JP3002215B2 - Heat-resistant alloy and skid rail using it - Google Patents

Heat-resistant alloy and skid rail using it

Info

Publication number
JP3002215B2
JP3002215B2 JP2026968A JP2696890A JP3002215B2 JP 3002215 B2 JP3002215 B2 JP 3002215B2 JP 2026968 A JP2026968 A JP 2026968A JP 2696890 A JP2696890 A JP 2696890A JP 3002215 B2 JP3002215 B2 JP 3002215B2
Authority
JP
Japan
Prior art keywords
alloy
heat
resistant alloy
resistance
skid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2026968A
Other languages
Japanese (ja)
Other versions
JPH03232945A (en
Inventor
賢治 附田
知人 飯久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2026968A priority Critical patent/JP3002215B2/en
Priority to TW080100844A priority patent/TW200532B/zh
Priority to DE69122138T priority patent/DE69122138T2/en
Priority to CA002035618A priority patent/CA2035618A1/en
Priority to AT91300887T priority patent/ATE143060T1/en
Priority to EP91300887A priority patent/EP0441573B1/en
Priority to KR1019910002051A priority patent/KR100190552B1/en
Publication of JPH03232945A publication Critical patent/JPH03232945A/en
Priority to US07/865,742 priority patent/US5226980A/en
Application granted granted Critical
Publication of JP3002215B2 publication Critical patent/JP3002215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/02Skids or tracks for heavy objects
    • F27D3/022Skids
    • F27D3/024Details of skids, e.g. riders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

An oxide-dispersion strengthened type heat-resistant alloy is provided for use in preparing furnace members such as a skid rail. The alloy consists essentially of up to 0.2% C + N, up to 2.0% Si, up to 2.0% Mn, 25 to 35% Ni and 20 to 35% Cr, 5 to 50% Co; and one or more of 0.5 to 5% Mo, 0.5 to 5% W, and 0.2 to 4% Ta, and the balance of Fe, and contains 0.1 to 2% of fine particles of high melting point metal oxide such as Y2O3 dispersed in the austenite matrix. The alloy exhibits excellent properties against hot deformation, also oxidation resistance, abrasion resistance and thermal shock resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、高温における強度および耐食性にすぐれた
耐熱合金に関する。本発明の合金は、たとえば鉄鋼業に
おける鋼片加熱炉に使用する、スキッドレールの材料と
して好適である。
The present invention relates to a heat-resistant alloy having excellent strength and corrosion resistance at high temperatures. The alloy of the present invention is suitable as a material for a skid rail used for a billet heating furnace in the steel industry, for example.

【従来の技術】[Prior art]

一般に鋼板や鋼線材は、ブルーム、スラブ、ビレット
等の鋼片を、ウォーキングビーム炉やプッシャー炉のよ
うな加熱炉中で均一に加熱した後、圧延することにより
製造している。これらの鋼片の、加熱炉内で炉床金物と
接触している部分の温度が他の部分の温度より低いと、
圧延後の鋼材に厚さムラを生じたり、割れが生じたりす
る。これを防止するためには、炉床金物の被加熱体との
接触部分の温度を、被加熱体の均熱温度に近くすること
が必要である。そのため、炉床金物の最高使用温度は13
00℃以上の高温に達する。 従来、1150℃以上の高温に耐える炉床金物材の代表的
な例としては、FeにCr:20〜35%、Ni:15〜35%、Co:5〜
50%を主成分とし、その他固溶強化元素としてMo:0.5〜
5%、W:0.5〜5%、Ta:0.2〜4.0%を添加した固溶強化
型耐熱鋳造合金が使用されてきた。しかし、加熱炉のソ
ーキングゾーンにおけるスキッドレールは、1200〜1350
℃という高温にさらされる上に変形や摩耗が激しい。上
記の固溶強化型耐熱鋳造合金は、スキッドレールの材料
として不満足である。 耐熱性と耐摩耗性の高い炉床金物の材料として、セラ
ミックスを使用することが提案されている(たとえば実
公昭55−35326号)。ところが、スキッドレールに要求
されるいまひとつの特性である耐衝撃性の観点から好ま
しいファインセラミックス材料、たとえばSiCやSi3N
4は、酸化性の強い雰囲気で使用すると、酸化により容
易に損傷してしまう。 一方、酸化物分散強化型超合金、すなわちNi基超合金
にイットリアY2O3のような高融点の酸化物の微細粒子を
分散させて強化して酸化物分散強化型超合金が、ガスタ
ービンやジェット・エンジンに用途が見出されてた(た
とえば特公昭56−38665号)。高温炉に関しては、12.5
〜20%のCr、1%以下のAl、0.1%以下のCおよび0.5%
(容量)までのY2O3、残部Niからなる酸化物分散強化型
超合金を、メッシュベルトの材料として使用することが
提案された(特公昭59−9610号)。 出願人らの一社は、酸化物分散強化型超合金をスキッ
ドレールのスキッド部材として利用することを意図して
研究の結果、重量で18〜40%のCrおよび5%以下のTiを
含有し、残部が実質的にNiからなる合金のオーステナイ
トマトリクス中に微細な高融点金属酸化物を0.1〜2%
分散含有する酸化物分散強化型超合金が好適であること
を見出した。この知見は、すでに開示した(特願平1−
14044号)。 ところで、Ni基超合金は重油を燃料として使用してい
る炉では、重油中のS成分による高温硫化腐食を受けや
すい。高温硫化腐食に対して十分な耐食性を有している
のは、たとえばFe−Ni−Cr−Co−W系固溶強化型耐熱鋳
造合金である。これに近い組成のマトリクスをもつ酸化
物分散強化型耐熱合金が得られれば、上記の欠点を改善
した炉床金物として、好適な合金となる。 また、いうまでもなくNi基合金は高価であるから、な
るべく廉価な合金でスキッドレールのような炉床金物を
構成することが望ましい。
Generally, a steel sheet or a steel wire is manufactured by uniformly heating a steel piece such as a bloom, a slab, or a billet in a heating furnace such as a walking beam furnace or a pusher furnace, and then rolling. If the temperature of the part of these billets in contact with the hearth metal in the heating furnace is lower than the temperature of the other parts,
Uneven thickness or cracks occur in the rolled steel material. In order to prevent this, it is necessary to make the temperature of the contact portion of the hearth metal with the object to be heated close to the soaking temperature of the object to be heated. Therefore, the maximum operating temperature of hearth hardware is 13
High temperatures of over 00 ° C. Conventionally, as typical examples of hearth metal materials that can withstand high temperatures of 1150 ° C or more, Fe: 20 to 35%, Ni: 15 to 35%, Co: 5 to
50% as main component, Mo: 0.5 ~
Solid solution strengthened heat-resistant cast alloys containing 5%, W: 0.5 to 5%, and Ta: 0.2 to 4.0% have been used. However, the skid rail in the soaking zone of the heating furnace is 1200-1350
Exposure to high temperature of ℃ and severe deformation and wear. The above solid solution strengthened heat-resistant cast alloys are unsatisfactory as materials for skid rails. It has been proposed to use ceramics as a material for the hearth metal having high heat resistance and high wear resistance (for example, Japanese Utility Model Publication No. 55-35326). However, fine ceramic materials, such as SiC and Si 3 N, which are preferable from the viewpoint of impact resistance, which is another property required for skid rails
4 is easily damaged by oxidation when used in a highly oxidizing atmosphere. On the other hand, an oxide dispersion strengthened superalloy, that is, an oxide dispersion strengthened superalloy that disperses and strengthens fine particles of a high melting point oxide such as yttria Y 2 O 3 And its use in jet engines (for example, Japanese Patent Publication No. 56-38665). For high temperature furnaces, 12.5
~ 20% Cr, 1% or less Al, 0.1% or less C and 0.5%
It has been proposed to use an oxide dispersion strengthened superalloy consisting of Y 2 O 3 up to (capacity) and the balance of Ni as a material for the mesh belt (Japanese Patent Publication No. 59-9610). One of the Applicants has studied with the intention of utilizing oxide dispersion strengthened superalloys as skid members for skid rails and has found that they contain 18-40% Cr and 5% or less Ti by weight. 0.1 to 2% of fine refractory metal oxide in an austenitic matrix of an alloy substantially consisting of Ni
It has been found that an oxide dispersion strengthened superalloy containing dispersion is suitable. This finding has already been disclosed (Japanese Patent Application No.
14044). By the way, Ni-base superalloys are susceptible to high-temperature sulfidation corrosion due to S component in heavy oil in a furnace using heavy oil as fuel. For example, a Fe-Ni-Cr-Co-W solid solution strengthened heat-resistant cast alloy having sufficient corrosion resistance against high-temperature sulfidation corrosion is used. If an oxide dispersion-strengthened heat-resistant alloy having a matrix having a composition close to this can be obtained, it will be a suitable alloy as a hearth metal fitting with the above-mentioned disadvantages improved. Needless to say, Ni-based alloys are expensive, so it is desirable to form a hearth metal such as a skid rail with an inexpensive alloy as much as possible.

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明の一般的な目的は、耐熱合金中に酸化物を分散
させて強化する技術をFe基合金にも有利に適用し、耐熱
変形性、耐摩耗性および耐衝撃性だけでなく、耐酸化性
に関して、上記の酸化物分散強化型Ni基超合金と同等な
ランクの性能を示す耐熱合金を提供することにある。 本発明の特定的な目的は、固溶強化型耐熱鋳造合金と
しては最高レベルの高温強度、耐高温腐食抵抗を有する
組成の合金のマトリクスに、高温における塑性変形を抑
制する酸化物粒子を分散させて強化することにより、よ
り高性能な耐熱合金を提供することにある。 本発明の別の目的は、上記した耐熱合金を材料とす
る、高性能の加熱炉用金物、とくにスキッドレールを提
供することにある。
The general purpose of the present invention is to apply the technology of dispersing oxides in a heat-resistant alloy and strengthen it advantageously to Fe-based alloys, not only heat-resistant deformation, abrasion resistance and impact resistance, but also oxidation resistance An object of the present invention is to provide a heat-resistant alloy exhibiting the same rank of performance as the oxide dispersion strengthened Ni-based superalloy described above. A specific object of the present invention is to disperse oxide particles that suppress plastic deformation at high temperatures in a matrix of an alloy having a composition having the highest level of high-temperature strength and high-temperature corrosion resistance as a solid solution strengthened heat-resistant cast alloy. The purpose of the present invention is to provide a high-performance heat-resistant alloy by strengthening it. Another object of the present invention is to provide a high-performance hardware for a heating furnace, particularly a skid rail, made of the above-mentioned heat-resistant alloy.

【課題を解決するための手段】[Means for Solving the Problems]

本発明の耐熱合金は、C+N:0.2%以下、Si:2.0%、M
n:2.0%以下、Ni:15〜35%、Cr:20〜35%、Co:5〜50
%、Mo:0.5〜5.0%、W:0.5〜5.0%およびTa:0.2〜4.0%
を含有し、残部が実質的にFeからなる合金のオーステナ
イトマトリクス中に微細な高融点金属酸化物を0.1〜2
%分散含有する酸化物分散強化型耐熱合金である。 高融点金属酸化物は、Y2O3、ZrO2およびA2O3から
えらんだ1種または2種以上を使用する。Y2O3が最良の
結果を与える。 上記のような酸化物分散強化型超合金を製造するに
は、INCO(ジ・インターナショナル・ニッケル・カンパ
ニー・インコーポレーテッド)が開発した、いわゆるメ
カニカル・アロイイング法が効果的である。この方法
は、合金成分となる純金属の粒子とイットリアのような
高融点金属酸化物の微結晶とを、ボールミルたとえば高
運動エネルギー型ボールミルに入れ、溶接と粉砕とを繰
り返すことによって、各成分の微細粉末の緊密かつ均一
な混合物からなる粒状の製品を得ることからなる。メカ
ニカル・アロイイングによって得た粉末混合物は、熱間
押出や熱間静水圧プレスにより圧粉成形および焼結し、
必要により機械加工を施して、スキッド部材のような炉
床金物とする。 この耐熱合金をスキッドレールに使用する場合、スキ
ッドレールは、全体を耐熱合金で製作することもできる
し、他の材料と組み合わせて製作することもできる。後
者の場合の代表的な構造は、第1図ないし第3図に示す
ように、水冷スキッドパイプ(2)に金属製のサドル
(3)を溶接固定し、このサドルにスキッド部材(4)
を取り付け、スキッド部材以外の部分を耐火断熱材
(5)で被覆して、スキッドレール(1)とする。この
スキッド部材(4)の材料として、上記の酸化物分散強
化型耐熱合金を使用する。 スキッドレールは、もちろんそのほかの構造、たとえ
ば、円筒状のサドルを使用し、ボタン形状のスキッド部
材を取り付けた構造とすることもできる。
The heat-resistant alloy of the present invention has C + N: 0.2% or less, Si: 2.0%, M
n: 2.0% or less, Ni: 15-35%, Cr: 20-35%, Co: 5-50
%, Mo: 0.5-5.0%, W: 0.5-5.0% and Ta: 0.2-4.0%
And a fine refractory metal oxide in an austenitic matrix of an alloy substantially consisting of Fe,
It is an oxide dispersion strengthened heat-resistant alloy containing 0.1% dispersion. As the refractory metal oxide, one or more selected from Y 2 O 3 , ZrO 2 and A 2 O 3 are used. Y 2 O 3 gives the best results. In order to produce the above oxide dispersion strengthened superalloy, a so-called mechanical alloying method developed by INCO (The International Nickel Company, Inc.) is effective. In this method, pure metal particles serving as alloy components and microcrystals of a high melting point metal oxide such as yttria are put into a ball mill, for example, a high kinetic energy type ball mill, and welding and pulverization are repeated. It consists in obtaining a granular product consisting of an intimate and homogeneous mixture of fine powders. The powder mixture obtained by mechanical alloying is compacted and sintered by hot extrusion or hot isostatic pressing,
If necessary, machining is performed to obtain a hearth metal such as a skid member. When this heat-resistant alloy is used for a skid rail, the entire skid rail can be made of a heat-resistant alloy, or can be manufactured in combination with another material. A typical structure in the latter case is that a metal saddle (3) is fixed to a water-cooled skid pipe (2) by welding, as shown in FIGS. 1 to 3, and a skid member (4) is attached to the saddle.
Is attached, and parts other than the skid member are covered with the refractory heat insulating material (5) to obtain a skid rail (1). As the material of the skid member (4), the above-described oxide dispersion strengthened heat-resistant alloy is used. Of course, the skid rail may have another structure, for example, a structure in which a cylindrical saddle is used and a button-shaped skid member is attached.

【作 用】[Operation]

一般に、酸化物分散強化型Ni基超合金は高温度でも安
定であって、前記した既知は、それぞれタービンブレー
ド(特公昭56−38665号)やメッシュベルト(特公昭59
−9610号)という用途に適した合金組成をもち、それに
適した量の酸化物を含有している。しかし、既知のNi基
合金は、重油の燃焼による雰囲気の加熱炉で起る高温硫
化腐食に対して、十分な腐食抵抗を有していない。 本発明に従って、上記した組成の酸化物分散強化型合
金を使用することにより、耐熱性および耐酸化性に加え
て、後記の実施例にみるように高い圧縮クリープ強度を
達成することが可能になる。このようにして、廉価であ
るにもかかわらず耐久力の高い合金が提供される。 本発明の合金の組成を前記のように選択した理由は、
つぎのとおりである。 C+N:0.2%以下 Cは高温強度を向上するのに有効であるが、C+Nを
0.2%以上含有すると融点が下り、また溶接性および靭
性をも低化させる。 Si:2.0%以下 Siは高温における耐酸化性を改善する。含有量が多過
ぎると、σ相の析出を助長する。 Mn:2.0%以下 Mnも高温における耐酸化性にとって有用であるが、多
量の添加はむしろ耐酸化性を低下させる。 Ni:15〜35% Niは、オーステナイトを安定化し、耐熱性、耐浸炭性
および高温強度を高めるのに有効である。15%未満では
この効果が少なく、また35%を超えると、効果が飽和す
る。 Cr:20〜35% Crは、高温における耐酸化性向上のために、少なくと
も20%含有させる必要がある。多すぎるとオーステナイ
トが不安定化し、靭性を低下させる。 Co:5〜50% Coはオーステナイト安定化元素であり、基地に固溶し
て積層欠陥エネルギーを小さくし、1150℃以上のクリー
プ強度を向上させる。この目的にとって、5%以上の添
加が必要である。50%以上ではその効果が飽和し、経済
性の点からも不利である。 Mo:0.5〜5%、W:0.5〜5.0%およびTa:0.2〜4.0% これらの元素はオーステナイトに固溶し、とくに1000
℃以上の高温において、高温強度およびクリープ強度を
著しく増加させる。 高融点金属酸化物:0.1〜2% 最も好ましい金属酸化物は、前記のようにY2O3であ
る。比較的低温(1200℃くらいまで)の加熱炉で使用す
るスキッドレールには、Y2O3の一部または全部を、ZrO2
やA2O3と置換できる。もちろん、Y2O3、ZrO2、A2
O3の2種以上の併用も可能である。金属酸化物の含有量
は0.1%以上にすべきである。さもないと、合金を高温
で安定化する効果が不足である。この効果は、含有量が
1%くらいから鈍化し2%で飽和するので、この範囲内
の適当な値を選択する。
Generally, an oxide dispersion strengthened Ni-base superalloy is stable even at high temperatures, and the above-mentioned known techniques are known for turbine blades (JP-B-56-38665) and mesh belts (JP-B-59-38665), respectively.
No.-9610), which has an alloy composition suitable for use and contains an oxide in an appropriate amount. However, the known Ni-based alloys do not have sufficient corrosion resistance to high-temperature sulphide corrosion that occurs in a heating furnace in an atmosphere due to heavy oil combustion. According to the present invention, by using the oxide dispersion-strengthened alloy having the above composition, in addition to heat resistance and oxidation resistance, it is possible to achieve high compressive creep strength as shown in Examples described later. . In this way, an inexpensive yet durable alloy is provided. The reason for selecting the composition of the alloy of the present invention as described above is as follows.
It is as follows. C + N: 0.2% or less C is effective in improving high-temperature strength, but C + N
When the content is 0.2% or more, the melting point is lowered, and the weldability and toughness are also reduced. Si: 2.0% or less Si improves oxidation resistance at high temperatures. If the content is too large, precipitation of the σ phase is promoted. Mn: 2.0% or less Mn is also useful for oxidation resistance at high temperatures, but a large amount of Rn rather reduces oxidation resistance. Ni: 15-35% Ni is effective in stabilizing austenite and increasing heat resistance, carburization resistance and high-temperature strength. If it is less than 15%, this effect is small, and if it exceeds 35%, the effect is saturated. Cr: 20-35% Cr must be contained at least 20% in order to improve oxidation resistance at high temperatures. If the amount is too large, austenite becomes unstable and lowers toughness. Co: 5 to 50% Co is an austenite stabilizing element, and forms a solid solution in the matrix to reduce stacking fault energy and improve creep strength at 1150 ° C or higher. For this purpose, an addition of 5% or more is necessary. If it is more than 50%, the effect is saturated, which is disadvantageous from the economic point of view. Mo: 0.5-5%, W: 0.5-5.0% and Ta: 0.2-4.0% These elements form a solid solution in austenite, especially 1000
At high temperatures above ℃, it significantly increases high temperature strength and creep strength. Refractory metal oxide: 0.1% to 2% and most preferred metal oxide, wherein a Y 2 O 3 as. The skid rails relatively used in a heating furnace of a low temperature (up to about 1200 ° C.) is a part or the whole of Y 2 O 3, ZrO 2
And A 2 O 3 . Of course, Y 2 O 3 , ZrO 2 , A 2
A combination of two or more types of O 3 is also possible. The metal oxide content should be at least 0.1%. Otherwise, the effect of stabilizing the alloy at high temperatures is insufficient. This effect slows the content from about 1% and saturates at 2%, so an appropriate value within this range is selected.

【実施例】【Example】

第1表に記載の組成(重量%、残部Fe)の酸化物分散
強化型合金をメカニカル・アロイイング法により調製
し、その合金熱間押出しおよび機械加工して、試験材料
を製作した。 上記の材料について超高温における圧縮クリープ試験
および高温酸化試験を行ない、従来のスキッドレール用
材料「TH101」(0.1C−32Cr−21Ni−23Co−2.5W−Zr)
と、耐久力および耐酸化性を比較した。 圧縮クリープ試験は、直径3mm、高さ6.5mmの円柱状の
試験片を上下から押え板および受け板で挟み、高温で圧
縮荷重をかけることによって行なう。一定時間後に試験
片の高さを測定し、もとの高さに対する減少のパーセン
テージを算出して、変形量とする。 各試験条件における円形率(%)は、第2表に示すと
おりであった。高温酸化試験後の各時間における単位面
積あたりの酸化減量は、第3表に示すとおりであった。 No.4合金について、温度が1300℃で試験時間150時間
の場合に着目すると、在来品は356.2mg/cm2も減量した
が、本発明に従えば、減量は17.54mg/cm2に止どまって
おり、好成績が確認できた。
A test material was prepared by preparing an oxide dispersion-strengthened alloy having the composition shown in Table 1 (wt%, balance Fe) by mechanical alloying, hot extruding the alloy, and machining. The above materials were subjected to a compression creep test and a high temperature oxidation test at an ultra-high temperature, and a conventional skid rail material "TH101" (0.1C-32Cr-21Ni-23Co-2.5W-Zr)
And the durability and oxidation resistance were compared. The compression creep test is performed by sandwiching a cylindrical test piece having a diameter of 3 mm and a height of 6.5 mm between a holding plate and a receiving plate from above and below and applying a compressive load at a high temperature. After a certain period of time, the height of the test piece is measured, and the percentage of the decrease relative to the original height is calculated, and this is defined as the amount of deformation. The circularity (%) under each test condition was as shown in Table 2. The oxidation loss per unit area at each time after the high-temperature oxidation test was as shown in Table 3. For No.4 alloy, stop paying attention to when the temperature is test time 150 hours at 1300 ° C., conventional products 356.2mg / cm 2 also was reduced, according to the present invention, weight loss to 17.54mg / cm 2 We stayed and confirmed good results.

【発明の効果】【The invention's effect】

本発明の合金は、鋼材の熱間加工用など種々の加熱炉
のスキッドレールの材料として使用したとき、すぐれた
耐熱変形性、耐酸化性、耐摩耗性および耐熱衝撃性を示
し、それゆえ長期にわたって使用できる。これは加熱炉
の保守の手数を減らして連続運転を容易にする。エネル
ギーおよびメンテナンスの費用の低減は、鋼の熱間加工
のコストダウンをもたらす。
The alloy of the present invention exhibits excellent heat deformation resistance, oxidation resistance, wear resistance and thermal shock resistance when used as a material for skid rails of various heating furnaces, such as for hot working of steel, and Can be used over. This facilitates continuous operation by reducing the maintenance of the heating furnace. Lower energy and maintenance costs result in lower costs for hot working of steel.

【図面の簡単な説明】 第1図ないし第3図は、本発明の耐熱合金を使用して構
成したスキッドレールの代表的な構造を説明するもので
あって、第1図は平面図、第2図は側面図、第3図は横
断面図である。 1……スキッドレール 2……スキッドパイプ 3……サドル 4……スキッド部材 5……耐火断熱剤
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 illustrate a typical structure of a skid rail formed using the heat-resistant alloy of the present invention. FIG. 1 is a plan view and FIG. 2 is a side view, and FIG. 3 is a cross-sectional view. DESCRIPTION OF SYMBOLS 1 ... Skid rail 2 ... Skid pipe 3 ... Saddle 4 ... Skid member 5 ... Fireproof heat insulating agent

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−25536(JP,A) 特開 昭51−63306(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 1/00 116 F27D 3/02 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-25536 (JP, A) JP-A-51-63306 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 1/00 116 F27D 3/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C+N:0.2%以下、Si:2.0%以下、Mn:2.0
%以下、Ni:15〜35%、Cr:20〜35%、Co:5〜50%、Mo:
0.5〜5.0%、W:0.5〜5.0%およびTa:0.2〜4.0%を含有
し、残部が実質的にFeからなる合金のオーステナイトマ
トリクス中に微細な高融点金属酸化物を0.1〜2%分散
含有する酸化物分散強化型耐熱合金。
1. C + N: 0.2% or less, Si: 2.0% or less, Mn: 2.0%
%, Ni: 15-35%, Cr: 20-35%, Co: 5-50%, Mo:
0.5 to 5.0%, W: 0.5 to 5.0%, and Ta: 0.2 to 4.0%, with the balance containing 0.1 to 2% of fine refractory metal oxide dispersed in an austenitic matrix of an alloy substantially consisting of Fe. Oxide dispersion strengthened heat resistant alloy.
【請求項2】高融点の金属酸化物がY2O3である請求項1
の耐熱合金。
2. The high melting point metal oxide is Y 2 O 3.
Heat-resistant alloy.
【請求項3】請求項1または2のいずれかの耐熱合金を
使用したスキッドレール。
3. A skid rail using the heat-resistant alloy according to claim 1.
JP2026968A 1990-02-06 1990-02-06 Heat-resistant alloy and skid rail using it Expired - Lifetime JP3002215B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2026968A JP3002215B2 (en) 1990-02-06 1990-02-06 Heat-resistant alloy and skid rail using it
TW080100844A TW200532B (en) 1990-02-06 1991-02-02
CA002035618A CA2035618A1 (en) 1990-02-06 1991-02-04 Skid rail alloy
AT91300887T ATE143060T1 (en) 1990-02-06 1991-02-04 HEAT RESISTANT ALLOY
DE69122138T DE69122138T2 (en) 1990-02-06 1991-02-04 Heat-resistant alloy
EP91300887A EP0441573B1 (en) 1990-02-06 1991-02-04 Heat-resistant alloy
KR1019910002051A KR100190552B1 (en) 1990-02-06 1991-02-06 Heat-resistant alloy
US07/865,742 US5226980A (en) 1990-02-06 1992-04-08 Skid rail alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2026968A JP3002215B2 (en) 1990-02-06 1990-02-06 Heat-resistant alloy and skid rail using it

Publications (2)

Publication Number Publication Date
JPH03232945A JPH03232945A (en) 1991-10-16
JP3002215B2 true JP3002215B2 (en) 2000-01-24

Family

ID=12207960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2026968A Expired - Lifetime JP3002215B2 (en) 1990-02-06 1990-02-06 Heat-resistant alloy and skid rail using it

Country Status (7)

Country Link
EP (1) EP0441573B1 (en)
JP (1) JP3002215B2 (en)
KR (1) KR100190552B1 (en)
AT (1) ATE143060T1 (en)
CA (1) CA2035618A1 (en)
DE (1) DE69122138T2 (en)
TW (1) TW200532B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372499A (en) * 1993-08-24 1994-12-13 Daido Tokushuko Kabushiki Kaisha High-temperature gas blower impeller with vanes made of dispersion-strengthened alloy, gas blower using such impeller, and gas circulating furnace equipped with such gas blower
CN115198163B (en) * 2022-05-24 2023-04-25 北京科技大学 Preparation method of multi-nano-phase reinforced ODS alloy with tensile plasticity
CN116159999A (en) * 2023-02-16 2023-05-26 成都美奢锐新材料有限公司 Raw material powder, and material and mold for high-temperature oxidation environment prepared from raw material powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111685A (en) * 1976-11-04 1978-09-05 Special Metals Corporation Dispersion-strengthened cobalt-bearing metal
CA1329320C (en) * 1988-01-26 1994-05-10 Kazuto Terai Skid rail

Also Published As

Publication number Publication date
DE69122138D1 (en) 1996-10-24
CA2035618A1 (en) 1991-08-07
EP0441573A1 (en) 1991-08-14
KR910015715A (en) 1991-09-30
JPH03232945A (en) 1991-10-16
DE69122138T2 (en) 1997-02-27
ATE143060T1 (en) 1996-10-15
EP0441573B1 (en) 1996-09-18
TW200532B (en) 1993-02-21
KR100190552B1 (en) 1999-06-01

Similar Documents

Publication Publication Date Title
CN102216479B (en) Aluminium oxide forming nickel based alloy
JP2718132B2 (en) Skid rail
US5608174A (en) Chromium-based alloy
EP0256555B1 (en) Dispersion strengthened alloys
US8597438B2 (en) Use and method of producing a dispersion strengthened steel as material in a roller for a roller hearth furnace
JP3002215B2 (en) Heat-resistant alloy and skid rail using it
KR100190551B1 (en) Skid rail using fe-cr dispersion strengthened alloys
JPS61194147A (en) Sintered hard alloy
US5209772A (en) Dispersion strengthened alloy
US5226980A (en) Skid rail alloy
JP3326822B2 (en) Hearth roll using oxide dispersion strengthened alloy
JP7476668B2 (en) Ni-based alloy, Ni-based alloy product and manufacturing method thereof
CA2215447C (en) Heat-resistant alloy steel for hearth metal members of steel material heating furnaces
JP2923130B2 (en) High corrosion and wear resistant cast steel
JP2696624B2 (en) Oxide dispersion strengthened ferritic heat-resistant steel sheet
JPS6173867A (en) Hot wear resistant member of dispersion strengthening sintered alloy steel
JPH101753A (en) Heat resistant alloy for skid button in heating furnace
WO2024123229A1 (en) Nickel-based alloy
JP2000017405A (en) High strength superfine-grained steel and welded joint using the steel as base material
JP2938311B2 (en) Heat- and wear-resistant cast slab support for continuous casting
JPH02115348A (en) High al austenitic heat-resistant steel having excellent hot workability
JP2001140031A (en) Heat resistant alloy for skid button
JPH04131344A (en) Oxide dispersion strengthened type ni-base alloy and its production
Sikka et al. FABRICATION AND PRO_E $$ IN (_ OF IRON ALI, JMINIDE$
JPS601384B2 (en) Tungsten carbide-based cemented carbide for hot processing equipment parts