JP3008341B2 - リン酸塩化成処理スラッジとゼオライト粉体による焼結体とその製造方法 - Google Patents
リン酸塩化成処理スラッジとゼオライト粉体による焼結体とその製造方法Info
- Publication number
- JP3008341B2 JP3008341B2 JP8198370A JP19837096A JP3008341B2 JP 3008341 B2 JP3008341 B2 JP 3008341B2 JP 8198370 A JP8198370 A JP 8198370A JP 19837096 A JP19837096 A JP 19837096A JP 3008341 B2 JP3008341 B2 JP 3008341B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- sludge
- raw material
- phosphate
- chemical conversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】
【発明の属する技術分野】本発明は新規な焼結体とその
製造方法に関するもので、更に詳細には、鋼板の表面を
燐酸塩によって化成処理する際に副生する沈殿物いわゆ
る化成処理スラッジとゼオライド粉末とCaO成分を多
く含むセラミック原材料とから、タイル、セラミックブ
ロックや陶管等のセラミック建材を極めて低い温度で焼
結させることができると共に、諸物性に優れるセラミッ
クス焼結体に関するものである。
製造方法に関するもので、更に詳細には、鋼板の表面を
燐酸塩によって化成処理する際に副生する沈殿物いわゆ
る化成処理スラッジとゼオライド粉末とCaO成分を多
く含むセラミック原材料とから、タイル、セラミックブ
ロックや陶管等のセラミック建材を極めて低い温度で焼
結させることができると共に、諸物性に優れるセラミッ
クス焼結体に関するものである。
【0002】
【従来の技術】従来、タイル、セラミックブロック、陶
管、屋根瓦や衛生陶器のようなセラミック建材を製造す
るのに用いられる素地用原料には、粘土分を基材として
石灰質またはマグネシア質原料を添加したものがあり、
これは石灰質素地と称せられており、原料粉体は従来の
慣用技術によって混合、成形、乾燥、焼成という製造工
程を経て目的とするセラミック建材を得ている。このセ
ラミック建材のうち、内装壁タイルや衛生陶器等は高い
寸法精度を要求される製品であることから、焼成による
収縮を抑えるために石灰質系素地組成となっており、一
般に1200℃前後で焼成されて、多孔性のために吸水
性を示すものである。これら焼成方法は、高温焼成工程
を経るためエネルギー多消費型となっており、焼成温度
に関するエネルギーコスト低減は重大な問題である。
管、屋根瓦や衛生陶器のようなセラミック建材を製造す
るのに用いられる素地用原料には、粘土分を基材として
石灰質またはマグネシア質原料を添加したものがあり、
これは石灰質素地と称せられており、原料粉体は従来の
慣用技術によって混合、成形、乾燥、焼成という製造工
程を経て目的とするセラミック建材を得ている。このセ
ラミック建材のうち、内装壁タイルや衛生陶器等は高い
寸法精度を要求される製品であることから、焼成による
収縮を抑えるために石灰質系素地組成となっており、一
般に1200℃前後で焼成されて、多孔性のために吸水
性を示すものである。これら焼成方法は、高温焼成工程
を経るためエネルギー多消費型となっており、焼成温度
に関するエネルギーコスト低減は重大な問題である。
【0003】一方、種々製造工場より副生排出する産業
廃棄物の中で、鋼板の塗装下地に、防錆、密着性の向上
及び潤滑性の向上を目的として、金属表面に不溶性の化
成皮膜を生成させる燐酸および燐酸塩化成処理が古くか
ら行われていて、この際多量に化成処理スラッジが発生
する。この化成処理による表面処理技術は種々の機能を
有しておりかつ経済的に最も安価な方法であることか
ら、今後とも継続する方法とされているが、このスラッ
ジの量は国内だけで年間5000トン以上にも達してい
る。従来、この燐酸鉄を主成分とし燐酸亜鉛を含むこの
スラッジの処理および再利用の技術に関しては、種々開
発研究がなされている。例えばそのまま乾燥した物を塗
料用顔料や陶磁器用釉薬顔料として回収する方法、また
スラッジ中に燐酸亜鉛が含まれていることから脱臭剤と
して回収する方法、またスラッジ中の鉄分を溶媒抽出し
て燐酸を回収する方法、また直接燐酸を溶媒によって抽
出する方法、またアルカリ溶解法によって燐酸3ナトリ
ウムを製造したりこれから更に石灰を反応させてアパタ
イトを得る方法、またアルカリ溶解法の際出来る水酸化
第2鉄を加熱処理して酸化鉄フェライトを得る方法、ま
たイオン交換樹脂によって正燐酸を得ると同時に水処理
用凝集剤として用いられる塩化第2鉄溶液を得る方法、
また水熱反応によって結晶質の塩基性燐酸鉄を得て塗料
用顔料として再生する方法等が公表、提案されている。
廃棄物の中で、鋼板の塗装下地に、防錆、密着性の向上
及び潤滑性の向上を目的として、金属表面に不溶性の化
成皮膜を生成させる燐酸および燐酸塩化成処理が古くか
ら行われていて、この際多量に化成処理スラッジが発生
する。この化成処理による表面処理技術は種々の機能を
有しておりかつ経済的に最も安価な方法であることか
ら、今後とも継続する方法とされているが、このスラッ
ジの量は国内だけで年間5000トン以上にも達してい
る。従来、この燐酸鉄を主成分とし燐酸亜鉛を含むこの
スラッジの処理および再利用の技術に関しては、種々開
発研究がなされている。例えばそのまま乾燥した物を塗
料用顔料や陶磁器用釉薬顔料として回収する方法、また
スラッジ中に燐酸亜鉛が含まれていることから脱臭剤と
して回収する方法、またスラッジ中の鉄分を溶媒抽出し
て燐酸を回収する方法、また直接燐酸を溶媒によって抽
出する方法、またアルカリ溶解法によって燐酸3ナトリ
ウムを製造したりこれから更に石灰を反応させてアパタ
イトを得る方法、またアルカリ溶解法の際出来る水酸化
第2鉄を加熱処理して酸化鉄フェライトを得る方法、ま
たイオン交換樹脂によって正燐酸を得ると同時に水処理
用凝集剤として用いられる塩化第2鉄溶液を得る方法、
また水熱反応によって結晶質の塩基性燐酸鉄を得て塗料
用顔料として再生する方法等が公表、提案されている。
【0004】
【発明が解決しようとする課題】しかしながら貴重な資
源の一つである燐(P)を多量に含む化成処理スラッジ
の有効利用については、前述したように種々の方法が公
表、提案されているに拘らず、いずれも品質と経済性の
問題で未だ本格的な実用化に至っておらず、依然として
多額の費用をかけて廃棄処分されているのが現状であ
る。本発明が解決しようとする課題は、このスラッジの
主要成分が燐酸亜鉛を少量含む燐酸鉄であることおよび
これが非晶質で粒子の大きさが極めて微細であることに
着目し、これは単独では易焼結性を示し、セラミック原
材料との反応で鉱化剤として働き、従ってより低い焼成
温度での焼結反応を促す作用があることを見い出し、
又、これをゼオライト粉体及び石灰質と混合させると、
低温焼結であるに拘らず曲げ強度率等に優れた焼結体が
得られることを見い出し、この性質を利用して、大量に
発生する化成スラッジの有効利用を図ると同時に、従来
の陶磁器用素地組成物の焼成温度よりも更に低い温度で
焼成し、諸物性に優れた新規なセラミック焼結体を製造
することにある。
源の一つである燐(P)を多量に含む化成処理スラッジ
の有効利用については、前述したように種々の方法が公
表、提案されているに拘らず、いずれも品質と経済性の
問題で未だ本格的な実用化に至っておらず、依然として
多額の費用をかけて廃棄処分されているのが現状であ
る。本発明が解決しようとする課題は、このスラッジの
主要成分が燐酸亜鉛を少量含む燐酸鉄であることおよび
これが非晶質で粒子の大きさが極めて微細であることに
着目し、これは単独では易焼結性を示し、セラミック原
材料との反応で鉱化剤として働き、従ってより低い焼成
温度での焼結反応を促す作用があることを見い出し、
又、これをゼオライト粉体及び石灰質と混合させると、
低温焼結であるに拘らず曲げ強度率等に優れた焼結体が
得られることを見い出し、この性質を利用して、大量に
発生する化成スラッジの有効利用を図ると同時に、従来
の陶磁器用素地組成物の焼成温度よりも更に低い温度で
焼成し、諸物性に優れた新規なセラミック焼結体を製造
することにある。
【0005】
【課題を解決するための手段】本発明者らは、前述の課
題を解決するために、鉄および/またはアルミニウムを
含む燐酸塩を主成分とし、これに亜鉛,カルシウム,マ
グネシウム,ナトリウムからなる群の中から選ばれた一
種以上の金属塩または金属複塩を含む微粒子粉体と、ゼ
オライト粉体と、CaO成分を含むセラミック原材料と
を混合させて成る焼結体と、該セラミック原材料より低
い温度で焼結反応させる焼結体の製造方法とを提供す
る。
題を解決するために、鉄および/またはアルミニウムを
含む燐酸塩を主成分とし、これに亜鉛,カルシウム,マ
グネシウム,ナトリウムからなる群の中から選ばれた一
種以上の金属塩または金属複塩を含む微粒子粉体と、ゼ
オライト粉体と、CaO成分を含むセラミック原材料と
を混合させて成る焼結体と、該セラミック原材料より低
い温度で焼結反応させる焼結体の製造方法とを提供す
る。
【0006】ここで前記微粒子粉体の供給源としては、
鋼板および/またはアルミニウム材の表面を燐酸および
燐酸塩浴で化成処理することによって発生するいわゆる
化成処理スラッジがある。特に自動車産業における鋼板
の表面の表面処理ではこの方法を採用していることから
大量に発生しているが、ほとんど未活用のまま産業廃棄
物として処分されている。しかし品質的なばらつきも少
なく安定しており、しかも有害成分の溶出についても環
境庁告示第13号による検定方法では検出されない安全
な物である。
鋼板および/またはアルミニウム材の表面を燐酸および
燐酸塩浴で化成処理することによって発生するいわゆる
化成処理スラッジがある。特に自動車産業における鋼板
の表面の表面処理ではこの方法を採用していることから
大量に発生しているが、ほとんど未活用のまま産業廃棄
物として処分されている。しかし品質的なばらつきも少
なく安定しており、しかも有害成分の溶出についても環
境庁告示第13号による検定方法では検出されない安全
な物である。
【0007】このスラッジの特性について記すと、鋼板
を化成処理した場合のスラッジの主成分は、燐酸第2鉄
(FePO4・2H2O)が約90%で残りのほとんどが
燐酸亜鉛(Zn3(PO4)2・4H2O)であり、又、アル
ミニウム材を化成処理した場合のスラッジの主成分は、
約95%以上が燐酸アルミニウム(AlPO4)で、残
りのほとんどが燐酸亜鉛である。化成処理の効率或いは
化成膜の性能を高めるために化成浴には種々の金属塩や
フッ化物等が添加されているが、スラッジ乾燥物の化学
分析値は、例えばFe2O3 :30.8%、P2O5 :4
4.4%、ZnO:5.0%、Al2O:3.7%、S
iO2:2.0%、CaO:0.3%、MgO:0.1
%、Na2O:4.2%、その他(NiO、MnO2、K
2O、F等)、0.5%、灼熱減量、9.0%(いずれ
も重量%)である。粒子の大きさは約15μm以下の微
粒子である。換言すると、該化成処理スラッジは、鉄お
よび/またはアルミニウムを含む燐酸塩を主成分とし、
これに亜鉛,カルシウム,マグネシウム,ナトリウムか
らなる群の中から選ばれた一種以上の金属塩または金属
複塩を含む微粒子粉体と表現できる。
を化成処理した場合のスラッジの主成分は、燐酸第2鉄
(FePO4・2H2O)が約90%で残りのほとんどが
燐酸亜鉛(Zn3(PO4)2・4H2O)であり、又、アル
ミニウム材を化成処理した場合のスラッジの主成分は、
約95%以上が燐酸アルミニウム(AlPO4)で、残
りのほとんどが燐酸亜鉛である。化成処理の効率或いは
化成膜の性能を高めるために化成浴には種々の金属塩や
フッ化物等が添加されているが、スラッジ乾燥物の化学
分析値は、例えばFe2O3 :30.8%、P2O5 :4
4.4%、ZnO:5.0%、Al2O:3.7%、S
iO2:2.0%、CaO:0.3%、MgO:0.1
%、Na2O:4.2%、その他(NiO、MnO2、K
2O、F等)、0.5%、灼熱減量、9.0%(いずれ
も重量%)である。粒子の大きさは約15μm以下の微
粒子である。換言すると、該化成処理スラッジは、鉄お
よび/またはアルミニウムを含む燐酸塩を主成分とし、
これに亜鉛,カルシウム,マグネシウム,ナトリウムか
らなる群の中から選ばれた一種以上の金属塩または金属
複塩を含む微粒子粉体と表現できる。
【0008】この結晶物質をX線回折によってみると、
図1に示されるように非晶質であるが、700℃、80
0℃、900℃、100℃、1000℃と加熱してみる
と、図2に示されるように結晶物質が現れ、無水の燐酸
第2鉄(FePO4)が主結晶相で他にわずかなNaF
eP2O7およびZn2P2O7が認められるものとなる。
またこの加熱過程において700℃で既に焼結が始まり
900℃で溶融する性質を持っている。参考までに純粋
の燐酸第2鉄の融点は1200℃である。スラッジ単独
で約800℃で焼結体を得ることが出来る。更にこのス
ラッジについて付記すると、廃棄処理する際のスラッジ
中に含まれる水分は40%〜65%であり、原料として
利用する場合は乾燥粉末の状態が望ましいが一般には配
合された原料粉末を成形する場合は、粉末成形、土練成
形あるいは泥漿鋳込み成形いずれの成形方法においても
必ず適当な水分が必要であることから必ずしも乾燥粉末
にする必要はない。
図1に示されるように非晶質であるが、700℃、80
0℃、900℃、100℃、1000℃と加熱してみる
と、図2に示されるように結晶物質が現れ、無水の燐酸
第2鉄(FePO4)が主結晶相で他にわずかなNaF
eP2O7およびZn2P2O7が認められるものとなる。
またこの加熱過程において700℃で既に焼結が始まり
900℃で溶融する性質を持っている。参考までに純粋
の燐酸第2鉄の融点は1200℃である。スラッジ単独
で約800℃で焼結体を得ることが出来る。更にこのス
ラッジについて付記すると、廃棄処理する際のスラッジ
中に含まれる水分は40%〜65%であり、原料として
利用する場合は乾燥粉末の状態が望ましいが一般には配
合された原料粉末を成形する場合は、粉末成形、土練成
形あるいは泥漿鋳込み成形いずれの成形方法においても
必ず適当な水分が必要であることから必ずしも乾燥粉末
にする必要はない。
【0009】従って、スラッジ単独又は一般的セラミッ
クス原料素材を混合させると焼結体を得られるが、しか
し、そのままでは焼結体としての曲げ強度等の物性に劣
り、セラミック建材等の現実的使用の目的には適さない
ものとなる。そこで、本発明者は実験改良を重ねた結
果、ゼオライト粉体と石灰質とを混合させて焼成する
と、低温での焼結に拘らず、曲げ強度等に優れた焼結体
が得られることを見い出した。即ち、セラミック建材で
ある保水性の舗道平板の素地組成として、ゼオライト粉
体(大谷石粉体)50%、石灰質(高炉スラグ)20
%、粘土20%、陶磁器屑10%という配合を構成し、
これに化成処理スラッジを無添加の場合と外掛けで5
%、10%添加し、通常の焼成温度である1250℃よ
り低い1160℃で焼成した。そして、そのときのX線
強度を測定したところ、その結果は図3に示す如くで、
同焼結体の結晶にアノルサイト(CaO・Al2O3・2
SiO2)相が生成することが判明し、且つ、そのアノ
ルサイト相生成の状態は、化成スラッジ添加量の増減に
伴って変化し、最初無添加の場合は、x印のqは未反応
で残留しているα石英の最強線を示しているのに対し、
化成スラッジ5%添加後には、x印qの未反応α石英と
●印aのアノルサイトの相対強度比がほぼ並び、化成ス
ラッジ10%添加後には、x印qの未反応α石英と●印
aのアノルサイトの相対強度比が逆転していることが確
認された。
クス原料素材を混合させると焼結体を得られるが、しか
し、そのままでは焼結体としての曲げ強度等の物性に劣
り、セラミック建材等の現実的使用の目的には適さない
ものとなる。そこで、本発明者は実験改良を重ねた結
果、ゼオライト粉体と石灰質とを混合させて焼成する
と、低温での焼結に拘らず、曲げ強度等に優れた焼結体
が得られることを見い出した。即ち、セラミック建材で
ある保水性の舗道平板の素地組成として、ゼオライト粉
体(大谷石粉体)50%、石灰質(高炉スラグ)20
%、粘土20%、陶磁器屑10%という配合を構成し、
これに化成処理スラッジを無添加の場合と外掛けで5
%、10%添加し、通常の焼成温度である1250℃よ
り低い1160℃で焼成した。そして、そのときのX線
強度を測定したところ、その結果は図3に示す如くで、
同焼結体の結晶にアノルサイト(CaO・Al2O3・2
SiO2)相が生成することが判明し、且つ、そのアノ
ルサイト相生成の状態は、化成スラッジ添加量の増減に
伴って変化し、最初無添加の場合は、x印のqは未反応
で残留しているα石英の最強線を示しているのに対し、
化成スラッジ5%添加後には、x印qの未反応α石英と
●印aのアノルサイトの相対強度比がほぼ並び、化成ス
ラッジ10%添加後には、x印qの未反応α石英と●印
aのアノルサイトの相対強度比が逆転していることが確
認された。
【0010】本発明者はこのような結晶生成に対し、ゼ
オライト粉体と石灰質との間にアノルサイト相の生成が
促され、化成スラッジは、この反応において通常の温度
よりもさらに低い温度で発揮させる物質すなわち鉱化剤
として作用し、上記新たなる結晶相を生成せしめ強固な
組織を形勢するものと推察した。このことは、実施例1
において、化成処理スラッジをまったく無添加の場合
と、化成処理スラッジを5部,10部と添加したものを
比較した場合、その曲げ強度において大きな相違を見せ
ている点からも裏付けられる。従来のセラミックスで燐
酸塩を含む組成にはリン酸カルシウムを主成分としてい
る骨灰を主原料としたボ−ンチャイナが知られている
が、この原料は極めて高価なものであり、セラミック建
材という製品を目標とした場合、当然安価な原料である
ことが要求され、これに適うものとして前記の廃棄物と
して処理されている化成処理スラッジが利用できること
を見い出したものである。
オライト粉体と石灰質との間にアノルサイト相の生成が
促され、化成スラッジは、この反応において通常の温度
よりもさらに低い温度で発揮させる物質すなわち鉱化剤
として作用し、上記新たなる結晶相を生成せしめ強固な
組織を形勢するものと推察した。このことは、実施例1
において、化成処理スラッジをまったく無添加の場合
と、化成処理スラッジを5部,10部と添加したものを
比較した場合、その曲げ強度において大きな相違を見せ
ている点からも裏付けられる。従来のセラミックスで燐
酸塩を含む組成にはリン酸カルシウムを主成分としてい
る骨灰を主原料としたボ−ンチャイナが知られている
が、この原料は極めて高価なものであり、セラミック建
材という製品を目標とした場合、当然安価な原料である
ことが要求され、これに適うものとして前記の廃棄物と
して処理されている化成処理スラッジが利用できること
を見い出したものである。
【0011】そして、上記化成処理スラッジの鉱化剤と
しの作用に促されてゼオライト粉体と石灰質との間に新
たな結晶が生成することは、焼結体としての諸物性の改
善を促すことになる。即ち、化成処理スラッジ単独でも
約800℃という低温で焼結体を得ること、又、他のセ
ラミック原料と任意の割合で混合したものも焼結体を得
ることは可能であるが、そのままでは上述の如く曲げ強
度等に劣り、製品品質や製造上に問題が残る。そこで、
ゼオライト粉体と石灰質とを混合させると、上記化成処
理スラッジの作用に促されて上述の如くアノルサイト相
の新たな結晶が形成され、該アノルサイト相は強固な組
織構造を提供するので、焼結体としての曲げ強度等の改
善に大きく役立つことを見い出した。このことは、上記
図3におけるX線回折による解析と共に、後述の実施例
2において、ゼオライト粉体及び石灰質とを混合させた
場合とそれがない場合とを比較した処、ゼオライト粉体
の増量に従って曲げ強度が大きく向上したことでも確認
される。
しの作用に促されてゼオライト粉体と石灰質との間に新
たな結晶が生成することは、焼結体としての諸物性の改
善を促すことになる。即ち、化成処理スラッジ単独でも
約800℃という低温で焼結体を得ること、又、他のセ
ラミック原料と任意の割合で混合したものも焼結体を得
ることは可能であるが、そのままでは上述の如く曲げ強
度等に劣り、製品品質や製造上に問題が残る。そこで、
ゼオライト粉体と石灰質とを混合させると、上記化成処
理スラッジの作用に促されて上述の如くアノルサイト相
の新たな結晶が形成され、該アノルサイト相は強固な組
織構造を提供するので、焼結体としての曲げ強度等の改
善に大きく役立つことを見い出した。このことは、上記
図3におけるX線回折による解析と共に、後述の実施例
2において、ゼオライト粉体及び石灰質とを混合させた
場合とそれがない場合とを比較した処、ゼオライト粉体
の増量に従って曲げ強度が大きく向上したことでも確認
される。
【0012】上記焼成において、化成処理スラッジの配
合割合は40%以下が好ましい。何故なら、40%を越
すと融点の低いスラッジがガラス化し、酸化金属を還元
して酸素を生じ、発泡状態となるからである。又、少量
の添加なら他のセラミックス原料相互の焼結反応におい
ては鉱化剤的な作用が働いて新たなる結晶相を生成せし
めるが、配合割合が増加するにつれてフラックス的な作
用も働いて液相すなわちガラス相の生成がより低温側に
移り緻密化を促進し、強度特性においてはこのガラス相
の強度が支配的となるからでもある。
合割合は40%以下が好ましい。何故なら、40%を越
すと融点の低いスラッジがガラス化し、酸化金属を還元
して酸素を生じ、発泡状態となるからである。又、少量
の添加なら他のセラミックス原料相互の焼結反応におい
ては鉱化剤的な作用が働いて新たなる結晶相を生成せし
めるが、配合割合が増加するにつれてフラックス的な作
用も働いて液相すなわちガラス相の生成がより低温側に
移り緻密化を促進し、強度特性においてはこのガラス相
の強度が支配的となるからでもある。
【0013】又、本発明焼結体は、多孔質の陶器質製品
の比強度の向上に役立つ。つまり、セラミック建材を製
造するための素地用原料組成は、石灰質系素地組成でも
特に低級原料を使用している多孔質の陶器質製品ではそ
の見かけ比重に対する強度すなわち比強度がこのスラッ
ジを配合することによって非常に向上するので有効であ
る。近年、多孔質のセラミック建材として透水性あるい
は保水性を有するタイルまたはブロックの製品が上市さ
れており、このスラッジは極めて粒子径の細かい微粒子
粉体であることから、焼結過程にて強固な微細気孔を形
成するのでこのような製品の製造には特に好都合な配合
原料組成となる。
の比強度の向上に役立つ。つまり、セラミック建材を製
造するための素地用原料組成は、石灰質系素地組成でも
特に低級原料を使用している多孔質の陶器質製品ではそ
の見かけ比重に対する強度すなわち比強度がこのスラッ
ジを配合することによって非常に向上するので有効であ
る。近年、多孔質のセラミック建材として透水性あるい
は保水性を有するタイルまたはブロックの製品が上市さ
れており、このスラッジは極めて粒子径の細かい微粒子
粉体であることから、焼結過程にて強固な微細気孔を形
成するのでこのような製品の製造には特に好都合な配合
原料組成となる。
【0014】そして、本発明で用いるCaO成分の混合
割合は、合計量が重量換算で5%〜60%の範囲とする
のが好ましい。なぜなら、焼成収縮が少なく多孔質で緻
密化していないにも拘らず、本発明焼結体が強度を発現
しているのは、CaO成分の存在によって、Ca−長石
(アノルサイト:CaO・Al2O3・2SiO2)或い
はゲ−レナイト(別称メリライト:2CaO・Al2O3
・SiO2)の結晶が焼成過程で生成することによるも
ので、この結晶生成が著しいのはCaO成分の合計量が
重量換算で5%〜60%の範囲においてであるからであ
る。このCaO成分には、炭酸カルシウム(CaC
O3)、ドロマイト(CaCO3・MgCO3)、高炉ス
ラグ、ゴミ焼却灰又はこの熔融スラグ、コンクリート廃
材等が利用できる。
割合は、合計量が重量換算で5%〜60%の範囲とする
のが好ましい。なぜなら、焼成収縮が少なく多孔質で緻
密化していないにも拘らず、本発明焼結体が強度を発現
しているのは、CaO成分の存在によって、Ca−長石
(アノルサイト:CaO・Al2O3・2SiO2)或い
はゲ−レナイト(別称メリライト:2CaO・Al2O3
・SiO2)の結晶が焼成過程で生成することによるも
ので、この結晶生成が著しいのはCaO成分の合計量が
重量換算で5%〜60%の範囲においてであるからであ
る。このCaO成分には、炭酸カルシウム(CaC
O3)、ドロマイト(CaCO3・MgCO3)、高炉ス
ラグ、ゴミ焼却灰又はこの熔融スラグ、コンクリート廃
材等が利用できる。
【0015】
【発明の効果】以上のように本発明は、化成処理スラッ
ジを配合することによって原料組成間の焼結反応開始温
度が非常に低くなり、その反応も促進されることから、
配合しない場合の焼成温度よりも少なくとも50℃以上
下げて焼成しても同様の性能を有するセラミック焼結体
が得られる。従ってこれによる省エネルギー効果は甚大
である。また同時に、化成処理スラッジの再利用は種々
の方法が提案されながらも殆ど実用化されず廃棄処分さ
れているが、セラミック製品の中でも多量に生産されて
いるセラミック建材の素地用組成の一部に再利用し、且
つ、諸物性に優れた建材とすることができるとととな
り、貴重な資源の有効活用に貢献できるものである。
ジを配合することによって原料組成間の焼結反応開始温
度が非常に低くなり、その反応も促進されることから、
配合しない場合の焼成温度よりも少なくとも50℃以上
下げて焼成しても同様の性能を有するセラミック焼結体
が得られる。従ってこれによる省エネルギー効果は甚大
である。また同時に、化成処理スラッジの再利用は種々
の方法が提案されながらも殆ど実用化されず廃棄処分さ
れているが、セラミック製品の中でも多量に生産されて
いるセラミック建材の素地用組成の一部に再利用し、且
つ、諸物性に優れた建材とすることができるとととな
り、貴重な資源の有効活用に貢献できるものである。
【0016】
【実施例1】石灰質系素地組成に化成処理スラッジを配
合した組成物から微細気孔を有する陶器質焼結体が得ら
れる実施例について記す。使用した原料について記す
と、化成処理スラッジは前実施例のものと同様のものを
使用した。その他の原料には凝灰岩が変成作用を受けた
ふっ石を主成分とした鉱物で未利用資源の一つである大
谷石切り屑を0.25mm以下に粉砕した粉末を、Ca
O成分を含む石灰質原料として高炉スラグ微粉末を、成
形時の粘結材料としてまた焼成時の焼結材として木節粘
土粉末を、骨材として陶磁器屑を0.25mm以下に粉
砕した粉末をそれぞれ使用した。
合した組成物から微細気孔を有する陶器質焼結体が得ら
れる実施例について記す。使用した原料について記す
と、化成処理スラッジは前実施例のものと同様のものを
使用した。その他の原料には凝灰岩が変成作用を受けた
ふっ石を主成分とした鉱物で未利用資源の一つである大
谷石切り屑を0.25mm以下に粉砕した粉末を、Ca
O成分を含む石灰質原料として高炉スラグ微粉末を、成
形時の粘結材料としてまた焼成時の焼結材として木節粘
土粉末を、骨材として陶磁器屑を0.25mm以下に粉
砕した粉末をそれぞれ使用した。
【0017】
【表1】 ただしいずれも乾物重量換算で示す。
【0018】表1に示す配合率にて、全体の含水率が約
50%になるように水を加えて、高速ミキサーにて充分
混合し、練り土状になった混合物を含水率が約10%に
なる迄乾燥し、塊状になった混合物を解砕し、2mm目
の篩いを全通させて粉末成形用坏土とし、300×30
0mmの金型にこの坏土約3.6Kgを充填して加圧力1
50kgf/cm2で成形し、厚さ約20mmの成形体とし、
最高温度約150℃の乾燥機で充分乾燥し、直ちに最高
温度1000℃のローラーハースキルンにて約3時間か
けて焼結体を得た。得られた焼結体は265×265×
18mmの大きさで、物性については表2の通りであっ
た。
50%になるように水を加えて、高速ミキサーにて充分
混合し、練り土状になった混合物を含水率が約10%に
なる迄乾燥し、塊状になった混合物を解砕し、2mm目
の篩いを全通させて粉末成形用坏土とし、300×30
0mmの金型にこの坏土約3.6Kgを充填して加圧力1
50kgf/cm2で成形し、厚さ約20mmの成形体とし、
最高温度約150℃の乾燥機で充分乾燥し、直ちに最高
温度1000℃のローラーハースキルンにて約3時間か
けて焼結体を得た。得られた焼結体は265×265×
18mmの大きさで、物性については表2の通りであっ
た。
【0019】
【表2】
【0020】この結果、化成スラッジの配合割合が0で
ある配合Cでは、曲げ強度が51.6kgf/cm2であるの
に対し、10部,5部とした配合A及びBでは、その値
が188kgf/cm2及び169kgf/cm2となり、化成スラ
ッジの添加により曲げ強度が飛躍的に向上しているのが
判る。これは、化成処理スラッジの主成分である燐酸鉄
および燐酸亜鉛等の燐酸はカルシウム、マグネシウム等
の金属塩との反応が極めて大きいことから鉱化剤として
の作用を発揮し、1100℃という低温でも容易にアノ
ルサイト結晶生成を伴う焼結作用を促すためと考えられ
る。又、CaO成分を含む石灰質原料としてこの実施例
では高炉スラグを使用したが、このほかには石灰石、珪
灰石、ごみ焼却灰およびその溶融スラグ、石炭灰、コン
クリート廃材、石綿セメント製品端材等が上げられ利用
できる。特に溶融スラグは高温で溶融している状態から
水中に投下されて急冷されたものであるところからガラ
ス質であるため非常に反応性に富み、再加熱すると90
0〜1000℃で結晶化が起こり、珪酸塩鉱物物質とと
もに加熱すると容易にアノルサイト結晶が生成し、同時
に膨張性を示すので成形体の焼成収縮を抑える働きがあ
り極めて好都合な原料である。
ある配合Cでは、曲げ強度が51.6kgf/cm2であるの
に対し、10部,5部とした配合A及びBでは、その値
が188kgf/cm2及び169kgf/cm2となり、化成スラ
ッジの添加により曲げ強度が飛躍的に向上しているのが
判る。これは、化成処理スラッジの主成分である燐酸鉄
および燐酸亜鉛等の燐酸はカルシウム、マグネシウム等
の金属塩との反応が極めて大きいことから鉱化剤として
の作用を発揮し、1100℃という低温でも容易にアノ
ルサイト結晶生成を伴う焼結作用を促すためと考えられ
る。又、CaO成分を含む石灰質原料としてこの実施例
では高炉スラグを使用したが、このほかには石灰石、珪
灰石、ごみ焼却灰およびその溶融スラグ、石炭灰、コン
クリート廃材、石綿セメント製品端材等が上げられ利用
できる。特に溶融スラグは高温で溶融している状態から
水中に投下されて急冷されたものであるところからガラ
ス質であるため非常に反応性に富み、再加熱すると90
0〜1000℃で結晶化が起こり、珪酸塩鉱物物質とと
もに加熱すると容易にアノルサイト結晶が生成し、同時
に膨張性を示すので成形体の焼成収縮を抑える働きがあ
り極めて好都合な原料である。
【0021】
【実施例2】化成スラッジを含む陶器質組成にゼオライ
ト粉体(大谷石粉体)と石灰質(高炉スラグ)を添加し
た場合の焼結体としての性能比較の試験を行った。 使
用した原料は実施例1のものと同様のものを使用した。
得られた焼結体の物性については、表3のとうりであっ
た。
ト粉体(大谷石粉体)と石灰質(高炉スラグ)を添加し
た場合の焼結体としての性能比較の試験を行った。 使
用した原料は実施例1のものと同様のものを使用した。
得られた焼結体の物性については、表3のとうりであっ
た。
【表3】
【0022】この結果、配合Aの大谷石粉末をまったく
含まないものは、曲げ強度が109kgf/cm2であった
が、その大谷石粉末の配合割合を15〜50部に増すに
従って曲げ強度が132〜228kgf/cm2と向上し、ゼ
オライト粉体及び石灰質混合による曲げ強度の改善が確
認された。焼成収縮率は、若干の上昇が見られるが、焼
結体としては充分に小さい値である。
含まないものは、曲げ強度が109kgf/cm2であった
が、その大谷石粉末の配合割合を15〜50部に増すに
従って曲げ強度が132〜228kgf/cm2と向上し、ゼ
オライト粉体及び石灰質混合による曲げ強度の改善が確
認された。焼成収縮率は、若干の上昇が見られるが、焼
結体としては充分に小さい値である。
【図1】本発明に用いる化成処理スラッジのX線回折パ
タ−ン図。
タ−ン図。
【図2】本発明に用いる化成処理スラッジの熱処理によ
る構造変化を示すX線回折パタ−ン図。
る構造変化を示すX線回折パタ−ン図。
【図3】本発明に用いる化成処理スラッジ添加による焼
結体からのアノルサイト相析出の状態を示すX線回折パ
タ−ン図。
結体からのアノルサイト相析出の状態を示すX線回折パ
タ−ン図。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−198661(JP,A) 特開 平7−247155(JP,A) 特開 昭63−144164(JP,A) 特開 昭58−176167(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 33/13 B09B 3/00 C04B 35/16 C04B 35/447
Claims (4)
- 【請求項1】 鉄および/またはアルミニウムを含む燐
酸塩を主成分とし、これに亜鉛,カルシウム,マグネシ
ウム,ナトリウムからなる群の中から選ばれた一種以上
の金属塩または金属複塩を含む微粒子粉体と、ゼオライ
ト粉体と、CaO成分を含むセラミック原材料とを混合
させて成る焼結体。 - 【請求項2】 鉄および/またはアルミニウムを含む燐
酸塩を主成分とし、これに亜鉛,カルシウム,マグネシ
ウム,ナトリウムからなる群の中から選ばれた一種以上
の金属塩または金属複塩を含む微粒子粉体と、ゼオライ
ト粉体と、CaO成分を含むセラミック原材料とを混合
させて、該セラミック原材料より低い温度で焼結反応さ
せることを特徴とする焼結体の製造方法。 - 【請求項3】 請求項1及び請求項2記載の微粒子体
が、鋼板および/またはアルミニウム材の表面を燐酸塩
によって化成処理する際に副生する沈殿物である焼結
体。 - 【請求項4】 請求項1及び請求項2記載のセラミック
原材料が、CaO成分の合計量が重量換算で5%〜60
%含む組成物または混合物である焼結体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8198370A JP3008341B2 (ja) | 1996-07-09 | 1996-07-09 | リン酸塩化成処理スラッジとゼオライト粉体による焼結体とその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8198370A JP3008341B2 (ja) | 1996-07-09 | 1996-07-09 | リン酸塩化成処理スラッジとゼオライト粉体による焼結体とその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1025153A JPH1025153A (ja) | 1998-01-27 |
JP3008341B2 true JP3008341B2 (ja) | 2000-02-14 |
Family
ID=16389989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8198370A Expired - Fee Related JP3008341B2 (ja) | 1996-07-09 | 1996-07-09 | リン酸塩化成処理スラッジとゼオライト粉体による焼結体とその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3008341B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9901900B2 (en) | 2014-11-13 | 2018-02-27 | Samsung Electronics Co., Ltd. | Gas-adsorbing material and vacuum insulation material including the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090156725A1 (en) * | 2007-12-12 | 2009-06-18 | Enviroproducts International Llc | Manufactured aggregate material and method |
-
1996
- 1996-07-09 JP JP8198370A patent/JP3008341B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9901900B2 (en) | 2014-11-13 | 2018-02-27 | Samsung Electronics Co., Ltd. | Gas-adsorbing material and vacuum insulation material including the same |
Also Published As
Publication number | Publication date |
---|---|
JPH1025153A (ja) | 1998-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suzuki et al. | Glass-ceramic from sewage sludge ash | |
US5521132A (en) | Ash-based ceramic materials | |
KR19990007639A (ko) | 고상폐기물을 원료로 하는 세라믹 조성물 및 이의 제조방법 | |
JP3303221B2 (ja) | スズ浴用敷きれんがとしての耐火れんが | |
CA3180701A1 (en) | Dry substance mixture for a batch, preferably a refractory concrete batch, for the production of a coarse ceramic refractory non-basic product, refractory concrete batch and such product and method for its production, lining and industrial furnace, launder transport system or mobile transport vesse | |
JP2000016843A (ja) | アルミナセメント、アルミナセメント組成物、その不定形耐火物、及びそれを用いた吹付施工方法 | |
RU2374206C1 (ru) | Сырьевая смесь и способ изготовления керамических изделий | |
JP2002193681A (ja) | 不定形耐火物およびそれを利用した廃棄物溶融炉 | |
JP3008341B2 (ja) | リン酸塩化成処理スラッジとゼオライト粉体による焼結体とその製造方法 | |
KR102405842B1 (ko) | 아스팔트 포장용 채움재 조성물, 이로부터 제조된 아스팔트 포장용 채움재 및 이를 포함하는 도로포장용 아스팔트 | |
KR20000072111A (ko) | 경량 골재용 조성물 및 그 제조방법 | |
JPH05254924A (ja) | クロム固溶スピネル及びコランダムよりなるクリンカー並びにそれを用いて得られる耐火物 | |
KR101179189B1 (ko) | 로터리 킬른을 이용한 c12a7계 광물의 제조방법 | |
KR20020044899A (ko) | 경량 골재용 조성물 및 그 제조방법 | |
KR101918998B1 (ko) | 폐펄라이트를 재활용한 미장용 블록 및 이의 제조방법 | |
KR100392933B1 (ko) | 경량 골재용 조성물 | |
JPH1025138A (ja) | 硬化性無機質組成物 | |
JP3027593B2 (ja) | 特殊セメントの製造方法 | |
JP3461019B2 (ja) | 環境調和型水硬性組成物及びその製造方法 | |
JPH06134438A (ja) | 廃アスベスト材の処理法および廃アスベスト材を用いた窯業製品の製造方法 | |
JPS61243132A (ja) | 焼結原料用バインダ− | |
JP4588238B2 (ja) | アルミナセメントの凝結・硬化促進剤、アルミナセメント組成物、及びそれを用いた不定形耐火物 | |
JP2005281075A (ja) | アルミナ質人工骨材の製造方法及びアルミナ質人工骨材 | |
JP4275381B2 (ja) | 溶融スラグを用いたタイルの製造方法 | |
JPH06321608A (ja) | セメント組成物及びそれを含有してなる不定形耐火物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |