JP3001086B2 - Column structure in underground structure - Google Patents

Column structure in underground structure

Info

Publication number
JP3001086B2
JP3001086B2 JP7194064A JP19406495A JP3001086B2 JP 3001086 B2 JP3001086 B2 JP 3001086B2 JP 7194064 A JP7194064 A JP 7194064A JP 19406495 A JP19406495 A JP 19406495A JP 3001086 B2 JP3001086 B2 JP 3001086B2
Authority
JP
Japan
Prior art keywords
column
deformation
laminated rubber
underground structure
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7194064A
Other languages
Japanese (ja)
Other versions
JPH0921299A (en
Inventor
和章 内藤
洋三 後藤
隆 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP7194064A priority Critical patent/JP3001086B2/en
Publication of JPH0921299A publication Critical patent/JPH0921299A/en
Application granted granted Critical
Publication of JP3001086B2 publication Critical patent/JP3001086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネル等の地下
構造物内に構築される柱の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a column structure constructed in an underground structure such as a tunnel.

【0002】[0002]

【従来の技術】地下に構築された構造物においては、地
震の加速度が地表よりも地中の方が一般的には小さいこ
とや周囲の地盤と一体となって振動することのために、
地震による被害は、地上の構造物よりも軽微にとどまる
ことが多い。そして、設計においても、例えば開削トン
ネルの場合、地表面荷重、土かぶり荷重、土圧、水圧等
を用いて荷重計算が行なわれ、地震の影響については随
時検討されるのが一般的である。
2. Description of the Related Art In structures constructed underground, the acceleration of earthquakes is generally lower in the ground than in the surface of the ground, and the ground vibrates integrally with the surrounding ground.
Damage from earthquakes is often less than on-ground structures. Also in the design, for example, in the case of an open tunnel, load calculation is performed using the ground surface load, soil cover load, earth pressure, water pressure, and the like, and the effect of an earthquake is generally considered as needed.

【0003】ところが、巨大地震の場合には地下構造物
にも大きな変形や応力が生じることがあり、地下鉄駅舎
の中柱がせん断破壊を起こして天井スラブが陥没すると
いう事態があり得る。
[0003] However, in the case of a huge earthquake, a large deformation or stress may occur in the underground structure, and the center pillar of the subway station may be sheared and the ceiling slab may collapse.

【0004】大きな軸力を常時受けている鉄筋コンクリ
ート柱の地震荷重によるせん断破壊については、周知の
ようにきわめて脆性的であり、柱のコア部分のコンクリ
ートが爆裂的な崩壊を起こし、柱の耐力は急激に減少す
る。そのため、RC柱の設計においては、せん断補強筋
を増やす、柱断面を大きくするなどの対策を施してせん
断破壊に対する耐震性を向上させることが必要である。
[0004] As is well known, shear failure of a reinforced concrete column which is constantly subjected to a large axial force due to an earthquake load is extremely brittle, and concrete in the core portion of the column causes explosive collapse, and the strength of the column is reduced. Decrease rapidly. Therefore, in the design of RC columns, it is necessary to improve the earthquake resistance against shear failure by taking measures such as increasing the shear reinforcement and enlarging the column cross section.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、例えば
地下鉄の開削トンネルにおける中柱の場合には、車両の
通過空間をはじめとして送電設備や信号設備のためのス
ペースをトンネル内に確保せねばならず、建築側が利用
可能なスペースは大幅に制限を受ける。したがって、柱
断面を増やさずにせん断破壊に対する耐震性能を向上さ
せる技術が急務となっていた。
However, in the case of, for example, a middle pillar in an open-cut tunnel of a subway, it is necessary to secure a space for a power transmission facility and a signal facility as well as a passing space for a vehicle in the tunnel. The space available to architects is severely limited. Therefore, there is an urgent need for a technique for improving the seismic performance against shear failure without increasing the column section.

【0006】本発明は、上述した事情を考慮してなされ
たもので、限られたスペースでせん断破壊に対する耐震
性能を向上させることができる地下構造物内の柱構造を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a column structure in an underground structure capable of improving seismic performance against shear failure in a limited space. .

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の地下構造物内の柱構造は請求項1に記載し
たように、RC等で形成されたコンクリート柱および積
層ゴムを直列に接続して合成柱を構成し、該合成柱の両
端を地下構造物の床および天井にそれぞれ固着したもの
である。
In order to achieve the above object, a pillar structure in an underground structure according to the present invention comprises a concrete pillar formed of RC or the like and a laminated rubber in series. The composite column is connected to form a composite column, and both ends of the composite column are fixed to the floor and the ceiling of the underground structure, respectively.

【0008】また、本発明の地下構造物内の柱構造は、
前記合成柱をその両端に前記積層ゴムを配置し、該積層
ゴムの間に前記コンクリート柱を配置して構成したもの
である。
[0008] Further, the pillar structure in the underground structure of the present invention,
The composite pillar is configured by disposing the laminated rubber on both ends thereof and disposing the concrete pillar between the laminated rubbers.

【0009】また、本発明の地下構造物内の柱構造は、
前記合成柱を前記積層ゴムの両側に前記コンクリート柱
を配置して構成したものである。
Further, the pillar structure in the underground structure of the present invention is as follows:
The composite pillar is configured by arranging the concrete pillar on both sides of the laminated rubber.

【0010】本発明の地下構造物内の柱構造において
は、地震によって地下構造物内の床と天井との間に相対
水平変位が生じた場合、合成柱もその相対水平変位の大
きさに応じた強制変形を受けるが、該水平変位のほとん
どは、積層ゴムの変形によって吸収され、コンクリート
柱が受けるせん断変形量は大幅に低減する。
In the column structure in the underground structure according to the present invention, when a relative horizontal displacement occurs between the floor and the ceiling in the underground structure due to an earthquake, the composite column also has a relative horizontal displacement. However, most of the horizontal displacement is absorbed by the deformation of the laminated rubber, and the amount of shear deformation applied to the concrete column is greatly reduced.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る地下構造物内
の柱構造の実施の形態について、添付図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a pillar structure in an underground structure according to the present invention will be described below with reference to the accompanying drawings.

【0012】(第1実施形態)図1は、本実施形態に係
る地下構造物内の柱構造を鉛直断面図で示したものであ
る。同図でわかるように、本実施形態に係る地下構造物
内の柱構造は、RC等で構成されたコンクリート柱1の
両端に積層ゴム2a、2bを直列に接続して合成柱3を
構成し、該合成柱3の両端を地下構造物としてのトンネ
ル4の床5および天井6にそれぞれ固着して構成してあ
る。なお、トンネル4は、鉄筋コンクリート箱形ラーメ
ン構造であり、その内部に地下鉄車両7が通過可能な内
部空間8を形成している。そして、合成柱3は、該内部
空間8をほぼ二分する位置に沿って所定のピッチで配設
してある。
(First Embodiment) FIG. 1 is a vertical sectional view showing a pillar structure in an underground structure according to the present embodiment. As can be seen from the figure, the column structure in the underground structure according to the present embodiment has a composite column 3 formed by connecting laminated rubbers 2a and 2b in series at both ends of a concrete column 1 made of RC or the like. The both ends of the composite column 3 are fixed to a floor 5 and a ceiling 6 of a tunnel 4 as an underground structure, respectively. The tunnel 4 has a reinforced concrete box-shaped ramen structure, and forms an internal space 8 through which a subway vehicle 7 can pass. Further, the composite columns 3 are arranged at a predetermined pitch along a position where the internal space 8 is approximately bisected.

【0013】積層ゴム2a、2bは、例えば数mm厚の
鉄板と天然ゴムとを交互に積層して構成することがで
き、水平方向に10cm程度変形できるように構成する
のがよい。また、コンクリート柱1は、積層ゴム2a、
2bを取り付けるためのアンカーボルトを予め埋設した
プレキャスト製とするのがよい。
The laminated rubbers 2a and 2b can be constituted by alternately laminating iron plates having a thickness of several mm and natural rubber, for example, and are preferably constructed so as to be deformable by about 10 cm in the horizontal direction. Moreover, the concrete pillar 1 has a laminated rubber 2a,
It is preferable that the anchor bolts for mounting 2b are made of precast in which they are embedded in advance.

【0014】このようなトンネル4が地震を受けたと
き、ラーメン架構であるトンネル4は、おおむね図2
(a) の実線で示すような変形性状を示し、天井6と床5
との間には相対水平変位が生じる。そして、合成柱3も
その相対水平変位の大きさに応じた強制変形を受ける。
When such a tunnel 4 is subjected to an earthquake, the tunnel 4 as a ramen frame generally has a structure shown in FIG.
(a) shows the deformation properties as shown by the solid line, and the ceiling 6 and the floor 5
, A relative horizontal displacement occurs. Then, the composite column 3 also undergoes forced deformation according to the magnitude of the relative horizontal displacement.

【0015】かかる強制変形は、積層ゴムを設けない従
来の場合であれば、図2(b) に示すように、コンクリー
ト柱1がすべて負担し、したがって、該コンクリート柱
1には大きなせん断ひずみが発生する。
In the conventional case where no laminated rubber is provided, as shown in FIG. 2 (b), such a forced deformation is borne by the concrete column 1, and therefore, a large shear strain is applied to the concrete column 1. appear.

【0016】しかし、積層ゴム2a、2bを配置した場
合、図2(a) でよくわかるように相対水平変位の一部あ
るいはそのほとんどが該積層ゴム2a、2bの変形によ
って吸収され、その分、コンクリート柱1に生じるせん
断変形が緩和されあるいはほとんど消失する。
However, when the laminated rubbers 2a and 2b are arranged, a part or most of the relative horizontal displacement is absorbed by the deformation of the laminated rubbers 2a and 2b, as can be clearly understood from FIG. The shear deformation generated in the concrete column 1 is reduced or almost disappears.

【0017】なお、図2では、合成柱3の上端および下
端に生じる回転変位を考慮に入れたため、曲げによる変
形がコンクリート柱1に残っているが、床5および天井
6の曲げ剛性が側壁の曲げ剛性よりも十分に大きい場合
には、合成柱3の上端および下端に生じる回転変位はわ
ずかであり、合成柱3は、図3に示すように相対水平変
位のみの強制変形を受ける。そして、その水平変位を積
層ゴム2a、2bが吸収するため、コンクリート柱1に
はほとんど変形が生じない。
In FIG. 2, since the rotational displacement occurring at the upper and lower ends of the composite column 3 is taken into consideration, the deformation due to bending remains in the concrete column 1, but the bending rigidity of the floor 5 and the ceiling 6 is reduced. When the rigidity is sufficiently larger than the bending rigidity, the rotational displacement generated at the upper end and the lower end of the composite column 3 is small, and the composite column 3 is subjected to the forced deformation of only the relative horizontal displacement as shown in FIG. Since the horizontal displacement is absorbed by the laminated rubbers 2a and 2b, the concrete column 1 hardly deforms.

【0018】以上説明したように、本実施の形態に係る
地下構造物内の柱構造によれば、合成柱の一部を積層ゴ
ムで構成したので、地震の際にトンネルの床と天井との
間に生じる相対水平変位は、該積層ゴムで吸収され、か
くしてコンクリート柱に生じるせん断変形を大幅に緩和
し、あるいは実質的にせん断変形を生じないようにする
ことができる。
As described above, according to the column structure in the underground structure according to the present embodiment, since a part of the composite column is formed of the laminated rubber, the floor and the ceiling of the tunnel are not connected during an earthquake. The relative horizontal displacement occurring therebetween is absorbed by the laminated rubber, and thus the shear deformation occurring in the concrete column can be greatly reduced, or substantially no shear deformation occurs.

【0019】したがって、柱断面を大きくしたりせん断
補強筋を増加させることなく、従来と同等のコンクリー
ト柱を用いてせん断破壊に対する耐震性能を大幅に向上
させることが可能となり、建築側の利用スペースが厳し
く制限される地下鉄トンネルにおいて特に有用な手段と
なる。
Therefore, it is possible to greatly improve the seismic performance against shear failure by using a concrete column equivalent to the conventional one without increasing the column cross section or increasing the shear reinforcement, and the space used on the building side is reduced. This is a particularly useful tool in tightly restricted subway tunnels.

【0020】また、本実施形態のコンクリート柱を工場
製作して現場に搬入するようにすれば、短期間にトンネ
ルを構築したりあるいは補修することができる。
Further, if the concrete pillar of the present embodiment is manufactured in a factory and carried to the site, a tunnel can be constructed or repaired in a short time.

【0021】なお、柱を鉄骨で形成すれば、上述の相対
水平変位を鉄骨部材の変形性能で吸収することはできる
が、経済性の面では必ずしも有利であるとは言えず、本
実施の形態によれば、低コストで耐震性の向上を図るこ
とができる。
If the column is formed of a steel frame, the above-described relative horizontal displacement can be absorbed by the deformation performance of the steel frame member, but this is not necessarily advantageous in terms of economic efficiency. According to this, it is possible to improve the earthquake resistance at low cost.

【0022】本実施形態では、合成柱の両端を積層ゴム
で構成したが、図4に示すように、例えば天井6に隣接
する側だけを積層ゴム2aで構成してもよい。
In this embodiment, both ends of the composite column are made of laminated rubber. However, as shown in FIG. 4, for example, only the side adjacent to the ceiling 6 may be made of laminated rubber 2a.

【0023】また、上述の説明では特に言及しなかった
が、本実施形態に係る柱構造を新設の地下鉄トンネルに
採用してもよいし、既存の地下鉄トンネルを補修する手
段として採用してもよい。また、その適用範囲は開削式
地下鉄トンネルに限定されるものではなく、地震時にお
いて床と天井との間に相対水平変位が生じるすべての地
下構造物、例えば、地下鉄の駅舎、ホーム等はもちろ
ん、道路用トンネル、シールドトンネル等にも適用する
ことが可能である。
Although not particularly mentioned in the above description, the pillar structure according to the present embodiment may be employed in a newly installed subway tunnel or as a means for repairing an existing subway tunnel. . Also, the scope of application is not limited to open-cut subway tunnels, and all underground structures that cause relative horizontal displacement between floor and ceiling during an earthquake, such as subway station buildings and platforms, of course, It is also applicable to road tunnels, shield tunnels and the like.

【0024】(第2実施形態)次に、第2実施形態に係
る地下構造物内の柱構造について説明する。なお、第1
実施形態と実質的に同一の部品等については同一の符号
を付してその説明を省略する。
(Second Embodiment) Next, a column structure in an underground structure according to a second embodiment will be described. The first
Components and the like that are substantially the same as those in the embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0025】本実施形態に係る柱構造も上述の実施形態
と同様、RC等で構成されたコンクリート柱と積層ゴム
とを直列に接続してあるが、本実施形態においては図5
(a)に示すように、隣接配置された積層ゴム2a、2b
の両側にコンクリート柱1a、1bを配置して合成柱1
3とし、該合成柱13の両端をトンネル4の床5および
天井6にそれぞれ固着して構成してある。
In the column structure according to the present embodiment, similarly to the above embodiment, a concrete column made of RC or the like and a laminated rubber are connected in series.
(a) As shown in FIG.
Concrete pillars 1a and 1b are arranged on both sides of
3, both ends of the composite column 13 are fixed to the floor 5 and the ceiling 6 of the tunnel 4, respectively.

【0026】積層ゴム2a、2bは、地震を受けた際に
合成柱13に生じる曲げモーメントの大きさができるだ
け小さくなる位置、例えば柱中央付近に設けるのがよ
い。
The laminated rubbers 2a and 2b are preferably provided at a position where the magnitude of the bending moment generated in the composite column 13 upon receiving an earthquake is as small as possible, for example, near the center of the column.

【0027】このようなトンネル4が地震を受けたと
き、ラーメン架構であるトンネル4は、おおむね図5
(b) の実線で示すような変形性状を示し、天井6と床5
との間には相対水平変位が生じる。そして、合成柱13
もその相対水平変位の大きさに応じた強制変形を受ける
が、該相対水平変位の一部が積層ゴム2a、2bの変形
によって吸収され、その分、コンクリート柱1a、1b
に生じるせん断変形が緩和され、あるいはほとんどせん
断変形が生じない。
When such a tunnel 4 is subjected to an earthquake, the tunnel 4 as a ramen frame generally has a structure shown in FIG.
(b) shows the deformation properties as shown by the solid line, the ceiling 6 and the floor 5
, A relative horizontal displacement occurs. And the composite pillar 13
Also undergoes forced deformation in accordance with the magnitude of the relative horizontal displacement, but a part of the relative horizontal displacement is absorbed by the deformation of the laminated rubbers 2a, 2b, and the concrete columns 1a, 1b
The shear deformation occurring at the time is reduced or almost no shear deformation occurs.

【0028】その他の作用並びに効果については上述の
実施形態とほぼ同様であるので、ここでは詳細な説明は
省略するが、これらに加えて、本実施形態によれば、積
層ゴムの配置個所を曲げモーメントの大きさが小さくな
る位置としたので、積層ゴムには曲げ変形が起こらず、
したがって純せん断に近い状態で積層ゴムを使用するこ
とができる。
Since other functions and effects are almost the same as those of the above-described embodiment, detailed description is omitted here. In addition to this, according to the present embodiment, the location of the laminated rubber is bent. Since the position where the magnitude of the moment is small, bending deformation does not occur in the laminated rubber,
Therefore, the laminated rubber can be used in a state close to pure shear.

【0029】本実施形態では、積層ゴムを2つ隣接配置
したが、地震時に予想される相対変形量が比較的小さい
のであれば、積層ゴムを1つとしてもよい。また、積層
ゴムの配置個所を柱の中央付近としたが、予め応力解析
によって反曲点の位置を調べ、かかる反曲点に積層ゴム
を配置するようにしてもよい。
In this embodiment, two laminated rubbers are arranged adjacent to each other. However, if the relative deformation expected during an earthquake is relatively small, one laminated rubber may be used. Although the location of the laminated rubber is set near the center of the pillar, the position of the inflection point may be checked in advance by stress analysis, and the laminated rubber may be arranged at the inflection point.

【0030】[0030]

【発明の効果】以上述べたように、本発明の地下構造物
内の柱構造は、RC等で形成されたコンクリート柱およ
び積層ゴムを直列に接続して合成柱を構成し、該合成柱
の両端を地下構造物の床および天井にそれぞれ固着した
ので、限られたスペースでせん断破壊に対する耐震性能
を向上させることができる。
As described above, the column structure in the underground structure according to the present invention forms a composite column by connecting a concrete column and a laminated rubber formed of RC or the like in series, and forms the composite column. Since both ends are fixed to the floor and the ceiling of the underground structure, the seismic performance against shear failure can be improved in a limited space.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態に係る地下構造物内の柱構造の鉛
直断面図。
FIG. 1 is a vertical sectional view of a pillar structure in an underground structure according to a first embodiment.

【図2】第1実施形態に係る地下構造物内の柱構造の作
用を従来との比較で説明した図であり、(a) は地震時に
おける変形性状を示した図、(b) は積層ゴムを配置しな
い場合の変形性状を示した図。
FIGS. 2A and 2B are diagrams illustrating an operation of a column structure in an underground structure according to the first embodiment in comparison with a conventional structure, wherein FIG. 2A illustrates a deformation property during an earthquake, and FIG. The figure which showed the deformation | transformation property when rubber is not arranged.

【図3】第1実施形態に係る地下構造物内の柱構造の作
用を従来との比較で説明した図であり、(a) は地震時に
おける変形性状を床および天井の撓みを考慮せずに示し
た図、(b) は同じく積層ゴムを配置しない場合の変形性
状を示した図。
3A and 3B are diagrams illustrating the operation of a column structure in an underground structure according to the first embodiment in comparison with a conventional structure, and FIG. 3A illustrates a deformation property during an earthquake without considering floor and ceiling deflections. And (b) is a view showing the deformation properties when no laminated rubber is arranged.

【図4】第1実施形態の変形例を示す図。FIG. 4 is a diagram showing a modification of the first embodiment.

【図5】第2実施形態に係る地下構造物内の柱構造の図
であり、(a) は鉛直断面図、(b)は地震時における変形
性状を示した図。
5A and 5B are diagrams of a column structure in an underground structure according to a second embodiment, in which FIG. 5A is a vertical cross-sectional view, and FIG. 5B is a diagram illustrating deformation characteristics during an earthquake.

【符号の説明】[Explanation of symbols]

1、1a、1b コンクリート柱 2a、2b 積層ゴム 3、13 合成柱 4 トンネル(地下構造物) 5 床 6 天井 1, 1a, 1b Concrete pillar 2a, 2b Laminated rubber 3, 13 Synthetic pillar 4 Tunnel (underground structure) 5 Floor 6 Ceiling

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) E21D 11/28 E21D 15/00 E21D 11/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) E21D 11/28 E21D 15/00 E21D 11/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 RC等で形成されたコンクリート柱およ
び積層ゴムを直列に接続して合成柱を構成し、該合成柱
の両端を地下構造物の床および天井にそれぞれ固着した
ことを特徴とする地下構造物内の柱構造。
1. A composite column is formed by connecting concrete columns and laminated rubber formed of RC or the like in series, and both ends of the composite column are fixed to a floor and a ceiling of an underground structure, respectively. Column structure in underground structure.
【請求項2】 前記合成柱は、その両端に前記積層ゴム
を配置し、該積層ゴムの間に前記コンクリート柱を配置
してなる請求項1記載の地下構造物内の柱構造。
2. The column structure in an underground structure according to claim 1, wherein said composite column has said laminated rubber disposed at both ends thereof, and said concrete column is disposed between said laminated rubber.
【請求項3】 前記合成柱は、前記積層ゴムの両側に前
記コンクリート柱を配置してなる請求項1記載の地下構
造物内の柱構造。
3. The column structure in an underground structure according to claim 1, wherein said composite column has said concrete columns arranged on both sides of said laminated rubber.
JP7194064A 1995-07-07 1995-07-07 Column structure in underground structure Expired - Fee Related JP3001086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7194064A JP3001086B2 (en) 1995-07-07 1995-07-07 Column structure in underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7194064A JP3001086B2 (en) 1995-07-07 1995-07-07 Column structure in underground structure

Publications (2)

Publication Number Publication Date
JPH0921299A JPH0921299A (en) 1997-01-21
JP3001086B2 true JP3001086B2 (en) 2000-01-17

Family

ID=16318360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7194064A Expired - Fee Related JP3001086B2 (en) 1995-07-07 1995-07-07 Column structure in underground structure

Country Status (1)

Country Link
JP (1) JP3001086B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3260623B2 (en) * 1996-05-16 2002-02-25 株式会社奥村組 Tunnel structure
JP2002332683A (en) * 2001-05-08 2002-11-22 Ohbayashi Corp Box culvert
JP2003129798A (en) * 2001-10-26 2003-05-08 Pacific Consultants Co Ltd Box culvert
KR100740527B1 (en) * 2007-02-01 2007-07-18 주식회사 선진엔지니어링 종합건축사 사무소 Underground driveway of road
JP5836699B2 (en) * 2010-08-23 2015-12-24 株式会社ホクコン Elastic reinforcing strut for water tank and elastic reinforcing structure of water tank using the same
JP5979586B2 (en) * 2012-05-07 2016-08-24 株式会社大林組 Box culvert

Also Published As

Publication number Publication date
JPH0921299A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
Samata et al. A study of the damage of subway structures during the 1995 Hanshin-Awaji earthquake
JP2006517628A (en) Prestressed temporary structure
Saatcioglu et al. Performance of reinforced concrete buildings during the 27 February 2010 Maule (Chile) earthquake
KR101780370B1 (en) Composite structure using shear connector made of anchor and socket shoe
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
JP3001086B2 (en) Column structure in underground structure
JP3270660B2 (en) Column structure in underground structure
JP2001311314A (en) Method for realizing base isolation structure of existing building
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP4917179B1 (en) Seismic maintenance method for existing buildings
Larsen et al. Engineering objectives for performance-based wind design
KR102201159B1 (en) Seismic retrofit structure using cap unit and reinforcing column and construction method thereof
JP3764657B2 (en) Seismic reinforcement structure for reinforced concrete support columns
KR102309544B1 (en) Connecting structure of beam and column of a building and method of manufacturing using the same
KR101841488B1 (en) Seismic reinforcement device and method of building columns
JP3297413B2 (en) Damping frame with friction damping mechanism
JP3063673B2 (en) Foundation structure of building with soil cement pillar row retaining wall tied to frame
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP3322259B2 (en) Earthquake countermeasures during construction during seismic isolation construction
JP2002138574A (en) Building construction method and building
JPH1025832A (en) Base-isolated wooden building
KR20050113911A (en) Reinforcing structure of column and beam connection part using frp strap
LU502947B1 (en) Shock absorption technology of butterfly-shaped prefabricated laminated split columns for underground structures
JP2001140497A (en) Earthquake-resistant house
Sarkisian Non-prescriptive approaches to enhanced life cycle seismic performance of buildings

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees