JP3000194U - Fluid dehumidifier operation monitoring device - Google Patents

Fluid dehumidifier operation monitoring device

Info

Publication number
JP3000194U
JP3000194U JP8894U JP8894U JP3000194U JP 3000194 U JP3000194 U JP 3000194U JP 8894 U JP8894 U JP 8894U JP 8894 U JP8894 U JP 8894U JP 3000194 U JP3000194 U JP 3000194U
Authority
JP
Japan
Prior art keywords
fluid
chamber
monitoring
monitoring device
dehumidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8894U
Other languages
Japanese (ja)
Inventor
秀男 玉井
東行 横地
博之 井上
芳行 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP8894U priority Critical patent/JP3000194U/en
Application granted granted Critical
Publication of JP3000194U publication Critical patent/JP3000194U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 機構が簡単で故障が少なく、且つ冷却能力が
高くて冷却開始時の立ち上がりが速いながらも制御精度
が極めて高い流体除湿装置の作動監視装置を提供する。 【構成】 流体除湿装置から供給される除湿流体の露点
温度近傍の所定温度にペルチェ素子によって冷却した冷
却鏡面2を使用して流体除湿装置の作動状況を監視する
監視装置であって、冷却鏡面2の上方を少なくとも一部
が透明部材のフード5で覆って形成した監視室6と、ペ
ルチェ素子3の放熱部9をフードで覆って形成した放熱
室11とを設け、監視室6には、流体が冷却鏡面2に沿
って流れるように測定流体の供給口7と排出口8とを設
け、放熱室11には、圧縮空気供給源13に流量調節弁
14を介して連通する圧縮空気導入口を有する渦流発生
室と、その他側に、渦流発生室の中心付近において小孔
を通して前記渦流発生室に連通する冷風取出管とを有し
て成る空気冷凍機12の冷風取出管34を連通させた事
を特徴とする流体除湿装置の作動監視装置。
(57) [Summary] [PROBLEMS] To provide an operation monitoring device for a fluid dehumidifier having a simple mechanism, few failures, a high cooling capacity, a quick start-up at the start of cooling, and an extremely high control accuracy. A monitoring device for monitoring the operating condition of a fluid dehumidifier using a cooling mirror surface 2 cooled by a Peltier element to a predetermined temperature near the dew point temperature of a dehumidifying fluid supplied from a fluid dehumidifying device. Is provided with a monitoring chamber 6 formed by covering at least a part thereof with a hood 5 which is a transparent member, and a heat dissipation chamber 11 formed by covering the heat dissipation portion 9 of the Peltier element 3 with a hood. Is provided with a supply port 7 and a discharge port 8 for the measurement fluid so that the air flows along the cooling mirror surface 2, and the heat radiation chamber 11 has a compressed air introduction port communicating with the compressed air supply source 13 via the flow rate control valve 14. The cold air extraction pipe 34 of the air refrigerator 12 having the eddy current generation chamber and the cold air extraction pipe communicating with the eddy current generation chamber through a small hole near the center of the vortex flow generation chamber is provided on the other side. Fluid removal characterized by Wet device operation monitoring device.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、流体除湿装置の作動監視装置に関し、更に詳細には流体除湿装置か ら供給される除湿流体の露点を、冷却手段によって所定温度に冷却された冷却鏡 面を使用して流体除湿装置の作動状況を監視する流体除湿装置の監視装置に関す る。 The present invention relates to an operation monitoring device for a fluid dehumidifying device, and more particularly, a fluid dehumidifying device using a cooling mirror whose dew point of the dehumidifying fluid supplied from the fluid dehumidifying device is cooled to a predetermined temperature by a cooling means. The present invention relates to a monitoring device for a fluid dehumidifying device that monitors the operating status of the.

【0002】[0002]

【従来技術】[Prior art]

圧縮機器等の流体は、各種装置の制御機器等に汎用されている。かかる制御装 置等に使用される流体の湿度が高いと、制御機器等の内部に水滴が発生し、制御 不能等の不測の事態を招くことがある。 このような事態を回避すべく、通常、制御機器等には、除湿装置によって除湿 された流体が供給されている。 しかし、除湿装置の故障またはその機能が低下した場合、或は除湿装置に吸入 される吸入流体中の湿度が上昇した場合には、除湿装置から供給される除湿流体 の湿度も上昇し、制御機器等の内部に水滴が発生するおそれがある。 このため、従来より、除湿装置の運転状況を監視すべく、除湿装置から供給さ れる除湿流体の露点温度を監視し、許容以上の湿度の流体を制御機器等に供給す る事態を防止せんとしている。 Fluids such as compression equipment are generally used for control equipment of various devices. If the humidity of the fluid used for such a control device is high, water droplets may be generated inside the control device and the like, which may lead to an unexpected situation such as uncontrollability. In order to avoid such a situation, a fluid dehumidified by the dehumidifier is usually supplied to the control device and the like. However, if the dehumidifying device malfunctions or its function deteriorates, or if the humidity in the inhaled fluid drawn into the dehumidifying device rises, the humidity of the dehumidifying fluid supplied from the dehumidifying device also rises, and the control equipment There is a risk of water droplets being generated inside such as. For this reason, conventionally, in order to monitor the operating status of the dehumidifier, it is necessary to monitor the dew point temperature of the dehumidifying fluid supplied from the dehumidifier and prevent the situation in which fluid with a humidity above the permissible level is supplied to control equipment, etc. There is.

【0003】 ところで、除湿流体の露点温度を監視する装置としては、特公平2−2605 9号公報において、除湿流体温度と露点温度とを検知するとともに、前記温度の 各々を酸化薄膜式露点検出器を用いて電気信号に変換し、両者の差が所定値に近 接したとき警報を発する装置が提案されている。 また、特公昭62−9854号公報には、冷却鏡面の結露状態を光検出器を用 い、光の透過量を検出する監視装置も提案されている。By the way, as an apparatus for monitoring the dew point temperature of the dehumidifying fluid, Japanese Patent Publication No. 2-26059 discloses detecting the dehumidifying fluid temperature and the dew point temperature, and detecting each of the temperatures by an oxide thin film type dew point detector. There has been proposed a device for converting into an electric signal by using and issuing an alarm when the difference between the two approaches a predetermined value. Further, Japanese Patent Publication No. Sho 62-9854 proposes a monitoring device for detecting the amount of transmitted light by using a photodetector for the dew condensation state on the cooling mirror surface.

【0004】[0004]

【考案が解決しようとする課題】 かかる従来の監視装置によれば、除湿流体の露点温度を常時監視でき、許容以 上の湿度の流体を制御機器等に供給する事態を防止できる。 しかしながら、従来の監視装置は、除湿流体の露点温度を常時監視可能にすべ く、電子式の複雑な機構が採用されている。このため、監視装置の価格が高価と なると共に、監視装置に故障が発生するとその発見が困難となり、除湿装置の故 障発見が遅れる懸念がある。 一方、除湿流体の常時監視を要しない場合も多くある。また、除湿装置の除湿 能力が急激に低下する事態も極めて希である。このため、監視装置の機構が簡単 で故障が少なく、且つ故障が発生しても容易に発見しうる監視装置が望まれてい た。According to such a conventional monitoring device, it is possible to constantly monitor the dew point temperature of the dehumidifying fluid, and to prevent a situation in which a fluid having an unacceptable humidity is supplied to a control device or the like. However, the conventional monitoring device employs an electronic complicated mechanism so that the dew point temperature of the dehumidifying fluid can be constantly monitored. For this reason, the price of the monitoring device becomes expensive, and if a failure occurs in the monitoring device, it will be difficult to find the failure, and there is a concern that the failure detection of the dehumidifier will be delayed. On the other hand, there are many cases where it is not necessary to constantly monitor the dehumidifying fluid. In addition, it is extremely rare that the dehumidification capacity of the dehumidifier will drop sharply. For this reason, there has been a demand for a monitoring device that has a simple mechanism of the monitoring device, has few failures, and can be easily found even if a failure occurs.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

すなわち本考案は、流体除湿装置から供給される除湿流体の露点温度近傍の所 定温度にペルチェ素子によって冷却した冷却鏡面を使用して流体除湿装置の作動 状況を監視する監視装置であって、前記冷却鏡面の上方を少なくとも一部が透明 部材のフードで覆って形成した監視室と、前記ペルチェ素子の放熱部を覆う放熱 室とを設け、前記監視室には、流体が冷却鏡面に沿って流れるように、測定流体 の供給口と排出口とを設け、前記放熱室には、圧縮空気供給源に流量調節弁を介 して連通する圧縮空気導入口を有する渦流発生室と、その他側に、前記渦流発生 室の中心付近において小孔を通して前記渦流発生室に連通する冷風取出管とを有 して成る空気冷凍機の冷風取出管を連通させたことを特徴とする流体除湿装置の 作動監視装置にある。 That is, the present invention is a monitoring device for monitoring the operating condition of a fluid dehumidifying device by using a cooling mirror surface cooled by a Peltier element at a predetermined temperature near the dew point temperature of the dehumidifying fluid supplied from the fluid dehumidifying device. A monitoring chamber formed by covering at least a part of the cooling mirror surface with a transparent hood and a heat radiation chamber covering the heat radiation portion of the Peltier element are provided. In the monitoring chamber, fluid flows along the cooling mirror surface. As described above, a measurement fluid supply port and a discharge port are provided, and the radiating chamber has a swirl flow generation chamber having a compressed air introduction port communicating with a compressed air supply source through a flow rate control valve, and the other side, An operation monitoring device for a fluid dehumidifying device, characterized in that a cold air extraction pipe of an air refrigerator having a cold air extraction pipe communicating with the swirl generation chamber through a small hole near the center of the swirl generation chamber is connected. To That.

【0006】[0006]

【作用】[Action]

本考案によれば、除湿流体の予定露点近傍で且つ表面が曇らない温度に冷却さ れた冷却鏡面の曇りの有無を肉眼観察することによって、測定流体の露点温度が 予定露点温度以下であるか否かを容易に確認する事ができ、除湿装置の作動状況 を容易に判断できる。 つまり、冷却鏡面に曇りが認められた場合には、測定流体の露点温度は、予定 露点温度を越える事を意味し、除湿装置の機能の低下を示すからである。 又、本考案の監視装置では、冷却鏡面の曇りの有無を自動的に検出する装置を 必要とせず、装置構造を簡略化できる。 さらに、本考案によれば、空気冷凍機によってペルチェ素子の冷却能力を飛躍 的に向上させることができ、低露点の測定流体の監視を行う場合にあっても、安 価で且つ故障の発生が極めて少なくできる。 According to the present invention, whether or not the dew point temperature of the measured fluid is equal to or lower than the planned dew point temperature by visually observing the presence or absence of fog on the cooling mirror surface cooled to a temperature at which the surface of the dehumidified fluid is near the planned dew point and does not fog. It is possible to easily confirm whether or not it is possible to easily judge the operating status of the dehumidifier. In other words, if clouding is observed on the cooling mirror surface, it means that the dew point temperature of the measured fluid exceeds the planned dew point temperature, and the function of the dehumidifier is deteriorated. Further, the monitoring device of the present invention does not require a device for automatically detecting the presence or absence of fog on the cooling mirror surface, and can simplify the device structure. Further, according to the present invention, the cooling capacity of the Peltier element can be dramatically improved by the air refrigerator, and even when monitoring the measured fluid having a low dew point, the cost is low and the failure does not occur. Can be extremely small.

【0007】[0007]

【実施例】【Example】

以下に本考案を図面に示された実施例に従って詳細に説明する。 図1は、本考案の監視装置に係る概略構成図である。本監視装置1には、ペル チェ素子によって、温度表示部4に表示された温度に冷却された伝熱性材料から 成る冷却鏡面3の上方をフード5で覆って監視室6を形成している。このフード 5の冷却鏡面3を覆う一面は、透明板2によって形成され、冷却鏡面3の状態を フードの外側から肉眼観察することが出来るようになっている。 さらに、監視室6の一端側に、測定流体を供給する供給口7を設け、他端側に 排出口8を設ける。従って、供給口7から供給された測定流体は、冷却鏡面2に 沿って流れて排出口8から大気中に排出される。 この際に、供給口7に絞り19を設ける事によって、監視室6に流す測定流体 の流量を抑制でき、監視室6内を大気圧状態にすることができる。このように監 視室6内を大気圧状態にした場合にはフード5の厚さ等を薄くでき、監視装置1 を軽量化できる。 Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. FIG. 1 is a schematic configuration diagram of a monitoring device of the present invention. In the monitoring device 1, a Peltier element covers a cooling mirror surface 3 made of a heat conductive material cooled to a temperature displayed on the temperature display unit 4 with a hood 5 to form a monitoring chamber 6. One surface of the hood 5 that covers the cooling mirror surface 3 is formed by the transparent plate 2 so that the state of the cooling mirror surface 3 can be visually observed from the outside of the hood. Further, a supply port 7 for supplying the measurement fluid is provided on one end side of the monitoring chamber 6, and a discharge port 8 is provided on the other end side. Therefore, the measurement fluid supplied from the supply port 7 flows along the cooling mirror surface 2 and is discharged into the atmosphere from the discharge port 8. At this time, by providing the throttle 19 at the supply port 7, the flow rate of the measurement fluid flowing into the monitoring chamber 6 can be suppressed and the inside of the monitoring chamber 6 can be brought to the atmospheric pressure state. In this way, when the inside of the monitoring room 6 is in the atmospheric pressure state, the thickness of the hood 5 and the like can be reduced, and the monitoring device 1 can be reduced in weight.

【0008】 さらに本考案の実施例では、冷却鏡面2を冷却した結果生じた熱を冷却する冷 却手段としてペルチェ素子の後端側に放熱フィン群9を備えている。 そして、前記ペルチェ素子3の放熱部たる放熱フィン群9を発泡プラスチック 等の断熱材を貼付したフード10で覆う事によって放熱室11を形成する。 次に、第2図及び第3図に示すように、圧縮空気導入口31を有する渦流発生 室30と、該渦流発生室30の一側に、該渦流発生室30の中心付近において小 孔33を通して該渦流発生室30に連通する冷風取出管34とを有して成る空気 冷凍機12(例えば、オリオン機械株式会社製商品名「スパイラルクーラー」) を備えている。空気冷凍機12では圧縮空気源13と圧縮空気導入口31とを流 量調節弁14を介して連通させるとともに、冷風取出管34を放熱室11に連通 させている。 このような構成の空気冷凍機12では、渦流発生室30の周縁に、前記室の接 線方向を指向するように設けられた圧縮空気導入口31から、音速以上で空気が 流入する。渦流発生室30内で高速の渦流となった空気はその遠心力によって、 渦流の中心付近では断熱膨張が、周辺付近では断熱圧縮がなされて、前記室の中 心付近に冷風が発生し、小孔33から冷風取出管34に送り出され、冷風取出口 34aから機外に取り出され、接続チューブを介して放熱室11内に送気される 。Further, in the embodiment of the present invention, a radiation fin group 9 is provided on the rear end side of the Peltier element as a cooling means for cooling the heat generated as a result of cooling the cooling mirror surface 2. Then, the heat radiation chamber 11 is formed by covering the heat radiation fin group 9 serving as the heat radiation portion of the Peltier element 3 with the hood 10 to which a heat insulating material such as foamed plastic is attached. Next, as shown in FIGS. 2 and 3, the vortex flow generating chamber 30 having the compressed air inlet 31 and a small hole 33 on one side of the vortex flow generating chamber 30 near the center of the vortex flow generating chamber 30. An air refrigerator 12 (for example, a product name “spiral cooler” manufactured by Orion Machinery Co., Ltd.) having a cold air extraction pipe 34 communicating with the vortex flow generating chamber 30 is provided. In the air refrigerator 12, the compressed air source 13 and the compressed air inlet 31 are communicated with each other via the flow rate control valve 14, and the cold air extraction pipe 34 is communicated with the heat dissipation chamber 11. In the air refrigerator 12 having such a configuration, the air flows into the peripheral edge of the swirl generating chamber 30 from the compressed air introduction port 31 provided so as to be oriented in the tangential direction of the chamber at a speed higher than the speed of sound. Due to the centrifugal force, the air that has become a high-speed vortex in the vortex generation chamber 30 undergoes adiabatic expansion in the vicinity of the center of the vortex and adiabatic compression in the vicinity of the vortex, generating cold air near the center of the chamber and generating small air. It is sent out from the hole 33 to the cold air extraction pipe 34, taken out of the machine from the cold air extraction port 34a, and is sent to the inside of the heat dissipation chamber 11 via the connection tube.

【0009】 また、鏡面2近傍の伝熱体中には、鏡面2の温度を検知する温度センサー15 aを取り付け、放熱室11内の空気冷凍機12の冷風吹き出し管34との連通部 付近には放熱室11内の温度を検知する温度センサー15bをそれぞれ取り付け ている。そして、温度センサー15aの検出値に基づいて圧縮空気の目標露点か ら設定される所定温度に検出値が近づく様に制御装置によってペルチェ素子3の 制御を行う。制御は、ペルチェ素子への供給電流値を変え、またはパルス電流の デユーテイ比を変える等の方法によって行われる。 併せて、冷風吹き出し口17付近の温度センサー15bの値に基づいて制御装 置16によって空気冷凍機の流量調節弁14の開度を制御し、冷風取出管34内 の冷却空気温度がペルチェ素子の所定冷却温度近くになるようにする。これによ って、放熱室11内の温度を極力所定目標温度に近づける。 なお、放熱室11の、冷風吹き出し口17とは離間した位置に外気に開口する 小孔18を設けた場合には、熱交換された温気が排出されるために、放熱が促進 される。In addition, a temperature sensor 15 a for detecting the temperature of the mirror surface 2 is attached in the heat transfer body near the mirror surface 2, and the temperature sensor 15 a is installed in the heat radiating chamber 11 in the vicinity of a communicating portion with the cold air blowing pipe 34 of the air refrigerator 12. Are equipped with temperature sensors 15b for detecting the temperature inside the heat dissipation chamber 11, respectively. Then, the control device controls the Peltier device 3 so that the detected value approaches the predetermined temperature set from the target dew point of the compressed air based on the detected value of the temperature sensor 15a. The control is performed by a method such as changing the value of the current supplied to the Peltier element or changing the duty ratio of the pulse current. At the same time, based on the value of the temperature sensor 15b near the cool air outlet 17, the control device 16 controls the opening degree of the flow control valve 14 of the air refrigerator, so that the cooling air temperature in the cold air extraction pipe 34 is controlled by the Peltier element. Keep the temperature near the specified cooling temperature. As a result, the temperature inside the heat dissipation chamber 11 is made as close as possible to the predetermined target temperature. If a small hole 18 that opens to the outside air is provided in the heat dissipation chamber 11 at a position separated from the cold air outlet 17, the heat-exchanged warm air is discharged, so that heat dissipation is promoted.

【0010】 以上より、ペルチェ素子3の高温側に運ばれた熱の放熱が速やかに行われ、ペ ルチェ素子による冷却鏡面の冷却も極めて速やかに行われる。 また、空気冷凍機のみでは制御誤差が大きくなる恐れがあるものの、制御精度 の高いペルチェ素子を基本に組み合わせ使用しているため、最終的に高い制御精 度が得られる。As described above, the heat carried to the high temperature side of the Peltier element 3 is quickly dissipated, and the cooling mirror surface by the Peltier element is also cooled very quickly. In addition, although the control error may increase with an air chiller alone, a Peltier element with high control accuracy is basically used in combination, so that ultimately high control accuracy can be obtained.

【0011】 このような作動流体の監視装置1によれば、除湿流体への供給流体Aと、除湿 装置から吐出される除湿流体Bの各流体を、冷却鏡面2上の室6に供給する事に よって、除湿装置が正常に作動している事を監視できる。 例えば、冷却鏡面2の温度を、除湿流体Bの予定される最低の露点に設定する と、供給流体Bが通過する監視室6の床面の一部を形成する冷却鏡面2は、正常 に除湿されている場合には曇らないものの、除湿装置が正常に作動していない場 合には露点が下がる事になって、冷却鏡面2に結露が発生する。According to the working fluid monitoring apparatus 1 as described above, the supply fluid A to the dehumidifying fluid and the dehumidifying fluid B discharged from the dehumidifying apparatus are supplied to the chamber 6 on the cooling mirror surface 2. Therefore, it is possible to monitor that the dehumidifier is operating normally. For example, if the temperature of the cooling mirror surface 2 is set to the lowest dew point of the dehumidifying fluid B, the cooling mirror surface 2 forming a part of the floor surface of the monitoring chamber 6 through which the supply fluid B passes normally dehumidifies. If the dehumidifier is not operating normally, the dew point will be lowered, and dew condensation will occur on the cooling mirror surface 2.

【0012】 次に、他の実施例について説明する。 フード5に、図示しない縦方向の隔壁をもうけて、監視室内を6a、6bの2 室に分割する。さらに、各室の各々の一端側に、測定流体を供給する供給口7a 、7bを設け、他端側に排出口8a、8bを設ける。そして、除湿流体への供給 流体Bと、除湿装置を通過後の除湿流体Aとの各流体を、冷却鏡面2を分割する 各々の室6a、6bに供給する事によって、除湿装置が正常に作動している事を 監視する。 例えば、冷却鏡面2の温度を、除湿流体Bの予定露点温度より1〜2℃程高め に設定すると、除湿装置が正常に作動しているならば、供給流体Aが通過する監 視室6aの床面の一部を形成する冷却鏡面2の部分は曇るものの、除湿流体Bが 通過する監視室6bの床面の一部を形成する冷却鏡面2の部分は曇らない。これ によって、除湿装置が正常に作動している事を確認できる。もし除湿装置が正常 に作動していないならば、監視室6a、6b両室の冷却鏡面が曇る事になる。Next, another embodiment will be described. A vertical partition (not shown) is provided on the hood 5 to divide the monitoring room into two rooms 6a and 6b. Further, supply ports 7a and 7b for supplying the measurement fluid are provided on one end side of each chamber, and discharge ports 8a and 8b are provided on the other end side. Then, the supply fluid B to the dehumidifying fluid and the dehumidifying fluid A after passing through the dehumidifying apparatus are supplied to the respective chambers 6a and 6b that divide the cooling mirror surface 2, so that the dehumidifying apparatus operates normally. Monitor what you are doing. For example, if the temperature of the cooling mirror surface 2 is set to be higher than the planned dew point temperature of the dehumidifying fluid B by about 1 to 2 ° C., if the dehumidifying device is operating normally, the monitoring chamber 6a through which the supply fluid A passes passes. The portion of the cooling mirror surface 2 forming a part of the floor surface is clouded, but the portion of the cooling mirror surface 2 forming a part of the floor surface of the monitoring chamber 6b through which the dehumidifying fluid B passes does not fog. This makes it possible to confirm that the dehumidifier is operating normally. If the dehumidifier is not operating normally, the cooling mirror surfaces in both the monitoring rooms 6a and 6b will become cloudy.

【0013】[0013]

【効果】【effect】

以上述べたように本考案にかかる流体除湿装置の作動監視装置によれば、監視 装置の機構が簡単で故障が少なく、且つ故障が発生しても容易に発見する事がで きる。しかも、監視装置の構造を簡素化でき、製造コストの低減を図る事ができ る。さらに、空気冷凍機を用いているためその立ち上がり時間も極めてはやいも のとなり、しかも、ペルチェ素子によっても温度調整をしているため、制御精度 も極めて高い。 As described above, according to the operation monitoring device of the fluid dehumidifying device of the present invention, the mechanism of the monitoring device is simple and there are few failures, and even if a failure occurs, it can be easily found. Moreover, the structure of the monitoring device can be simplified, and the manufacturing cost can be reduced. Furthermore, since an air refrigerator is used, the rise time is extremely quick, and since the temperature is adjusted by the Peltier element, the control accuracy is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案にかかる実施例の縦断面図である。FIG. 1 is a vertical sectional view of an embodiment according to the present invention.

【図2】図1に示す監視装置に使用される空気冷凍機の
断面図である。
FIG. 2 is a sectional view of an air refrigerator used in the monitoring device shown in FIG.

【図3】図2のA−A断面図である。3 is a cross-sectional view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

1 作動監視装置 2 冷却鏡面 3 ペルチェ素子 5 フード 6 監視室 8 測定流体供給口 10 フード 11 放熱室 12 空気冷凍機 13 圧縮空気源 14 流量調節弁 15a、15b温度センサー 16 制御装置 30 渦流発生室 31 圧縮空気導入口 33 小孔 34 冷風取出管 1 Operation Monitoring Device 2 Cooling Mirror Surface 3 Peltier Element 5 Hood 6 Monitoring Room 8 Measuring Fluid Supply Port 10 Hood 11 Radiating Room 12 Air Refrigerator 13 Compressed Air Source 14 Flow Control Valve 15a, 15b Temperature Sensor 16 Controller 30 Eddy Current Generation Chamber 31 Compressed air inlet 33 Small hole 34 Cold air outlet pipe

───────────────────────────────────────────────────── フロントページの続き (72)考案者 宮下 芳行 長野県須坂市大字幸高246番地 オリオン 機械株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Creator Yoshiyuki Miyashita 246 Kodaka, Suzaka City, Nagano Prefecture Orion Machinery Co., Ltd.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 流体除湿装置から供給する除湿流体の露
点温度近傍の所定温度にペルチェ素子によって冷却した
冷却鏡面を使用して流体除湿装置の作動状況を監視する
監視装置であって、前記冷却鏡面の上方を少なくとも一
部が透明部材のフードで覆って形成した監視室と、前記
ペルチェ素子の放熱部を覆う放熱室とを設け、前記監視
室には、流体が冷却鏡面に沿って流れるように測定流体
の供給口と排出口とを設け、前記放熱室には、圧縮空気
供給源に流量調節弁を介して連通する圧縮空気導入口を
有する渦流発生室と、その他側に、前記渦流発生室の中
心付近において小孔を通して前記渦流発生室に連通する
冷風取出管とを有して成る空気冷凍機の冷風取出管を連
通させたことを特徴とする流体除湿装置の作動監視装
置。
1. A monitoring device for monitoring an operating condition of a fluid dehumidifying device by using a cooling mirror surface cooled by a Peltier element to a predetermined temperature near a dew point temperature of a dehumidifying fluid supplied from the fluid dehumidifying device. Is provided with a monitoring chamber formed by covering at least a part of the upper part thereof with a hood made of a transparent member, and a heat dissipation chamber covering a heat dissipation part of the Peltier element, and the monitoring chamber is configured so that a fluid flows along a cooling mirror surface. A measurement fluid supply port and a discharge port are provided, and the radiating chamber has a vortex flow generating chamber having a compressed air introduction port communicating with a compressed air supply source through a flow rate control valve, and the vortex flow generating chamber on the other side. An operation monitoring device for a fluid dehumidifying device, characterized in that a cold air extraction pipe of an air refrigerator, which has a cold air extraction pipe communicating with the swirl flow generation chamber through a small hole, is communicated with the cold air extraction pipe.
【請求項2】放熱室内に、放熱室内の温度を検知する温
度検出器を設け、その検出信号に基づいて圧縮空気導入
口に連通する流量調節弁の開度を調節するようにしたこ
とを特徴とする請求項1に記載の流体除湿装置の作動監
視装置。
2. A temperature detector for detecting the temperature in the heat radiation chamber is provided in the heat radiation chamber, and the opening of a flow rate control valve communicating with the compressed air introduction port is adjusted based on the detection signal. The operation monitoring device for the fluid dehumidifying device according to claim 1.
JP8894U 1994-01-17 1994-01-17 Fluid dehumidifier operation monitoring device Expired - Lifetime JP3000194U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8894U JP3000194U (en) 1994-01-17 1994-01-17 Fluid dehumidifier operation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8894U JP3000194U (en) 1994-01-17 1994-01-17 Fluid dehumidifier operation monitoring device

Publications (1)

Publication Number Publication Date
JP3000194U true JP3000194U (en) 1994-08-02

Family

ID=43136210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8894U Expired - Lifetime JP3000194U (en) 1994-01-17 1994-01-17 Fluid dehumidifier operation monitoring device

Country Status (1)

Country Link
JP (1) JP3000194U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179033A (en) * 1999-12-28 2001-07-03 Orion Mach Co Ltd Dehumidifier for compressed air

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179033A (en) * 1999-12-28 2001-07-03 Orion Mach Co Ltd Dehumidifier for compressed air

Similar Documents

Publication Publication Date Title
US7494536B2 (en) Method for detecting a fault in an HVAC system
CA2363497A1 (en) Filter monitoring system using a thermistor
JP4886617B2 (en) Cooling system
JPH0888493A (en) Electronic apparatus
WO2012020495A1 (en) Local air conditioning system and control device and program therefor
WO2017110055A1 (en) Heat exchange type ventilation device
AU2018410266A1 (en) Indoor unit of air-conditioning apparatus, and air-conditioning apparatus including the indoor unit
JP4047639B2 (en) Industrial air conditioner
JP3000194U (en) Fluid dehumidifier operation monitoring device
JP4565282B2 (en) Surge detection method for centrifugal compressor
KR100702219B1 (en) Cooling Apparatus having a Sensing Function of filter Pollution for a Controller
JP3904960B2 (en) Supply air heat exchanger and control method thereof
JP3283669B2 (en) Operation monitoring device and operation monitoring method for fluid dehumidifier
JPH05172426A (en) Air conditioner assembled with built-in heat transfer unit
JP2711722B2 (en) Electronic dehumidifier
WO2020246169A1 (en) Outside air introducing system, and structure provided with same
JP2002340389A (en) Air conditioner having function of dehumidifying operation
JP2004245538A (en) Air conditioner
JP3075878B2 (en) Air conditioner
CN110764558B (en) Intelligent respirator and control method thereof
JP2555840Y2 (en) Combustion monitoring device
JPH07218004A (en) Motor operated expansion valve controller for air conditioner
JPS5848987Y2 (en) air conditioner
JP2004150777A (en) Malfunction detecting method for peltier cooler
JPS6266065A (en) Liquid-return preventive method of refrigerator