JP3011214B1 - Method of growing II-VI compound semiconductor crystal - Google Patents

Method of growing II-VI compound semiconductor crystal

Info

Publication number
JP3011214B1
JP3011214B1 JP279999A JP279999A JP3011214B1 JP 3011214 B1 JP3011214 B1 JP 3011214B1 JP 279999 A JP279999 A JP 279999A JP 279999 A JP279999 A JP 279999A JP 3011214 B1 JP3011214 B1 JP 3011214B1
Authority
JP
Japan
Prior art keywords
crystal
support member
seed crystal
temperature
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP279999A
Other languages
Japanese (ja)
Other versions
JP2000203996A (en
Inventor
靖生 並川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP279999A priority Critical patent/JP3011214B1/en
Application granted granted Critical
Publication of JP3011214B1 publication Critical patent/JP3011214B1/en
Publication of JP2000203996A publication Critical patent/JP2000203996A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【要約】 【課題】 昇華法又はハロゲン化学輸送法で種結晶上に
II-VI 族化合物半導体結晶を成長するときに、結晶性の
優れた結晶を安定して再現性よく成長させることを可能
にした結晶成長方法を提供しようとするものである。 【解決手段】 成長室の一端に柱状の種結晶支持部材を
固定し、成長室及び支持部材は結晶成長環境の下で安定
でかつ可視光及び/又は赤外光に対して透明な材質で構
成し、支持部材の固定端と反対側の端面を平滑平面とな
し、その上に種結晶を保持し、支持部材と成長室内壁と
の間隙を支持部材の中間部で閉じて気密部となし、成長
室内の気体が支持部材の固定端に向けて流れることを防
止し、支持部材の固定端の温度Teを気密部の温度Td
より低く保持しながら結晶を成長させることを特徴とす
るII-VI 族化合物半導体結晶の成長方法である。
Abstract: PROBLEM TO BE SOLVED: To provide a seed crystal by a sublimation method or a halogen chemical transport method.
It is an object of the present invention to provide a crystal growth method capable of stably growing a crystal having excellent crystallinity with good reproducibility when growing a II-VI compound semiconductor crystal. SOLUTION: A columnar seed crystal support member is fixed to one end of a growth chamber, and the growth chamber and the support member are made of a material that is stable under a crystal growth environment and transparent to visible light and / or infrared light. An end surface opposite to the fixed end of the support member is formed as a smooth plane, a seed crystal is held thereon, and a gap between the support member and the growth chamber wall is closed at an intermediate portion of the support member to form an airtight portion, Gas in the growth chamber is prevented from flowing toward the fixed end of the support member, and the temperature Te of the fixed end of the support member is reduced to the temperature Td of the hermetic portion.
This is a method for growing a II-VI group compound semiconductor crystal, characterized in that the crystal is grown while keeping the temperature lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、昇華法又はハロゲ
ン化学輸送法で種結晶上にZnSe,ZnS,CdT
e,CdS等のII-VI 族化合物半導体結晶を成長する方
法に関する。
[0001] The present invention relates to a method of sublimation or halogen chemical transport on ZnSe, ZnS, CdT on a seed crystal.
The present invention relates to a method for growing a II-VI group compound semiconductor crystal such as e, CdS or the like.

【0002】[0002]

【従来の技術】II-VI 族化合物半導体結晶の成長方法は
大きく分けて、融液成長法、固相成長法、溶液成長法、
気相成長法の4種の方法に分類される。その中で、気相
成長法には、原料を昇華させ晶出させて結晶を成長させ
る昇華法(PVT法、PhysicalVapor Transport 法)、
及びハロゲンを原料と反応させて原料のハロゲン化物を
生成し、その分解を利用する化学輸送法(CVT法、Ch
emical Vapor Transport法)がある。
2. Description of the Related Art II-VI compound semiconductor crystal growth methods are roughly divided into melt growth method, solid phase growth method, solution growth method,
It is classified into four types of vapor phase growth methods. Among them, the vapor phase growth method includes a sublimation method (PVT method, Physical Vapor Transport method) in which a material is sublimated and crystallized to grow a crystal,
And halogen react with the raw material to produce the raw material halide, and use the chemical transport method (CVT method, Ch
emical Vapor Transport method).

【0003】例えば、J. Crystal Growth 94 (1989) p.
1 〜5 では、石英アンプルの一端に原料ZnSe粉末5
gを、他端に成長結晶の種結晶としてZnSe単結晶を
設置し、これを封止してアンプルを作製する。このアン
プルを加熱し、ZnSe原料粉末側の温度を約1080
℃、種結晶側の温度を1070℃に設定することによ
り、原料を種結晶側へと輸送し、種結晶上にZnSe結
晶を成長させている。
[0003] For example, J. Crystal Growth 94 (1989) p.
1-5, the raw material ZnSe powder 5
g, a ZnSe single crystal is placed at the other end as a seed crystal of a grown crystal, and sealed to produce an ampule. This ampoule is heated and the temperature of the ZnSe raw material powder side is set to about 1080
By setting the temperature on the seed crystal side to 1070 ° C., the raw material is transported to the seed crystal side, and the ZnSe crystal is grown on the seed crystal.

【0004】気相成長法では、アンプル内に種結晶より
も低温の部分が存在すると、種結晶の一部が昇華されて
低温部に輸送され析出する。その結果、種結晶は劣化し
たりボイドが発生し、場合によっては完全な多結晶化を
引き起こす。そのような種結晶の結晶性低下は、その上
に成長する結晶に引き継がれ、成長結晶の結晶性を低下
させる。そのため、気相成長法においては、種結晶を保
護するために、少なくともアンプル内の局所的最低温部
に種結晶を位置させることにより、種結晶の昇華を防止
することが重要となる。
[0004] In the vapor phase growth method, when a portion at a lower temperature than the seed crystal is present in the ampoule, a part of the seed crystal is sublimated, transported to the low temperature portion and deposited. As a result, the seed crystal is deteriorated or voids are generated, and in some cases, complete polycrystallization is caused. Such a decrease in the crystallinity of the seed crystal is inherited by the crystal grown thereon, and reduces the crystallinity of the grown crystal. Therefore, in the vapor phase growth method, in order to protect the seed crystal, it is important to prevent the sublimation of the seed crystal by locating the seed crystal at least at the local lowest temperature part in the ampoule.

【0005】この課題を解決する方法として、透明な材
質からなるロッド状支持部材の上に種結晶を保持して結
晶を成長する方法が提案された(J. Crystal Growth, V
ol.161, (1996), 51-59; Yu. V. Korostelin)。図2は
その方法を説明するための模式図である。アンプル内壁
と僅かな隙間を設けて種結晶支持部材を配置し、透明な
種結晶支持部材を通してアンプル下方に向けて輻射冷却
することにより、アンプルの壁面を高温に保持しても、
支持部材上の種結晶を局所的に冷却保持することができ
る。その結果、種結晶は熱的に安定な位置に存在させる
ことができ、種結晶の昇華劣化を防止することができ
る。また、アンプル壁面を十分高温にすることができる
ため、成長結晶はアンプル壁面と接触することなく成長
させることができる。種結晶支持部材とアンプル内壁の
間の隙間を通過した気体原料は、アンプル下部の最低温
部に晶出する。このように、成長結晶は種結晶裏面で支
持部材に接するだけであるため、成長結晶が成長容器壁
に接する方法と比べて、結晶に加わる応力は大幅に低減
され、結晶性の優れた結晶を成長することが可能とな
る。
As a method for solving this problem, there has been proposed a method of growing a crystal while holding a seed crystal on a rod-shaped support member made of a transparent material (J. Crystal Growth, V.
ol. 161, (1996), 51-59; Yu. V. Korostelin). FIG. 2 is a schematic diagram for explaining the method. Even if the seed crystal support member is arranged by providing a slight gap with the inner wall of the ampoule and radiatively cooled down the ampoule through the transparent seed crystal support member, even if the wall surface of the ampoule is kept at a high temperature,
The seed crystal on the support member can be locally cooled and held. As a result, the seed crystal can be located at a thermally stable position, and sublimation deterioration of the seed crystal can be prevented. Further, since the temperature of the ampoule wall surface can be made sufficiently high, the grown crystal can be grown without coming into contact with the ampoule wall surface. The gaseous raw material that has passed through the gap between the seed crystal support member and the inner wall of the ampoule crystallizes in the lowest temperature portion below the ampoule. As described above, since the grown crystal only comes into contact with the support member on the back surface of the seed crystal, the stress applied to the crystal is greatly reduced compared to the method in which the grown crystal comes into contact with the growth vessel wall, and a crystal with excellent crystallinity is obtained. It is possible to grow.

【0006】本発明者は、上記の方法において、種結晶
を安定に維持し結晶性の劣化を防止する方法として、次
式を満たすように制御することを提案した(特願平9−
314978号出願)。 (Ps−Pd)/(L1 +L2 )≧(Pc−Pd)/L2 (1) ここで、Ps、Pc、Pdは、それぞれ多結晶原料位
置、種結晶位置、最低温度部における結晶成長速度を律
速する成分の平衡分圧であり、L1 、L2 はそれぞれ多
結晶原料と種結晶との距離、種結晶と最低温度部との距
離である。式(1)の関係が満たされると、原料−最低
温部間分圧勾配が、種結晶−最低温部間分圧勾配よりも
大きくなる。したがって、最低温部へ輸送される物質は
実質的には原料から供給されることになり、種結晶及び
成長結晶からの輸送即ち昇華は原料が残っている間は生
ずることはなく、種結晶及び成長結晶を安定に保持する
ことができる。即ち、種結晶の結晶性劣化、結晶内部へ
のボイドの侵入を防止することができ、良好な結晶性を
有する結晶を成長することができる。
The present inventor has proposed that in the above method, as a method for stably maintaining the seed crystal and preventing the deterioration of crystallinity, control is performed so as to satisfy the following equation (Japanese Patent Application No. 9-1997).
No. 314978). (Ps−Pd) / (L 1 + L 2 ) ≧ (Pc−Pd) / L 2 (1) where Ps, Pc, and Pd are polycrystalline material positions, seed crystal positions, and crystal growth at the lowest temperature part, respectively. It is the equilibrium partial pressure of the component that controls the speed, and L 1 and L 2 are the distance between the polycrystalline raw material and the seed crystal and the distance between the seed crystal and the lowest temperature part, respectively. When the relationship of Expression (1) is satisfied, the partial pressure gradient between the raw material and the lowest temperature part becomes larger than the partial pressure gradient between the seed crystal and the lowest temperature part. Therefore, the substance transported to the lowest temperature part is substantially supplied from the raw material, and transport or sublimation from the seed crystal and the growing crystal does not occur while the raw material remains, and the seed crystal and The grown crystal can be held stably. In other words, it is possible to prevent the seed crystal from deteriorating in crystallinity and to prevent voids from entering the inside of the crystal, and to grow a crystal having good crystallinity.

【0007】しかし、従来のアンプル構造では、式
(1)のような温度分布を実際に実現するのはかなり困
難であり、結晶成長炉の個体差によるばらつきが大き
く、また、同一炉、同一条件で結晶成長を行っても再現
性が十分ではなく、その結果、種結晶が劣化したり、成
長結晶中にボイドが含まれる場合があった。
However, in the conventional ampoule structure, it is quite difficult to actually realize the temperature distribution as shown in the equation (1), the variation due to the individual difference of the crystal growth furnace is large, and the same furnace and the same condition are used. However, reproducibility was not sufficient even if the crystal was grown by using the method described above. As a result, the seed crystal was sometimes degraded or the grown crystal sometimes contained voids.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、上
記の問題を解消し、昇華法又はハロゲン化学輸送法で種
結晶上にII-VI 族化合物半導体結晶を成長するときに、
結晶性の優れた結晶を安定して再現性よく成長させるこ
とを可能にした結晶成長方法を提供しようとするもので
ある。
Accordingly, the present invention solves the above-mentioned problems and provides a method for growing a group II-VI compound semiconductor crystal on a seed crystal by a sublimation method or a halogen chemical transport method.
An object of the present invention is to provide a crystal growth method which enables stable and reproducible growth of a crystal having excellent crystallinity.

【0009】[0009]

【課題を解決するための手段】本発明は、次の構成を採
用することにより、上記の課題の解決に成功した。 (1) 成長室中に原料多結晶及び種結晶を配置し、昇華法
又はハロゲン化学輸送法で前記種結晶上にII-VI 族化合
物半導体結晶を成長させる方法において、前記成長室の
一端に柱状の種結晶支持部材を固定し、前記成長室及び
前記支持部材は結晶成長環境の下で安定でかつ可視光及
び/又は赤外光に対して透明な材質で構成し、前記支持
部材の固定端と反対側の端面を平滑平面となし、その上
に前記種結晶を保持し、前記支持部材と前記成長室内壁
との間隙を前記支持部材の中間部で閉じて気密部とな
し、前記成長室内の気体が前記支持部材の固定端に向け
て流れることを防止し、前記支持部材の固定端の温度T
eを前記気密部の温度Tdより低く保持しながら結晶を
成長させることを特徴とするII-VI 族化合物半導体結晶
の成長方法。 (2) 前記支持部材の固定端の温度Teを調節することに
より、前記支持部材の平滑平面の実効的温度(種結晶部
の実効的温度)Tc* を制御することを特徴とする前記
(1) 記載のII-VI 族化合物半導体結晶の成長方法。 (3) 前記種結晶と前記支持部材の間に種結晶固着防止用
のコーティング膜を介在させることを特徴とする前記
(1) 又は(2) 記載のII-VI 族化合物半導体結晶の成長方
法。
The present invention has succeeded in solving the above problems by employing the following constitution. (1) A method in which a source polycrystal and a seed crystal are arranged in a growth chamber, and a group II-VI compound semiconductor crystal is grown on the seed crystal by a sublimation method or a halogen chemical transport method. The growth chamber and the support member are made of a material that is stable under a crystal growth environment and is transparent to visible light and / or infrared light, and the fixed end of the support member is fixed. The opposite end face is a smooth plane, holds the seed crystal thereon, closes the gap between the support member and the inner wall of the growth chamber at an intermediate portion of the support member to form an airtight section, and Is prevented from flowing toward the fixed end of the support member, and the temperature T at the fixed end of the support member is prevented.
A method for growing a group II-VI compound semiconductor crystal, comprising: growing a crystal while maintaining e at a temperature lower than the temperature Td of the hermetic portion. (2) An effective temperature (effective temperature of a seed crystal portion) Tc * of a smooth plane of the support member is controlled by adjusting a temperature Te of a fixed end of the support member.
(1) The method for growing a group II-VI compound semiconductor crystal according to (1). (3) the method characterized in that a coating film for preventing seed crystal sticking is interposed between the seed crystal and the support member.
The method for growing a group II-VI compound semiconductor crystal according to (1) or (2).

【0010】[0010]

【発明の実施の形態】本発明は、昇華法又はハロゲン化
学輸送法で種結晶上にII-VI 族化合物半導体結晶を成長
させるときに、種結晶表面からの昇華を防止し、種結晶
の劣化を防止することにより、結晶性に優れたII-VI 族
化合物半導体結晶を成長させる結晶成長方法を提供しよ
うとするものである。ここで、本発明において「種結晶
表面」とは「裏面」に対する「表面」の意味ではなく、
「結晶内部」に対する「外層部」を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is intended to prevent sublimation from the surface of a seed crystal when growing a II-VI compound semiconductor crystal on the seed crystal by a sublimation method or a halogen chemical transport method. It is an object of the present invention to provide a crystal growth method for growing a group II-VI compound semiconductor crystal having excellent crystallinity by preventing the crystal growth. Here, in the present invention, the “seed crystal surface” does not mean “front surface” with respect to “back surface”,
“Outer layer” means “inside the crystal”.

【0011】図2の従来構造のアンプルにおいて、同図
に示す炉内温度分布がそのままアンプル内の温度分布に
反映されると、種結晶部の温度が高くなりすぎて式
(1)の関係を満たすことはできない。図2のアンプル
では、透明な種結晶支持部材を通しての下部低温部への
輻射冷却により種結晶を局所的に低温化して、種結晶部
の実効的温度Tc* を種結晶部近傍の炉内温度Tcより
低温に維持している。種結晶位置の結晶成分の平衡分圧
PcはTc* により決定されるため、式(1)を満たす
平衡分圧分布をアンプル内部に実現することができる。
種結晶部の実効的温度Tc* を直接測定することは難し
いが、種結晶上への原料輸送量と最低温部への原料輸送
量との比などから、実際にTc* <Tcとなっているこ
とが確認できる。
In the ampoule having the conventional structure shown in FIG. 2, if the temperature distribution in the furnace shown in FIG. 2 is directly reflected in the temperature distribution in the ampoule, the temperature of the seed crystal portion becomes too high, and the relationship of the equation (1) is lost. Cannot be satisfied. In the ampoule of FIG. 2, the seed crystal is locally cooled by radiation cooling to a lower low-temperature portion through a transparent seed crystal support member, and the effective temperature Tc * of the seed crystal portion is set to the furnace temperature near the seed crystal portion. The temperature is kept lower than Tc. Since the equilibrium partial pressure Pc of the crystal component at the seed crystal position is determined by Tc * , an equilibrium partial pressure distribution satisfying the expression (1) can be realized inside the ampoule.
Although it is difficult to directly measure the effective temperature Tc * of the seed crystal part, it is actually Tc * <Tc from the ratio of the raw material transport amount on the seed crystal and the raw material transport amount to the lowest temperature part. Can be confirmed.

【0012】したがって、種結晶部の実効的温度Tc*
は、種結晶支持部材下端部温度Tdで決定されている
が、種結晶支持部材下端は同時にアンプル内最低温部で
あるため、Tdは同時にPd(最低温度部の平衡分圧)
も決定している。即ち炉内温度分布の調整はPc(種結
晶位置の平衡分圧)とPdを変化させるため、式(1)
の左辺と右辺に同時に影響を与え、左辺と右辺をそれぞ
れ独立に制御することができない。それ故、結晶成長を
安定化できる炉内温度分布条件の設定範囲が狭くなり、
再現性よく良好な結晶を成長させることができないとい
う問題があった。
Therefore, the effective temperature Tc * of the seed crystal portion
Is determined by the temperature Td at the lower end of the seed crystal support member, but since the lower end of the seed crystal support member is also the lowest temperature part in the ampule, Td is simultaneously Pd (equilibrium partial pressure of the lowest temperature part).
Has also been determined. That is, since the adjustment of the furnace temperature distribution changes Pc (equilibrium partial pressure at the seed crystal position) and Pd, the equation (1) is used.
Affect the left side and the right side at the same time, and the left side and the right side cannot be controlled independently. Therefore, the setting range of the furnace temperature distribution condition that can stabilize crystal growth is narrowed,
There was a problem that good crystals could not be grown with good reproducibility.

【0013】そこで、本発明は図1のアンプル構成及び
温度分布を採用することにより、上記の問題を解決し
た。従来法の図2との相違点は、種結晶支持部材の中間
部でアンプルを封止し、気密化した点である。気密化方
法は、図1のようにアンプルを絞ってもよいし、柱状の
支持部材をその部分だけ拡大してもよく、また、気密用
環状部材を挿入してもよい。この方法によれば、気密部
直上の平衡分圧Pdを決定する成長室内最低温部温度は
気密部の温度Tdで与えられることになる。一方、輻射
冷却によりTc* (種結晶部の実効的温度)を決定する
低温部温度は従来構造と同様に種結晶支持部材下端部温
度Teで与えられる。したがって、Pdを決定するTd
と、Pcに影響を与えるTeを分離して制御することが
容易になり、温度設定の自由度が高くなり、実効的温度
分布の制御性を大幅に向上させることができる。即ち、
Te<TdとすることによりTdと独立にTc* を低温
化することが可能となり、Pd(気密部直上の平衡分
圧)を低下させることなくPc(種結晶位置の平衡分
圧)を低下させることが可能となる。したがって、従来
のアンプル構造に比べて、式(1)の右辺と左辺の差を
大きくすることができ、式(1)を満足する結晶成長条
件を実現することが容易になる。即ち、種結晶及び成長
結晶を局所的に安定な位置に保持することができるた
め、結晶性に優れた結晶を安定して成長させることが可
能となる。この効果はTe<Tdを満たせば奏されるも
のであるから、その範囲内においてそれぞれの結晶成長
条件に応じて自由に前記温度を設定することが可能とな
る。
Therefore, the present invention has solved the above-mentioned problem by employing the ampoule configuration and the temperature distribution shown in FIG. The difference from the conventional method shown in FIG. 2 is that the ampule is sealed at the intermediate portion of the seed crystal supporting member to make it airtight. As for the airtightness method, the ampule may be squeezed as shown in FIG. 1, the columnar support member may be enlarged only at that portion, or an airtight annular member may be inserted. According to this method, the lowest temperature in the growth chamber that determines the equilibrium partial pressure Pd immediately above the hermetic portion is given by the temperature Td of the hermetic portion. On the other hand, the low-temperature portion temperature for determining Tc * (effective temperature of the seed crystal portion) by radiant cooling is given by the seed crystal support member lower end portion temperature Te as in the conventional structure. Therefore, Td which determines Pd
In addition, it is easy to separate and control Te that affects Pc, the degree of freedom in setting the temperature is increased, and the controllability of the effective temperature distribution can be greatly improved. That is,
By setting Te <Td, it is possible to lower Tc * independently of Td, and to reduce Pc (equilibrium partial pressure at the seed crystal position) without lowering Pd (equilibrium partial pressure immediately above the hermetic portion). It becomes possible. Therefore, the difference between the right side and the left side of the equation (1) can be increased as compared with the conventional ampoule structure, and it becomes easy to realize a crystal growth condition satisfying the equation (1). That is, since the seed crystal and the grown crystal can be locally held at stable positions, it becomes possible to stably grow a crystal having excellent crystallinity. Since this effect is achieved if Te <Td is satisfied, the temperature can be freely set within the range according to each crystal growth condition.

【0014】種結晶支持部材の材質としては、結晶成長
環境下において分解、融解、昇華などせず、かつ種結晶
と反応せず、ハロゲン化輸送法においてはハロゲンと反
応せず、かつ可視光又は赤外光に対して透明な材質の中
から選ぶ必要がある。そのような材質としては、石英ガ
ラス、マグネシア、水晶、サファイアなどを使用するこ
とができる。
The material of the seed crystal supporting member is such that it does not decompose, melt or sublime in a crystal growth environment, does not react with the seed crystal, does not react with halogen in the halogenated transport method, and does not emit visible light or light. It is necessary to select from materials that are transparent to infrared light. As such a material, quartz glass, magnesia, quartz, sapphire and the like can be used.

【0015】図1の構造において、種結晶が支持部材に
固着すると、両者の熱膨張率の差によって冷却時に種結
晶と成長結晶の間に応力が発生する。この応力は種結晶
の結晶性を悪化する要因となるため、上記固着を回避す
ることも重要となる。そのためには、種結晶支持部材材
質として、成長結晶材質に固着しにくい材料を選択する
か、種結晶支持部材の表面に付着防止用のコーティング
膜を施す方法を採用すことができる。コーティング膜も
前記種結晶支持部材と同様に、結晶成長環境下において
分解又は融解、昇華せず、かつ種結晶及び種結晶支持部
材と反応せず、ハロゲン化輸送法においてはハロゲンと
反応しない材料の中から選択する必要がある。そのよう
なコーティング膜としては、カーボン、炭化珪素等の炭
化物、窒化珪素、窒化アルミニウム、窒化ホウ素等の窒
化物、又は、酸化アルミニウム、酸化亜鉛等の酸化物を
用いることができる。
In the structure shown in FIG. 1, when the seed crystal adheres to the support member, a stress is generated between the seed crystal and the grown crystal during cooling due to the difference in the coefficient of thermal expansion between the two. Since this stress deteriorates the crystallinity of the seed crystal, it is also important to avoid the above-mentioned sticking. For this purpose, as the material of the seed crystal supporting member, a material that is hardly fixed to the material of the growing crystal can be selected, or a method of applying a coating film for preventing adhesion to the surface of the seed crystal supporting member can be adopted. Similarly to the seed crystal supporting member, the coating film does not decompose or melt under the crystal growth environment, does not sublime, and does not react with the seed crystal and the seed crystal supporting member, and does not react with halogen in the halogenated transport method. You have to choose from. As such a coating film, a carbide such as carbon and silicon carbide, a nitride such as silicon nitride, aluminum nitride, and boron nitride, or an oxide such as aluminum oxide and zinc oxide can be used.

【0016】[0016]

【実施例】(比較例1)図2の装置を用いてZnSe結
晶を成長させた。内径22mm、長さ220mmで平底
に整形した石英製アンプルの底面に、種結晶支持部材と
して、直径21mm、長さ100mmで両端面を研磨し
た石英ロッドをセットした。種結晶は直径20mm、厚
さ1mmで表面をミラー研磨、裏面をラッピング研磨し
た(111)B面のZnSe単結晶ウエハを用い、石英
ロードの上面に設置した。そして、種結晶上方40mm
の位置には原料保持用メッシュを設け、その上に原料と
して約5mm角のZnSe多結晶合計約40gを載せ
た。次に、アンプルを1×10-7Torrまで真空排気
した後、アルゴンガスを20Torr導入し、封入ふた
の部分を封着した。
EXAMPLES (Comparative Example 1) ZnSe crystals were grown using the apparatus shown in FIG. A quartz rod having a diameter of 21 mm, a length of 100 mm, and both ends polished as a seed crystal support member was set on the bottom surface of a quartz ampoule shaped into a flat bottom with an inner diameter of 22 mm and a length of 220 mm. The seed crystal was a ZnSe single crystal wafer having a diameter of 20 mm, a thickness of 1 mm, a mirror-polished front surface and a lapping-polished back surface, and was placed on the upper surface of a quartz load. And 40mm above the seed crystal
Was provided with a raw material holding mesh, and a total of about 40 g of ZnSe polycrystal of about 5 mm square was placed thereon as a raw material. Next, the ampoule was evacuated to 1 × 10 −7 Torr, and then argon gas was introduced at 20 Torr to seal the sealing lid.

【0017】このアンプルを縦型管状炉に配置し、多結
晶原料部温度を1100℃、種結晶部温度を1080
℃、アンプル下端部温度を1000℃に加熱して20日
間結晶成長を行った。得られた結晶は、底面の直径20
mm、結晶長13mm、重量18.2gで、結晶成長速
度は約0.65mm/dayであった。同様の条件で結
晶成長を4回実施したが、そのうち2回についてはボイ
ドを含まない良好な結晶が得られたが、残りの2回はボ
イドを多量に含む結晶性の低い結晶であった。
The ampoule was placed in a vertical tube furnace, and the temperature of the polycrystalline raw material was set at 1100 ° C. and the temperature of the seed crystal was set at 1080.
C. and the temperature at the lower end of the ampoule was heated to 1000.degree. The obtained crystal has a diameter of 20 at the bottom.
mm, the crystal length was 13 mm, and the weight was 18.2 g, and the crystal growth rate was about 0.65 mm / day. Crystal growth was carried out four times under the same conditions. Of the two times, good crystals containing no voids were obtained, but the remaining two times were crystals containing a large amount of voids and low crystallinity.

【0018】(実施例1)図1の装置を用いてZnSe
結晶を成長させた。内径22mm、長さ220mmで平
底に整形した石英製アンプルの底面に、種結晶支持部材
として、直径21mm、長さ100mmで両端面を研磨
した石英ロッドをセットした。種結晶は直径20mm、
厚さ1mmで表面をミラー研磨、裏面をラッピング研磨
した(111)B面のZnSe単結晶ウエハを用い、石
英ロッド上面に設置した。なお、事前に評価した種結晶
の転位密度は、3×104 〜1×105 cm-2であっ
た。さらに原料保持用メッシュを種結晶上40mmの位
置に設置し、その上に原料として約5mm角のZnSe
多結晶40gを載せた。次にアンプルを1×10-7To
rrまで真空排気した後、アルゴンガスを20Torr
導入し、封入ふたの部分で封着した。その後、石英ロッ
ド上面から下方に40mmの高さの石英アンプルをバー
ナーで加熱して変形させ、石英ロッドと石英アンプルを
密着させた。
(Embodiment 1) Using the apparatus of FIG.
A crystal was grown. A quartz rod having a diameter of 21 mm, a length of 100 mm, and both ends polished as a seed crystal support member was set on the bottom surface of a quartz ampoule shaped into a flat bottom with an inner diameter of 22 mm and a length of 220 mm. The seed crystal is 20mm in diameter,
A (111) B-plane ZnSe single-crystal wafer having a thickness of 1 mm and a mirror-polished front surface and a lapping-polished back surface was used and placed on the upper surface of a quartz rod. The dislocation density of the seed crystal evaluated in advance was 3 × 10 4 to 1 × 10 5 cm −2 . Further, a mesh for holding the raw material is placed at a position of 40 mm above the seed crystal, and ZnSe of about 5 mm square is formed thereon as a raw material.
40 g of polycrystal was placed. Next, add the ampoule to 1 × 10 -7 To
After evacuating to rr, argon gas was pumped to 20 Torr.
It was introduced and sealed with the lid. Thereafter, a quartz ampule having a height of 40 mm below the quartz rod upper surface was heated and deformed by a burner, and the quartz rod and the quartz ampule were brought into close contact with each other.

【0019】このアンプルを縦型管状炉に配置し、図1
に示すような温度プロファイルで多結晶原料部温度11
00℃、種結晶部温度1080℃、石英ロッドと石英ア
ンプルの密着部を1060℃、石英ロッド下端の最低温
部を960℃に加熱して20日間結晶成長を行った。そ
の結果、底面の直径20mm、結晶長16mm、重量2
1.2gの成長結晶が得られた。結晶成長速度は約0.
80mm/dayであった。同様の条件で結晶成長を4
回実施したが、4回とも結晶内部にボイドは見られず、
多結晶化やクラックの発生もなく、良好な外観を有して
いた。なお、結晶は石英ロッド上面に付着しており、結
晶の転位密度は、8×104〜3×105 cm-2であっ
た。石英ロッドとの付着による冷却時の応力のため、転
位が増加したものと考えられる。
This ampule was placed in a vertical tube furnace, and
In the temperature profile as shown in FIG.
The crystal growth was performed for 20 days by heating the contact portion between the quartz rod and the quartz ampule to 1060 ° C and the lowest temperature portion at the lower end of the quartz rod to 960 ° C. As a result, the bottom diameter was 20 mm, the crystal length was 16 mm, and the weight was 2
1.2 g of grown crystals were obtained. The crystal growth rate is about 0.5.
It was 80 mm / day. Under the same conditions,
No voids were found inside the crystal for all four times.
It had a good appearance without polycrystallization or cracks. The crystal was attached to the upper surface of the quartz rod, and the dislocation density of the crystal was 8 × 10 4 to 3 × 10 5 cm −2 . It is considered that the dislocation increased due to the stress at the time of cooling due to the adhesion to the quartz rod.

【0020】(実施例2)実施例1と基本的構造は同様
であるが、種結晶支持部材として、表面に熱CVD法に
よりカーボン薄膜をコーティングした石英ロッドを使用
した。他の条件は実施例1と同様にして20日間結晶成
長を行った。その結果、重量19.5gの成長結晶が得
られた。冷却後、結晶は石英ロッドから容易に剥離し、
石英ロッドに付着した様子は認められなかった。成長結
晶は、結晶内部にボイドは見られず、クラックの発生も
なく、良好な外観を有していた。結晶の転位密度は、2
×104 〜1×105 cm-2であり、結晶性も良好であ
ることが確認された。
Example 2 The basic structure is the same as that of Example 1, but a quartz rod having a surface coated with a carbon thin film by a thermal CVD method was used as a seed crystal supporting member. Crystal growth was performed for 20 days under the same conditions as in Example 1 except for the above conditions. As a result, a grown crystal having a weight of 19.5 g was obtained. After cooling, the crystals easily detach from the quartz rod,
No adhesion to the quartz rod was observed. The grown crystal had a good appearance without any voids and no cracks inside the crystal. The dislocation density of the crystal is 2
× 10 4 to 1 × 10 5 cm −2 , and it was confirmed that the crystallinity was also good.

【0021】なお、以上の実施例では、アルゴンガス雰
囲気中でのZnSe結晶の昇華法による成長についての
み述べたが、他のII-VI 族化合物半導体結晶の昇華法に
よる結晶成長に対しても同様に適用可能であり、成長雰
囲気もアルゴン等の不活性ガス雰囲気のみでなく、リザ
ーバを用いたII族あるいはVI族元素のガス雰囲気での成
長に対しても適用可能である。また同様に、昇華法だけ
でなく、ハロゲン化学輸送法に対しても適用可能であ
る。
In the above embodiment, only the growth of ZnSe crystal by sublimation in an argon gas atmosphere has been described. However, the same applies to the growth of other II-VI group compound semiconductor crystals by sublimation. The invention is applicable not only to a growth atmosphere in an inert gas atmosphere such as argon but also to a growth in a gas atmosphere of a group II or group VI element using a reservoir. Similarly, the present invention is applicable not only to the sublimation method but also to the halogen chemical transport method.

【0022】[0022]

【発明の効果】本発明において、上記の構成を採用する
ことにより、昇華法及び/又はハロゲン化学輸送法によ
り、II-VI 族化合物半導体結晶を種結晶上に成長すると
きに、ボイド及びクラックの発生を防止することがで
き、結晶性の優れたII-VI 族化合物半導体結晶の作製が
可能となった。
According to the present invention, by adopting the above structure, when a II-VI compound semiconductor crystal is grown on a seed crystal by a sublimation method and / or a halogen chemical transport method, voids and cracks are reduced. Generation can be prevented, and a II-VI group compound semiconductor crystal having excellent crystallinity can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1で使用したアンプル構造の断
面模式図及び炉内温度分布概略図である。
FIG. 1 is a schematic cross-sectional view of an ampoule structure used in Example 1 of the present invention and a schematic diagram of a temperature distribution in a furnace.

【図2】比較例1で使用した従来のアンプル構造の断面
模式図及び炉内温度分布概略図である。
FIG. 2 is a schematic cross-sectional view of a conventional ampoule structure used in Comparative Example 1 and a schematic diagram of a furnace temperature distribution.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Yu.V.Korostelin e t al.,”Vapour grow th and characteriz ation of bulk Zn S e single crystal s,”Journal of Crys tal Growth,Vol.161, 1996,pp.51−59 (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ──────────────────────────────────────────────────続 き Continued on the front page (56) References Yu. V. Korostein et al. , "Vapour growth and characterization of bulk Zn Sessle crystals,", Journal of Crystal growth, Vol. 161, 1996, p. 51-59 (58) Field surveyed (Int. Cl. 7 , DB name) C30B 1/00-35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成長室中に原料多結晶及び種結晶を配置
し、昇華法又はハロゲン化学輸送法で前記種結晶上にII
-VI 族化合物半導体結晶を成長させる方法において、前
記成長室の一端に柱状の種結晶支持部材を固定し、前記
成長室及び前記支持部材は結晶成長環境の下で安定でか
つ可視光及び/又は赤外光に対して透明な材質で構成
し、前記支持部材の固定端と反対側の端面を平滑平面と
なし、その上に前記種結晶を保持し、前記支持部材と前
記成長室内壁との間隙を前記支持部材の中間部で閉じて
気密部となし、前記成長室内の気体が前記支持部材の固
定端に向けて流れることを防止し、前記支持部材の固定
端の温度Teを前記気密部の温度Tdより低く保持しな
がら結晶を成長させることを特徴とするII-VI 族化合物
半導体結晶の成長方法。
1. A raw material polycrystal and a seed crystal are placed in a growth chamber, and II is placed on the seed crystal by a sublimation method or a halogen chemical transport method.
In the method for growing a group-VI compound semiconductor crystal, a columnar seed crystal support member is fixed to one end of the growth chamber, and the growth chamber and the support member are stable under a crystal growth environment and are exposed to visible light and / or light. Constructed of a material transparent to infrared light, the end face opposite to the fixed end of the support member is formed as a smooth plane, the seed crystal is held thereon, and the support member and the growth chamber wall are The gap is closed at an intermediate portion of the support member to form an airtight portion, and gas in the growth chamber is prevented from flowing toward the fixed end of the support member, and the temperature Te at the fixed end of the support member is reduced to the airtight portion. A method for growing a II-VI group compound semiconductor crystal, wherein the crystal is grown while maintaining the temperature below Td.
【請求項2】 前記支持部材の固定端の温度Teを調節
することにより、前記支持部材の平滑平面の実効的温度
Tc* を制御することを特徴とする請求項1記載のII-V
I 族化合物半導体結晶の成長方法。
2. The II-V according to claim 1, wherein an effective temperature Tc * of a smooth plane of said support member is controlled by adjusting a temperature Te of a fixed end of said support member.
A method for growing a group I compound semiconductor crystal.
【請求項3】 前記種結晶と前記支持部材の間に種結晶
固着防止用のコーティング膜を介在させることを特徴と
する請求項1又は2記載のII-VI 族化合物半導体結晶の
成長方法。
3. The method of growing a II-VI compound semiconductor crystal according to claim 1, wherein a coating film for preventing seed crystal adhesion is interposed between said seed crystal and said support member.
JP279999A 1999-01-08 1999-01-08 Method of growing II-VI compound semiconductor crystal Expired - Fee Related JP3011214B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP279999A JP3011214B1 (en) 1999-01-08 1999-01-08 Method of growing II-VI compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP279999A JP3011214B1 (en) 1999-01-08 1999-01-08 Method of growing II-VI compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JP3011214B1 true JP3011214B1 (en) 2000-02-21
JP2000203996A JP2000203996A (en) 2000-07-25

Family

ID=11539429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP279999A Expired - Fee Related JP3011214B1 (en) 1999-01-08 1999-01-08 Method of growing II-VI compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JP3011214B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yu.V.Korostelin et al.,"Vapour growth and characterization of bulk Zn Se single crystals,"Journal of Crystal Growth,Vol.161,1996,pp.51−59

Also Published As

Publication number Publication date
JP2000203996A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US7279040B1 (en) Method and apparatus for zinc oxide single crystal boule growth
KR101146050B1 (en) Method and device for ain single crystal production with gas-permeable crucible walls
EP0859879A1 (en) A method for epitaxially growing objects and a device for such a growth
JP3011214B1 (en) Method of growing II-VI compound semiconductor crystal
JPH04292499A (en) Production of silicon carbide single crystal
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
JP3185731B2 (en) Method for growing II-VI compound semiconductor crystal
JP3698109B2 (en) II-VI compound semiconductor crystal growth method
JP2974023B1 (en) Method of growing II-VI compound semiconductor crystal
JPH06298600A (en) Method of growing sic single crystal
US5925429A (en) Pyrolytic boron nitride container, and manufacture thereof
JP3026340B1 (en) Method of growing II-VI compound semiconductor crystal
US4299649A (en) Vapor transport process for growing selected compound semiconductors of high purity
JPH0977594A (en) Production of low resistance single crystal silicon carbide
JP2988434B2 (en) Method for growing II-IV compound semiconductor crystal
RU2238603C2 (en) Method and device for heat treatment of semiconductor compounds ii - vi and semiconductors subjected to heat treatment using this method
US4439266A (en) Vapor transport process for growing selected compound semiconductors of high purity
JP2944410B2 (en) Method for growing SiC single crystal
JP4222630B2 (en) Method for epitaxially growing objects and apparatus for performing such growth
JP2001181098A (en) Method for growing groups ii-vi compound-semiconductor crystal
JP2000344600A (en) Method and apparatus for growing compound semiconductor crystals of groups ii to iv
JP2725647B2 (en) Method for growing II-VI compound semiconductor single crystal
JPS62288186A (en) Production of compound semiconductor single crystal containing high vapor pressure component
JP2000327498A (en) Method for growing ii-vi compound semiconductor crystal and apparatus therefor
JPH02311392A (en) Method for growing crystal of compound semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees