粒状のもの
にあっては粒径をいう。
The above-mentioned metal material is optimal as long as it satisfies the above-mentioned range. However, it is sufficient that the metal material has a size substantially within the above-mentioned range. It does not exclude what is being done. Further, as the reinforcing material, a material having a small size is preferable from the viewpoint of fine and uniform dispersion in the matrix, and 1 mm
Hereinafter, it is more preferable that the thickness be 10 μm or less. In addition, the size of the matrix metal material and the reinforcing material,
In the case of small pieces, it refers to the length, and in the case of granular ones, it refers to the particle size.

【0010】また、上記した金属材と強化材との混合比
も特に限定されるものではなく、金属材、強化材の種別
や成形品の用途等に基づいて適宜選定される。また、金
属材への強化材の付着効率によっても異なってくる。さ
らに、上記した金属材と強化材には、両者の濡れをよく
するために補助材を添加混合することも可能であり、例
えば、SiO2,TiO2等を使用することができる。こ
の補助材は、射出成形に際して溶融、合金化されるた
め、不純物となることはなく、成形品の特性に悪影響を
与えない。
The mixing ratio between the metal material and the reinforcing material is not particularly limited, and is appropriately selected based on the type of the metal material and the reinforcing material, the use of the molded product, and the like. It also depends on the adhesion efficiency of the reinforcing material to the metal material. Further, an auxiliary material can be added to and mixed with the above-described metal material and the reinforcing material in order to improve the wetting of both, and for example, SiO 2 , TiO 2, or the like can be used. Since this auxiliary material is melted and alloyed at the time of injection molding, it does not become an impurity and does not adversely affect the characteristics of the molded product.

【0011】上記金属材と強化材またはこれに補助材を
加えて混合するボールミル機は、一般には収容物を粉砕
するために用いるが、本発明では金属材の粉砕を目的と
せず、金属材に強化材を付着させることを目的とする。
この付着形態は金属材に強化材が圧着した状態といえ
る。ただし、金属材の粉砕が伴う場合を排除するもので
はなく、その場合には金属材の大きさをある程度に保つ
ことを考慮した操業(回転時間や回転数等)がなされ
る。したがって、大幅な粉砕を伴う、ボールミルを用い
た機械的合金化法等とは本質的に目的および内容が異な
る。上記混合後における金属材の大きさは、上記した原
料としての金属材の望ましい大きさと同じく、1mm以
上であるのが望ましい。なお、この金属材の破砕程度
は、ボールミル機の操業時間すなわち回転時間を調整す
ることによって容易に達成される。金属材の破砕程度は
回転時間を短くする程緩和されるが、金属材への強化材
の付着量も低下するため、これらを勘案して回転時間を
定める。
The above-described ball mill, which mixes a metal material with a reinforcing material or an auxiliary material and adds it, is generally used to pulverize the contents, but the present invention does not aim at pulverizing the metal material, The purpose is to adhere the reinforcement.
This form of attachment can be said to be a state in which the reinforcing material is pressed against the metal material. However, this does not exclude the case in which the metal material is crushed. In such a case, operations (rotation time, rotation speed, etc.) are performed in consideration of keeping the size of the metal material to some extent. Therefore, the purpose and the contents are essentially different from those of a mechanical alloying method using a ball mill, which involves significant pulverization. The size of the metal material after the mixing is desirably 1 mm or more, similar to the desired size of the metal material as the raw material described above. The degree of crushing of the metal material can be easily achieved by adjusting the operation time, that is, the rotation time of the ball mill. Although the degree of crushing of the metal material is alleviated as the rotation time is shortened, the amount of the reinforcing material adhering to the metal material also decreases. Therefore, the rotation time is determined in consideration of these factors.

【0012】上記ボールミル機により金属材と強化材と
を混合撹拌し、これをふるいにかけて所定寸法未満のも
のを除去すれば、射出成形に適した寸法の原料が得られ
る。なお、ふるいの寸法は、分別したい、強化材が付着
した金属材の大きさに応じて定められるが、金属材とし
て望ましい1mm以上の大きさに合わせてふるいの目を
1mm未満とするのが望ましい。なお、ふるいの方法等
が特に限定されるものではなく、要は、所定寸法以上の
ものを分別できるものであればよい。
A metal material and a reinforcing material are mixed and stirred by the above-mentioned ball mill, and the mixture is sieved to remove materials smaller than a predetermined size, whereby a raw material having a size suitable for injection molding can be obtained. In addition, the size of the sieve is determined according to the size of the metal material to which the reinforcing material is to be separated, and it is preferable that the size of the sieve is less than 1 mm in accordance with the size of 1 mm or more that is desirable as the metal material. . The sieving method and the like are not particularly limited, and the sieving method is not particularly limited as long as the sieving method can be used to separate materials having a predetermined size or more.

【0013】上記ふるいの結果、得られた原料は強化材
が金属材に付着しており、ミクロ的には均一分散してい
ないもののマクロ的には強化材が均一分散した状態にあ
る。これを原料として射出成形機に投入すれば、スクリ
ューにより金属材と強化材とが安定して定量供給され、
マクロ的な均一分散と溶融後の撹拌によるミクロ的な分
散の形成とが併せられて、成形品中の強化材が均一分散
されることになる。
As a result of the above-mentioned sieving, the obtained raw material has the reinforcing material attached to the metal material and is not uniformly dispersed in a microscopic manner, but is in a state of being uniformly dispersed in a macroscopic manner. If this is put into an injection molding machine as a raw material, the metal material and the reinforcing material are supplied stably and quantitatively by the screw,
The macroscopic uniform dispersion and the formation of the microscopic dispersion by stirring after melting are combined, so that the reinforcing material in the molded article is uniformly dispersed.

【0014】また、ボールミル時の金属材と強化材の混
合比や混合時間を調整することで強化材の付着量をコン
トロールできるため、成形品における強化材の含有率を
容易に調整することができる。しかも付着させるだけで
足りるので短時間の混合ですみ、長時間の強撹拌や圧縮
および押出成形など他の造粒方法と比べてコストも低く
抑えることができる。また、強化材とマトリックスの濡
れ性を改善する化合物を強化材と共にボールミルを使っ
て金属材に付着させれば、マトリックスが半溶融もしく
は溶融したときに強化材と良好に濡れて複合化が容易と
なるほか、成形品の機械的特性も向上する。
Further, since the amount of the reinforcing material attached can be controlled by adjusting the mixing ratio and the mixing time of the metal material and the reinforcing material during ball milling, the content of the reinforcing material in the molded product can be easily adjusted. . In addition, only a short time mixing is required because only adhesion is required, and costs can be reduced compared to other granulation methods such as long-time strong stirring, compression and extrusion. In addition, if a compound that improves the wettability between the reinforcement and the matrix is attached to the metal using a ball mill together with the reinforcement, the matrix can be wetted well with the reinforcement when it is semi-molten or melted, making it easy to form a composite. In addition, the mechanical properties of the molded article are improved.

【0015】[0015]

【発明の実施形態】図1に本発明の一実施形態における
プロセスの概念図を示す。常法により製造された小片状
の金属材1(1〜4mm大)と粒状の強化材2(1mm
以下)とをそれぞれ用意し、ボールミル用のアルミナポ
ット3にアルミナボール4を入れ、これに上記金属材1
と強化材2とを所定量を加えて密閉し、回転ボールミル
機5にセットした後、一定時間混合させる。このボール
ミル機5の回転により強化材2は、金属材1の周囲に付
着し、マクロ的に強化材2を金属材1に分散させること
ができる。
FIG. 1 is a conceptual diagram of a process according to an embodiment of the present invention. A small metal material 1 (1 to 4 mm larger) and a granular reinforcing material 2 (1 mm
The following are prepared, and alumina balls 4 are put into an alumina pot 3 for a ball mill.
And a reinforcing material 2 are added in a predetermined amount and sealed, and set in a rotary ball mill 5, and then mixed for a predetermined time. The rotation of the ball mill 5 causes the reinforcing material 2 to adhere to the periphery of the metal material 1 and macroscopically disperse the reinforcing material 2 in the metal material 1.

【0016】この混合の際に、回転時間を調整すること
により、金属材への強化材の付着量を調整することがで
き、金属材表面に付着した強化材の体積率は、そのまま
成形後の複合材料における強化材体積率となる。複合材
料の機械的特性は強化材含有量の違いにより異なること
が知られており、本プロセスで強化材表面に付着する強
化材の量を調整することで、成形後の複合材料の機械的
特性を制御することができる。
By adjusting the rotation time during the mixing, the amount of the reinforcing material adhering to the metal material can be adjusted, and the volume ratio of the reinforcing material adhering to the surface of the metal material remains unchanged after molding. It is the volume fraction of the reinforcing material in the composite material. It is known that the mechanical properties of composite materials differ depending on the reinforcement content, and by adjusting the amount of reinforcement attached to the surface of the reinforcement in this process, the mechanical properties of the composite material after molding are improved. Can be controlled.

【0017】上記混合後、アルミナポット3の蓋を開け
て内容物を取り出してボール4を取り除き、混合物をふ
るいにかける。このふるいにより強化材2が付着した所
定寸法以上の金属材1のみが分別され、金属材1に付着
しなかった強化材や必要以上に粉砕された金属材を除去
することができる。この複合粒子を射出成形機6のホッ
パー7に投入し、溶融または半溶融状態で射出成形する
ことにより、強化材がミクロ的にも均一に分散した金属
基複合材料が得られる。
After the above mixing, the lid of the alumina pot 3 is opened, the contents are taken out, the balls 4 are removed, and the mixture is sieved. By this sieve, only the metal material 1 having a predetermined size or more to which the reinforcing material 2 has adhered is separated, and the reinforcing material that has not adhered to the metal material 1 and the metal material that has been pulverized more than necessary can be removed. The composite particles are put into a hopper 7 of an injection molding machine 6 and injection-molded in a molten or semi-molten state, whereby a metal-based composite material in which a reinforcing material is uniformly dispersed microscopically is obtained.

【0018】[0018]

【実施例】金属材としてのマグネシウム合金チップ(A
STM AZ91D、1〜2mm大)と強化材としての
アルミナ粉末(平均粒子径3.0μm)とをそれぞれ用
意し、上記実施形態で示した回転ボールミル機で回転速
度100rpmで混合させた。この混合物をボールミル
機から取出した後、1mm目のふるいにかけアルミナ粒
子が付着した寸法1mm以上合金チップのみを分別し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Magnesium alloy chip (A
STM AZ91D (1 to 2 mm in size) and alumina powder (average particle diameter of 3.0 μm) as a reinforcing material were prepared, and mixed at a rotation speed of 100 rpm with the rotary ball mill described in the above embodiment. After removing this mixture from the ball mill, the mixture was sieved through a 1 mm sieve to separate only alloy chips having dimensions of 1 mm or more to which alumina particles had adhered.

【0019】なお、合金チップに付着したアルミナ粒子
の量は、複合粒子の密度を乾式密時計により測定して、
合金の密度とアルミナ粒子の密度から算出することがで
きる。合金チップ200gに対するアルミナ粒子の投入
量を変えて3時間混合処理したときの、アルミナ粒子投
入量とチップに付着したアルミナ粒子の体積率との関係
を図2に示す。また、平均粒径55μmのアルミナ粒子
188.0gと合金チップ200gをボールミル機で混
合したときの混合時間とチップに付着したアルミナ粒子
の体積率との関係を図3に示す。図2、図3に示すよう
にアルミナ粒子の混合量や混合時間と、チップに付着し
たアルミナ粒子の体積率との間には良い相関関係があ
り、上記混合量や混合時間を調整することによりアルミ
ナ粒子、すなわち強化材の付着量を容易に調整すること
ができる。
The amount of the alumina particles attached to the alloy chip was determined by measuring the density of the composite particles using a dry timepiece.
It can be calculated from the density of the alloy and the density of the alumina particles. FIG. 2 shows the relationship between the input amount of alumina particles and the volume ratio of the alumina particles attached to the chips when mixing was performed for 3 hours while changing the input amount of alumina particles to 200 g of the alloy chips. FIG. 3 shows the relationship between the mixing time when 188.0 g of alumina particles having an average particle diameter of 55 μm and 200 g of alloy chips were mixed by a ball mill and the volume ratio of alumina particles attached to the chips. As shown in FIGS. 2 and 3, there is a good correlation between the mixing amount and the mixing time of the alumina particles and the volume ratio of the alumina particles attached to the chip, and by adjusting the mixing amount and the mixing time, The amount of the alumina particles, that is, the amount of the reinforcing material attached can be easily adjusted.

【0020】なお、この実施例では、平均粒径3.0μ
mのアルミナ粒子108.84gと合金チップをボール
ミル機で3時間混合して合金チップ表面にアルミナ粒子
を付着させた。この複合粒子表面のSEM観察写真を図
4に示す。図4から明らかなように合金チップ表面にア
ルミナ粒子が密に、かつ均一に付着しており、マクロ的
な均一分散性が確保されている。なお、金属チップは写
真全容に亘っている。この複合粒子を射出成形機6に投
入したところ、架橋などが発生することなく円滑にシリ
ンダ8内に供給された。該原料を590℃に加熱して半
溶融状態にして射出したところ、強化材が均一に分散し
た成形品が低コストで得られた。
In this embodiment, the average particle size is 3.0 μm.
108.84 g of alumina particles of m were mixed with the alloy chips for 3 hours by a ball mill to adhere the alumina particles to the surface of the alloy chips. FIG. 4 shows an SEM observation photograph of the surface of the composite particles. As is clear from FIG. 4, alumina particles are densely and uniformly attached to the surface of the alloy chip, and macroscopic uniform dispersibility is secured. Note that the metal chip covers the entire photograph. When the composite particles were put into the injection molding machine 6, they were smoothly supplied into the cylinder 8 without causing crosslinking or the like. When the raw material was heated to 590 ° C. and injected in a semi-molten state, a molded product in which the reinforcing material was uniformly dispersed was obtained at low cost.

【0021】[0021]

【発明の効果】以上説明したように、本発明の金属基複
合材料の製造方法によれば、小片状または粒状のマトリ
ックス金属材と強化材とをボールミル機により混合して
金属材に強化材を付着させた後、この混合物をふるいに
かけて所定寸法以上のものを分別し、これを原料に用い
て半溶融もしくは溶融状態にて射出成形するので、金属
材と強化材とを、特性に悪影響を与えることなく低コス
トで均一に分散させることができ、強化材が均一に分散
した高品質の金属基複合材料を低コストで製造すること
ができる。
As described above, according to the method for producing a metal-based composite material of the present invention, a small or granular matrix metal material and a reinforcing material are mixed by a ball mill to form a reinforcing material on the metal material. After adhering, the mixture is sieved to separate those having a predetermined size or more, and the mixture is used as a raw material for injection molding in a semi-molten or molten state. It can be uniformly dispersed at a low cost without giving, and a high-quality metal-based composite material in which a reinforcing material is uniformly dispersed can be manufactured at a low cost.

【0022】すなわち、本発明によれば、マトリックス
金属材と強化材とを別個に投入した場合に比べて、材料
の溶融前の段階ですでに強化材の分散性に優れており、
射出成形後の成形品における強化材の分散性を大幅に向
上させ、成形品内における材料特性の均一性の向上をも
たらす上、ショット毎の強化材の含有率ばらつきも無く
すことができるためショット毎の成形品の特性のばらつ
きを無くすことができる。また、予め圧縮成形および押
出成形で複合パレットを作製する場合に比べてコストも
低く、処理時間も短くすることができる。また、造粒の
ためのバインダ等も使用しなくてすむので不純物の混入
も引き起こさない。
That is, according to the present invention, the dispersibility of the reinforcing material is already excellent at the stage before melting of the material, as compared with the case where the matrix metal material and the reinforcing material are separately charged,
The dispersibility of the reinforcing material in the molded product after injection molding is greatly improved, the uniformity of the material properties in the molded product is improved, and the variation in the content of the reinforcing material between shots can be eliminated. Of the molded article can be eliminated. Further, the cost and the processing time can be reduced as compared with the case where a composite pallet is prepared by compression molding and extrusion molding in advance. Further, since it is not necessary to use a binder or the like for granulation, mixing of impurities does not occur.

【0023】なお、金属材と強化材とをボールミル機で
混合する際に、金属材と強化材との濡れをよくする補助
材を添加すれば、半溶融もしくは溶融したときにマトリ
ックスに強化材が良好に濡れて複合化が容易になる。ま
た、マトリックス金属材がボールミル機による混合後に
1mm以上の大きさを有していれば、射出成型機への供
給が円滑になされ、金属基複合材料を良好に得ることが
できる。
When a metal material and a reinforcing material are mixed by a ball mill, an auxiliary material for improving the wettability between the metal material and the reinforcing material is added. Good wetting facilitates compounding. Further, if the matrix metal material has a size of 1 mm or more after being mixed by the ball mill, the supply to the injection molding machine can be smoothly performed, and the metal-based composite material can be favorably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明の一実施形態におけるプロセス
の概念図である。
FIG. 1 is a conceptual diagram of a process according to an embodiment of the present invention.

【図2】 図2は実施例における、アルミナ粒子混合量
と合金チップへのアルミナ粒子の付着量(体積率)の関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between the amount of alumina particles mixed and the amount of alumina particles attached to an alloy chip (volume ratio) in Examples.

【図3】 図3は実施例における、混合時間と合金チッ
プへのアルミナ粒子の付着量(体積率)の関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the mixing time and the amount of alumina particles attached to the alloy chip (volume ratio) in Examples.

【図4】 図4は実施例で得られた射出成形用原料の表
面SEM観察像を示す図面代用写真である。
FIG. 4 is a drawing substitute photograph showing a surface SEM observation image of the injection molding raw material obtained in the example.

【符号の説明】[Explanation of symbols]

1 マグネシウム合金チップ 2 アルミナ粉末 3 アルミナポット 4 アルミナボール 5 ボールミル機 6 射出成形機 7 ホッパー 8 シリンダ DESCRIPTION OF SYMBOLS 1 Magnesium alloy chip 2 Alumina powder 3 Alumina pot 4 Alumina ball 5 Ball mill 6 Injection molding machine 7 Hopper 8 Cylinder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−29057(JP,A) 特開 平1−178362(JP,A) 特開 昭64−71566(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 19/14 B22C 23/00 B22F 3/20 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-8-29057 (JP, A) JP-A-1-178362 (JP, A) JP-A-64-71566 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) B22D 19/14 B22C 23/00 B22F 3/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 小片状または粒状のマトリックス金属材
と強化材とを、ボールミル機により混合してマトリック
ス金属材に強化材を付着させた後、この混合物をふるい
にかけて所定寸法以上のものを分別し、これを原料に用
いて半溶融もしくは溶融状態にて射出成形することを特
徴とする金属基複合材料の製造方法
1. A flake or granular matrix metal material and a reinforcing material are mixed by a ball mill to adhere the reinforcing material to the matrix metal material, and the mixture is sieved to separate materials having a predetermined size or more. And injection molding in a semi-molten or molten state using the raw material as a raw material.
【請求項2】 マトリックス金属材と強化材とをボール
ミル機で混合する際に、マトリックス金属材と強化材と
の濡れをよくする補助材を添加することを特徴とする請
求項1記載の金属基複合材料の製造方法
2. The metal substrate according to claim 1, wherein, when the matrix metal material and the reinforcing material are mixed by a ball mill, an auxiliary material for improving the wetting of the matrix metal material and the reinforcing material is added. Manufacturing method of composite material
【請求項3】 マトリックス金属材がボールミル機によ
る混合後に1mm以上の大きさを有していることを特徴
とする請求項1または2に記載の金属基複合材料の製造
方法
3. The method for producing a metal matrix composite material according to claim 1, wherein the matrix metal material has a size of 1 mm or more after mixing by a ball mill.
JP8135936A 1996-05-03 1996-05-03 Manufacturing method of metal matrix composite material Expired - Fee Related JP3011885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8135936A JP3011885B2 (en) 1996-05-03 1996-05-03 Manufacturing method of metal matrix composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8135936A JP3011885B2 (en) 1996-05-03 1996-05-03 Manufacturing method of metal matrix composite material

Publications (2)

Publication Number Publication Date
JPH09295122A JPH09295122A (en) 1997-11-18
JP3011885B2 true JP3011885B2 (en) 2000-02-21

Family

ID=15163313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8135936A Expired - Fee Related JP3011885B2 (en) 1996-05-03 1996-05-03 Manufacturing method of metal matrix composite material

Country Status (1)

Country Link
JP (1) JP3011885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016269A1 (en) 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817786B2 (en) 1995-09-01 2006-09-06 Tkj株式会社 Alloy product manufacturing method and apparatus
US6135196A (en) 1998-03-31 2000-10-24 Takata Corporation Method and apparatus for manufacturing metallic parts by injection molding from the semi-solid state
US5983976A (en) * 1998-03-31 1999-11-16 Takata Corporation Method and apparatus for manufacturing metallic parts by fine die casting
DE19907118C1 (en) * 1999-02-19 2000-05-25 Krauss Maffei Kunststofftech Injection molding apparatus for producing molded metal parts with dendritic properties comprises an extruder with screw system
JP4730338B2 (en) * 2007-06-04 2011-07-20 独立行政法人産業技術総合研究所 COMPOSITE MATERIAL FOR INJECTION MOLDING COMPRISING CERAMIC DISPERSED MAGNESIUM COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD
KR101145166B1 (en) * 2011-09-02 2012-05-14 대성정밀주식회사 Cypress-fiber composites and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016269A1 (en) 2008-08-08 2010-02-11 学校法人日本大学 Pure-aluminum structural material with high specific strength solidified and molded by giant-strain processing method

Also Published As

Publication number Publication date
JPH09295122A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
JPS5933654B2 (en) Powder metallurgy compression molded body
US7144441B2 (en) Process for producing materials reinforced with nanoparticles and articles formed thereby
US5577546A (en) Particulate feedstock for metal injection molding
KR100248499B1 (en) Hard particle dispersed alloy powder manufacturing method
CN1044727C (en) Semi-solid processed magnesium-beryllium alloys
CN1308475C (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP3375545B2 (en) Method and apparatus for manufacturing chips for thixomolding injection molding machine
JP3011885B2 (en) Manufacturing method of metal matrix composite material
WO2006006379A1 (en) Magnesium-base composite powder, magnesium-base alloy material and method for production thereof
KR910006069B1 (en) Method for manufacture of cast articles of fiber-reinforced aluminium composite
CN109550939A (en) For the injection molding binder of digital cuttings and feeding preparation method
JP3160112B2 (en) Method for manufacturing composite metal member
CN108393483A (en) A kind of metal powder injection molding feeding and preparation method thereof
JPH02129322A (en) Magnesium-series composite material
JP4726011B2 (en) Method for producing metal matrix composite material, method for producing metal matrix composite material member, and stirring device
EP0666783B2 (en) Particulate feedstock for metal injection molding
JPH06256809A (en) Method for recycling metal machining scrap
JP2748007B2 (en) Method and apparatus for producing particle-dispersion-reinforced composite material
KR880000631B1 (en) Process for producing salt coated magnesium granules
JPH0766022A (en) Permanent magnet
JPS5969500A (en) Whisker composition and its manufacture
JP2864391B2 (en) Hypereutectic Al-Si alloy composite material and method for producing the same
JP3403360B2 (en) High density dispersed nuclear fuel using uranium alloy spherical powder rapidly solidified by spraying as a dispersant and its production method
JPH049123B2 (en)
JPS62109857A (en) Molding composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees