JP2999970B2 - 平面上の点パターンの自動マッチング方法およびその装置 - Google Patents
平面上の点パターンの自動マッチング方法およびその装置Info
- Publication number
- JP2999970B2 JP2999970B2 JP9018879A JP1887997A JP2999970B2 JP 2999970 B2 JP2999970 B2 JP 2999970B2 JP 9018879 A JP9018879 A JP 9018879A JP 1887997 A JP1887997 A JP 1887997A JP 2999970 B2 JP2999970 B2 JP 2999970B2
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- point
- points
- matching
- patterns
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Collating Specific Patterns (AREA)
- Image Analysis (AREA)
Description
【0001】
【発明の属する技術分野】本発明は平面上の点パターン
のための自動マッチング装置および方法に関するもので
ある。特に、平面に分布している点からなるパターンを
自動的にマッチングするシステムに関するものである。
ここで、該パターンは移動、回転、または歪みがあって
もよい。
のための自動マッチング装置および方法に関するもので
ある。特に、平面に分布している点からなるパターンを
自動的にマッチングするシステムに関するものである。
ここで、該パターンは移動、回転、または歪みがあって
もよい。
【0002】
【従来の技術】2つ以上の平面上の点パターンのマッチ
ングは、コンピュータ視覚工学の分野および画像処理工
学において重要な技術である。ある画像がコンピュータ
にデジタルフォーマットで入力されるとき、その画像の
「特徴点(Feature Points)」は、その特質または処理
目的に応じて通常の特徴抽出技術により抽出され得る。
該特徴点、具体的にいえば、点の座標は、画像認識に利
用することができる。例えば、該特徴点の分布をマッチ
ングすることにより該特徴点からなるパターンの類似性
を計算することができ、したがって画像の類似性の判定
を可能とする。
ングは、コンピュータ視覚工学の分野および画像処理工
学において重要な技術である。ある画像がコンピュータ
にデジタルフォーマットで入力されるとき、その画像の
「特徴点(Feature Points)」は、その特質または処理
目的に応じて通常の特徴抽出技術により抽出され得る。
該特徴点、具体的にいえば、点の座標は、画像認識に利
用することができる。例えば、該特徴点の分布をマッチ
ングすることにより該特徴点からなるパターンの類似性
を計算することができ、したがって画像の類似性の判定
を可能とする。
【0003】パターンマッチング技術に関する応用のよ
い例として指紋照合が挙げられる。ある指紋の画像を画
像走査器で走査するとき、その画像はデジタル化されコ
ンピュータに入力される。該コンピュータは該指紋の特
徴点の分布(それは通常、指紋線の端点と分岐点であ
る)を抽出するソフトウェアを利用する。異なる時間ま
たは場所で得られた特徴点からなる2つのパターンをマ
ッチングすることにより、その2つの指紋が同一人物の
ものかどうかを判定できる。
い例として指紋照合が挙げられる。ある指紋の画像を画
像走査器で走査するとき、その画像はデジタル化されコ
ンピュータに入力される。該コンピュータは該指紋の特
徴点の分布(それは通常、指紋線の端点と分岐点であ
る)を抽出するソフトウェアを利用する。異なる時間ま
たは場所で得られた特徴点からなる2つのパターンをマ
ッチングすることにより、その2つの指紋が同一人物の
ものかどうかを判定できる。
【0004】2つの平面上の点パターンのマッチングに
おいてはいくつかの問題が生じてくる。第1は、たとえ
同一画像または画像源から抽出した特徴点であったとし
ても、2つのパターンの特徴点の数が異なる場合であ
る。第2に、両方のパターンの同位置に同じ特徴点が存
在するという可能性が予測できないということである。
第3は、画像(パターン)が異なる時間および/または
場所で得られるとき、片方のパターンの特徴点の分布が
他方に比べ、移動、回転、および/または歪み(拡大ま
たは縮小)がされている場合である。
おいてはいくつかの問題が生じてくる。第1は、たとえ
同一画像または画像源から抽出した特徴点であったとし
ても、2つのパターンの特徴点の数が異なる場合であ
る。第2に、両方のパターンの同位置に同じ特徴点が存
在するという可能性が予測できないということである。
第3は、画像(パターン)が異なる時間および/または
場所で得られるとき、片方のパターンの特徴点の分布が
他方に比べ、移動、回転、および/または歪み(拡大ま
たは縮小)がされている場合である。
【0005】台湾特許出願第79109743号は「フ
ァジー弛緩法(Fuzzy relaxation)」を導入した「平面
パターン点のマッチングおよび照合方法およびその装置
("Planar Pattern Point Matching and Recognition M
ethod and Device thereof")」に関するものである。
上記特許によれば、2つの平面上の点パターンのマッチ
ングは2段階で行われる。第1段階は、片方のパターン
(参照パターン)の点と他方のパターン(テストパター
ン)を重ね合わせることである。第2段階は、上記2つ
のパターンの類似性を計算することである。
ァジー弛緩法(Fuzzy relaxation)」を導入した「平面
パターン点のマッチングおよび照合方法およびその装置
("Planar Pattern Point Matching and Recognition M
ethod and Device thereof")」に関するものである。
上記特許によれば、2つの平面上の点パターンのマッチ
ングは2段階で行われる。第1段階は、片方のパターン
(参照パターン)の点と他方のパターン(テストパター
ン)を重ね合わせることである。第2段階は、上記2つ
のパターンの類似性を計算することである。
【0006】該重ね合わせのプロセスでは、「コースマ
ッチング(Cource matching )」法を利用し、重ね合わ
せ不可能な点の対を除外する。参照パターンから抽出さ
れた1つの点とテストパターンからの1つの点の「適合
確率(mating possibility)」は、不適合な対に対して
は0で設定され、それ以外の対に対しては1で設定され
る。ある1対の適合確率は、それが適合するとすれば、
その重ね合わせを支持するために、他の適合対の値に従
い調整される。一つの適合対の適合確率は下記の式によ
って計算される。
ッチング(Cource matching )」法を利用し、重ね合わ
せ不可能な点の対を除外する。参照パターンから抽出さ
れた1つの点とテストパターンからの1つの点の「適合
確率(mating possibility)」は、不適合な対に対して
は0で設定され、それ以外の対に対しては1で設定され
る。ある1対の適合確率は、それが適合するとすれば、
その重ね合わせを支持するために、他の適合対の値に従
い調整される。一つの適合対の適合確率は下記の式によ
って計算される。
【0007】
【数19】
【0008】ここに、S(r)(pi,qj) はr回調整されたと
きの点piと点qjの適合確率を意味し、piはテストパター
ンPからの点、qjは参照パターンQからの点を各々意味
し、Cij(h,k)はpiとqjの重ね合わせを補うための、他の
適合対phとqkの値を意味している。ここに、 Cij(h,k)=1/(1+Δ),Δ=|lih−ljk|/|lih
+ljk| であり、l はpiとph間の距離またはqjとqk間の距離を意
味し、mはパターンPとパターンQにおける点の最小数
を意味する。
きの点piと点qjの適合確率を意味し、piはテストパター
ンPからの点、qjは参照パターンQからの点を各々意味
し、Cij(h,k)はpiとqjの重ね合わせを補うための、他の
適合対phとqkの値を意味している。ここに、 Cij(h,k)=1/(1+Δ),Δ=|lih−ljk|/|lih
+ljk| であり、l はpiとph間の距離またはqjとqk間の距離を意
味し、mはパターンPとパターンQにおける点の最小数
を意味する。
【0009】該テストパターンからのすべての点と参照
パターンからのすべての点の適合確率を計算する間、最
適な重ね合わせがみられた1対が逐次順方向選択法(Se
quential forward selection method )により選択され
る。第2段階では、該参照パターンと該テストパターン
の類似性を下記の構成を利用し計算する。該構成は、適
合率(適合対の数/2つのパターンの点の最小数)、平
均適合確率、適合対の平均距離、および縮尺要素であ
る。
パターンからのすべての点の適合確率を計算する間、最
適な重ね合わせがみられた1対が逐次順方向選択法(Se
quential forward selection method )により選択され
る。第2段階では、該参照パターンと該テストパターン
の類似性を下記の構成を利用し計算する。該構成は、適
合率(適合対の数/2つのパターンの点の最小数)、平
均適合確率、適合対の平均距離、および縮尺要素であ
る。
【0010】移動、回転および比例縮尺等を含む歪みの
問題を解決するために、平均最小二乗誤差(Least mean
-square-error )を導入し、該テストパターンの分布を
調整する。
問題を解決するために、平均最小二乗誤差(Least mean
-square-error )を導入し、該テストパターンの分布を
調整する。
【0011】
【発明が解決しようとする課題】上記特許は、高性能な
平面上の点パターンの自動マッチング方法を開示してい
るが、棄却率が比較的高いという問題を残している。
「誤受容率-FAR(False Acceptance Rate )」が0.1%に
設定された場合、800通りの指紋画像をマッチングす
る際には、「誤棄却率-FRR(False Rejection Rate)」
は約25%になる。このことは、2つの画像が同一指紋
からのものである場合でも、このシステムによって同一
指紋ではないと判断される可能性が25%もあることを
意味する。
平面上の点パターンの自動マッチング方法を開示してい
るが、棄却率が比較的高いという問題を残している。
「誤受容率-FAR(False Acceptance Rate )」が0.1%に
設定された場合、800通りの指紋画像をマッチングす
る際には、「誤棄却率-FRR(False Rejection Rate)」
は約25%になる。このことは、2つの画像が同一指紋
からのものである場合でも、このシステムによって同一
指紋ではないと判断される可能性が25%もあることを
意味する。
【0012】したがって、FRR 値を削減することを可能
とし、更に性能の高い平面上の点パターンの自動マッチ
ング装置およびその方法を開発する必要がある。本発明
の目的は、点の数が異なり、その点の分布が予測不可能
であり、パターンが歪んでいる状態で平面に分布してい
る点のパターンを適合することができる自動マッチング
方法を提供することにある。
とし、更に性能の高い平面上の点パターンの自動マッチ
ング装置およびその方法を開発する必要がある。本発明
の目的は、点の数が異なり、その点の分布が予測不可能
であり、パターンが歪んでいる状態で平面に分布してい
る点のパターンを適合することができる自動マッチング
方法を提供することにある。
【0013】本発明の更なる目的は、誤棄却率の低い平
面上の点パターンの自動マッチング方法を提供すること
にある。本発明のまた更なる目的は、少なくとも2つの
平面上の点パターンを高速で自動的にマッチングする方
法を提供することにある。本発明のまた更なる目的は、
上記の利点を有する平面上の点パターンの自動マッチン
グ装置を提供することにある。
面上の点パターンの自動マッチング方法を提供すること
にある。本発明のまた更なる目的は、少なくとも2つの
平面上の点パターンを高速で自動的にマッチングする方
法を提供することにある。本発明のまた更なる目的は、
上記の利点を有する平面上の点パターンの自動マッチン
グ装置を提供することにある。
【0014】
【課題を解決するための手段】本発明の平面上の点パタ
ーンの自動マッチング方法のマッチングプロセスは以下
の工程からなる。 (1)粗い重ね合わせ 参照パターンからの一つの点をテストパターンからの1
つの点に重ね合わせるための最小必要事項を提案する。
片方のパターンからの点と他方のパターンからの点の関
係が該必要事項に満たないならばその点の対は適合しな
いと判定される。 (2)適合確率の計算 「ファジー弛緩法」のための新しいアルゴリズムを以下
のように提案する。
ーンの自動マッチング方法のマッチングプロセスは以下
の工程からなる。 (1)粗い重ね合わせ 参照パターンからの一つの点をテストパターンからの1
つの点に重ね合わせるための最小必要事項を提案する。
片方のパターンからの点と他方のパターンからの点の関
係が該必要事項に満たないならばその点の対は適合しな
いと判定される。 (2)適合確率の計算 「ファジー弛緩法」のための新しいアルゴリズムを以下
のように提案する。
【0015】
【数20】
【0016】ここに、piはテストパターンPからの点を
意味し、qjは参照パターンQからの点を意味し、S(r)(p
i,qj) は点piとqjをr回重ね合わせたときの適合確率を
意味し、このときS(0)(pi,qj) は0または1であり、m
はパターンPとパターンQにおける点の最小数を意味
し、Cij(h,k)は点phと点qkからなる別の適合対のpiとqj
の重ね合わせを支持するための値を意味する。 (3)適合対の選択 両方のパターンから最適点適合対を該対の適合確率に従
って選択する。 (4)パターンの類似性の計算 パターンの類似性は、適合対の数、参照パターンの適合
率、テストパターンの適合率、平均適合確率、および該
適合対の平均距離平方根によって計算される。
意味し、qjは参照パターンQからの点を意味し、S(r)(p
i,qj) は点piとqjをr回重ね合わせたときの適合確率を
意味し、このときS(0)(pi,qj) は0または1であり、m
はパターンPとパターンQにおける点の最小数を意味
し、Cij(h,k)は点phと点qkからなる別の適合対のpiとqj
の重ね合わせを支持するための値を意味する。 (3)適合対の選択 両方のパターンから最適点適合対を該対の適合確率に従
って選択する。 (4)パターンの類似性の計算 パターンの類似性は、適合対の数、参照パターンの適合
率、テストパターンの適合率、平均適合確率、および該
適合対の平均距離平方根によって計算される。
【0017】また、該マッチング方法を利用した本発明
の平面上の点パターンの自動マッチング装置は、サンプ
リング装置、粗い重ね合わせ装置、適合確率計算装置、
選択装置、調整装置、類似性計算装置及び判定装置から
構成される。
の平面上の点パターンの自動マッチング装置は、サンプ
リング装置、粗い重ね合わせ装置、適合確率計算装置、
選択装置、調整装置、類似性計算装置及び判定装置から
構成される。
【0018】
【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。平面に分布している点からなる3つのパタ
ーン(平面上の点パターン)PおよびQが定められる。
ここに、P={p1,p2,p3,....,pm}はm個の点からなる
テストパターンであり、Q={q1,q2,q3,....,qn}はn
個の点からなる参照パターンであり、該点は(x,y,D) で
表され、(x,y) は該点の座標を意味し、D はその特徴方
向を意味している。
に説明する。平面に分布している点からなる3つのパタ
ーン(平面上の点パターン)PおよびQが定められる。
ここに、P={p1,p2,p3,....,pm}はm個の点からなる
テストパターンであり、Q={q1,q2,q3,....,qn}はn
個の点からなる参照パターンであり、該点は(x,y,D) で
表され、(x,y) は該点の座標を意味し、D はその特徴方
向を意味している。
【0019】本発明の応用においては、パターンは常に
画像から抽出された特徴点で表される。例えば、該画像
が指紋であれば、その特徴点は指紋線の端点と分岐点で
ある。画像は手書き文字でもよい。この場合の特徴点は
文字の終結点と分岐点である。他の応用における特徴点
は、別の画像特徴で表し得る。通常特徴点はある特定の
直線または曲線に関係している。「特徴方向」は次のよ
うに定義される。 1.点が直線または曲線の端点であるとき、特徴方向D
はその線の正接方向を意味し、そして、 2.点が2本以上の直線または曲線の分岐点であると
き、特徴方向D はそれらの線で形成される鋭角2等分方
向である。
画像から抽出された特徴点で表される。例えば、該画像
が指紋であれば、その特徴点は指紋線の端点と分岐点で
ある。画像は手書き文字でもよい。この場合の特徴点は
文字の終結点と分岐点である。他の応用における特徴点
は、別の画像特徴で表し得る。通常特徴点はある特定の
直線または曲線に関係している。「特徴方向」は次のよ
うに定義される。 1.点が直線または曲線の端点であるとき、特徴方向D
はその線の正接方向を意味し、そして、 2.点が2本以上の直線または曲線の分岐点であると
き、特徴方向D はそれらの線で形成される鋭角2等分方
向である。
【0020】該特徴方向の単位は角度であり、0度では
水平正方向であり、該方向は時計回り方向である。一般
的には、パターンPはθ角度で回転し、X軸とY軸に沿
って方向(tx,ty)で移動するためパターンPの殆どの点
は、パターンQの点と一致するか部分的に重なる。した
がって、関数(tx,ty, θ) を利用してパターンのマッチ
ング関係を説明することができる。言い換えれば、もし
そのマッチングが理想的であれば、パターンPがθ角度
で回転し、方向(tx,ty) で移動している位置で関数(tx,
ty,θ) が成り立つので、パターンPの点の最大数がパ
ターンQと一致すると言える。
水平正方向であり、該方向は時計回り方向である。一般
的には、パターンPはθ角度で回転し、X軸とY軸に沿
って方向(tx,ty)で移動するためパターンPの殆どの点
は、パターンQの点と一致するか部分的に重なる。した
がって、関数(tx,ty, θ) を利用してパターンのマッチ
ング関係を説明することができる。言い換えれば、もし
そのマッチングが理想的であれば、パターンPがθ角度
で回転し、方向(tx,ty) で移動している位置で関数(tx,
ty,θ) が成り立つので、パターンPの点の最大数がパ
ターンQと一致すると言える。
【0021】そのような定義に基づき、テストパターン
Pの点piが参照パターンQの点qjと適合するならば、そ
の適合は下記の式を満たすはずである。 xqj=tx+xpicosθ−ypisinθ (1) yqj=ty+xpisinθ+ypicosθ (2) Dqj =(Dpi+Dr) +θ (3) ここに、xpi およびypi は点piの座標を意味し、xqj お
よびyqj は点qjの座標を意味し、Dpi およびDqj はpiお
よびqjそれぞれの特徴方向を意味し、txおよびtyはX座
標とY座標に沿うパターン間の移動距離を意味し、Drは
歪みの誤差を意味している。このとき、該歪みの誤差
は、テストパターンをθ角度で回転した後に適合した対
における点の特徴方向の差であると定義される。理想的
な場合には、テストパターンがθ角度で回転されると、
適合した対の点の特徴方向は同一になるはずである。こ
れは、しかしながら、必ずしもそうなるとは限らない。
なぜならば、特徴点の抽出の再に歪みのある一定量がす
でに存在している場合があるからである。Drは歪みを表
し、度(Degrees)で示される。
Pの点piが参照パターンQの点qjと適合するならば、そ
の適合は下記の式を満たすはずである。 xqj=tx+xpicosθ−ypisinθ (1) yqj=ty+xpisinθ+ypicosθ (2) Dqj =(Dpi+Dr) +θ (3) ここに、xpi およびypi は点piの座標を意味し、xqj お
よびyqj は点qjの座標を意味し、Dpi およびDqj はpiお
よびqjそれぞれの特徴方向を意味し、txおよびtyはX座
標とY座標に沿うパターン間の移動距離を意味し、Drは
歪みの誤差を意味している。このとき、該歪みの誤差
は、テストパターンをθ角度で回転した後に適合した対
における点の特徴方向の差であると定義される。理想的
な場合には、テストパターンがθ角度で回転されると、
適合した対の点の特徴方向は同一になるはずである。こ
れは、しかしながら、必ずしもそうなるとは限らない。
なぜならば、特徴点の抽出の再に歪みのある一定量がす
でに存在している場合があるからである。Drは歪みを表
し、度(Degrees)で示される。
【0022】本発明の平面上の点パターンの自動マッチ
ング装置および方法について以下に説明する。図1は本
発明の平面上の点パターンの自動マッチング装置の略図
である。図1に示すように、本発明の平面上の点パター
ンの自動マッチング装置はサンプリング装置1、粗い重
ね合わせ装置2、適合確率計算装置3、選択装置4、調
整装置5、類似性計算装置6および判定装置7から成っ
ている。
ング装置および方法について以下に説明する。図1は本
発明の平面上の点パターンの自動マッチング装置の略図
である。図1に示すように、本発明の平面上の点パター
ンの自動マッチング装置はサンプリング装置1、粗い重
ね合わせ装置2、適合確率計算装置3、選択装置4、調
整装置5、類似性計算装置6および判定装置7から成っ
ている。
【0023】図2は本発明の平面上の点パターンの自動
マッチング方法の流れ図を示している。本発明の装置お
よび方法は、上記図面を参照することにより詳細に説明
される。図2に示すように、はじめに、サンプリング装
置1で2つの平面上の点パターンPおよびQを得る(10
1) 。そのデータは点の特徴方向および座標を含む。
マッチング方法の流れ図を示している。本発明の装置お
よび方法は、上記図面を参照することにより詳細に説明
される。図2に示すように、はじめに、サンプリング装
置1で2つの平面上の点パターンPおよびQを得る(10
1) 。そのデータは点の特徴方向および座標を含む。
【0024】該2つのパターンは本発明の方法および装
置によりマッチングされる。 〔粗い重ね合わせ〕粗い重ね合わせ装置2では、パター
ンPとパターンQの粗い重ね合わせ処理をする(102) 。
該粗い重ね合わせの目的は、一定の基準に基づいてパタ
ーンPのすべての点とパターンQのすべての点の予備適
合確率を判定することにより、点が一対も適合しないと
きには本装置によってその対の適合確率を計算する必要
がなくなり、そのような操作時間も削減できるようにす
ることである。
置によりマッチングされる。 〔粗い重ね合わせ〕粗い重ね合わせ装置2では、パター
ンPとパターンQの粗い重ね合わせ処理をする(102) 。
該粗い重ね合わせの目的は、一定の基準に基づいてパタ
ーンPのすべての点とパターンQのすべての点の予備適
合確率を判定することにより、点が一対も適合しないと
きには本装置によってその対の適合確率を計算する必要
がなくなり、そのような操作時間も削減できるようにす
ることである。
【0025】既知の式(1) 、(2) および(3) から、テス
トパターンPから抽出された点piが参照パターンから抽
出された点qjと適合するとき、下記の条件が満たされる
はずである。 (a) 特徴方向 式(3) から、Dqj - Dpi = Dr + θおよび |Dqj - Dpi | ≦ |Dr| + |θ| を得る。
トパターンPから抽出された点piが参照パターンから抽
出された点qjと適合するとき、下記の条件が満たされる
はずである。 (a) 特徴方向 式(3) から、Dqj - Dpi = Dr + θおよび |Dqj - Dpi | ≦ |Dr| + |θ| を得る。
【0026】特徴方向DRの誤差の最大許容差および回転
角θT 最大許容差を設定すると、 |Dqj - Dpi | ≦ DR + θT (4) となる。粗い重ね合わせにおいては、もしDqj とDpi の
差が(DR+θT)より大きければ、piとqjは適合しないと判
断できる。 (b) X方向への移動 式(1) から、 xqj − xpi = tx + xpi(cosθ−1) − ypisinθ |xqj− xpi|≦|tx|+|xpi(cosθ−1) − ypisin
θ| を得る。
角θT 最大許容差を設定すると、 |Dqj - Dpi | ≦ DR + θT (4) となる。粗い重ね合わせにおいては、もしDqj とDpi の
差が(DR+θT)より大きければ、piとqjは適合しないと判
断できる。 (b) X方向への移動 式(1) から、 xqj − xpi = tx + xpi(cosθ−1) − ypisinθ |xqj− xpi|≦|tx|+|xpi(cosθ−1) − ypisin
θ| を得る。
【0027】もしTXがX方向への移動の最大許容差であ
るならば、 |xqj−xpi|≦ TX (5) を得る。もしxqjとxpiの差がTXより大きければ、piとqj
は適合しないと判断できる。 (c) Y方向への移動 式(2) から、 yqj−ypi=ty + xpisinθ + ypi(cosθ−1) |yqj−ypi|≦|ty|+ |xpisinθ+ypi(cosθ−1)| を得る。
るならば、 |xqj−xpi|≦ TX (5) を得る。もしxqjとxpiの差がTXより大きければ、piとqj
は適合しないと判断できる。 (c) Y方向への移動 式(2) から、 yqj−ypi=ty + xpisinθ + ypi(cosθ−1) |yqj−ypi|≦|ty|+ |xpisinθ+ypi(cosθ−1)| を得る。
【0028】もしTYがY 方向への移動の最大許容差であ
れば、 |yqj−ypi|≦ TY (6) を得る。もしyqjとypiの差がTYより大きければ、piとqj
が適合しないと判断できる。S(0)(pi,qj) をpiとqjの初
期適合確率とする。もしpiとqjが適合しないなら、S(0)
(pi,qj)=0とする。適合すれば S(0)(pi,qj)=1とす
る。つまり、式(4)、(5) および(6) の条件が満たされ
るとき、 S(0)(pi,qj)=1となり、満たされなければ S
(0)(pi,qj)=0となるのである。このプロセスを「粗い
重ね合わせ(coarse mating) 」と呼ぶ。
れば、 |yqj−ypi|≦ TY (6) を得る。もしyqjとypiの差がTYより大きければ、piとqj
が適合しないと判断できる。S(0)(pi,qj) をpiとqjの初
期適合確率とする。もしpiとqjが適合しないなら、S(0)
(pi,qj)=0とする。適合すれば S(0)(pi,qj)=1とす
る。つまり、式(4)、(5) および(6) の条件が満たされ
るとき、 S(0)(pi,qj)=1となり、満たされなければ S
(0)(pi,qj)=0となるのである。このプロセスを「粗い
重ね合わせ(coarse mating) 」と呼ぶ。
【0029】〔適合確率の計算〕先のプロセスにおい
て、パターンPのすべての点とパターンQのすべての点
の初期適合確率を0または1と設定する。該初期適合確
率はその後、新「ファジー弛緩法」にしたがい適合確率
計算装置3によって調整される(103) 。該ファジー弛緩
法においては、パターンPから抽出された1つの点piと
パターンQから抽出された点qjの適合確率は、「piとqj
が適合するとすればその重ね合わせを支持するために他
の適合対(ph とqk, h ≠i, k≠j)の値」にしたがい決定
される。本発明で開示しているファジー弛緩法において
は、パターンPからの1つの点とパターンQからの1つ
の点の適合確率は以下のように計算される。
て、パターンPのすべての点とパターンQのすべての点
の初期適合確率を0または1と設定する。該初期適合確
率はその後、新「ファジー弛緩法」にしたがい適合確率
計算装置3によって調整される(103) 。該ファジー弛緩
法においては、パターンPから抽出された1つの点piと
パターンQから抽出された点qjの適合確率は、「piとqj
が適合するとすればその重ね合わせを支持するために他
の適合対(ph とqk, h ≠i, k≠j)の値」にしたがい決定
される。本発明で開示しているファジー弛緩法において
は、パターンPからの1つの点とパターンQからの1つ
の点の適合確率は以下のように計算される。
【0030】piとqjの適合する可能性をS(r)(pi,qj) と
仮定すれば、r 回調整されてS(0)(pi,qj) が初期適合確
率(0または1)であるとき、S(r)(pi,qj) は次の式で表さ
れる。
仮定すれば、r 回調整されてS(0)(pi,qj) が初期適合確
率(0または1)であるとき、S(r)(pi,qj) は次の式で表さ
れる。
【0031】
【数21】
【0032】上記式におけるpiはテストパターンPから
抽出された点を意味し、qjは参照パターンQから抽出さ
れた点を意味し、S(r)(pi,qj) は、r回調整が行われた
ときの点piと点qjの適合する可能性を意味し、S(0)(pi,
qj) は0または1である。mはパターンPとパターンQ
における点の最小数を意味し、Cij(h,k)はpiとqjの重ね
合わせを支持するための、点phと点qkからなる適合対の
値を意味している。本発明の実施形態においては、支持
値Cij(h,k)は、点piと点qjが適合すると仮定した場合の
他の、他の点の対ph, qkの適合確率と解釈できる。
抽出された点を意味し、qjは参照パターンQから抽出さ
れた点を意味し、S(r)(pi,qj) は、r回調整が行われた
ときの点piと点qjの適合する可能性を意味し、S(0)(pi,
qj) は0または1である。mはパターンPとパターンQ
における点の最小数を意味し、Cij(h,k)はpiとqjの重ね
合わせを支持するための、点phと点qkからなる適合対の
値を意味している。本発明の実施形態においては、支持
値Cij(h,k)は、点piと点qjが適合すると仮定した場合の
他の、他の点の対ph, qkの適合確率と解釈できる。
【0033】本発明の範囲を制限するものではないが、
piとqjが1対1対応であることから、上記式には最大値
操作を採用した。Cij(h,k)の最大値のみによってphとqk
が適合したとみなされる。該式において、 Cij(h,k)=1/(1+Δ) (a) Δ=(wl*Δl + wθ* Δθ) /(wl + wθ) (b) Δθ=(Δs +Δe )/2 (c) Ds≦NsならばΔs =Ds/Ns、そうでなければΔs =1 (d) De≦NeならばΔe =De/Ne、そうでなければΔe =1 (e) dl≦NlならばΔl =dl/Nl、そうでなければΔl=Δs=Δe=1 (f)
piとqjが1対1対応であることから、上記式には最大値
操作を採用した。Cij(h,k)の最大値のみによってphとqk
が適合したとみなされる。該式において、 Cij(h,k)=1/(1+Δ) (a) Δ=(wl*Δl + wθ* Δθ) /(wl + wθ) (b) Δθ=(Δs +Δe )/2 (c) Ds≦NsならばΔs =Ds/Ns、そうでなければΔs =1 (d) De≦NeならばΔe =De/Ne、そうでなければΔe =1 (e) dl≦NlならばΔl =dl/Nl、そうでなければΔl=Δs=Δe=1 (f)
【0034】
【数22】
【0035】
【数23】
【0036】
【数24】
【0037】であり、ここに、Dsは点piと点qjの特徴方
向の差を意味し、NsはDsを0と1の間に正規化する最大
許容差であり、DsがNsより大きいとき、Δs=1であり、
これによって0≦Δs ≦1である。Deは点phと点qkの特
徴方向の差を意味し、NeはDeを0と1の間に正規化する
最大許容差であり、DeがNeより大きいとき、Δe=1であ
り、これによって0≦Δe≦1である。
向の差を意味し、NsはDsを0と1の間に正規化する最大
許容差であり、DsがNsより大きいとき、Δs=1であり、
これによって0≦Δs ≦1である。Deは点phと点qkの特
徴方向の差を意味し、NeはDeを0と1の間に正規化する
最大許容差であり、DeがNeより大きいとき、Δe=1であ
り、これによって0≦Δe≦1である。
【0038】dlは、
【0039】
【数25】
【0040】と、
【0041】
【数26】
【0042】との間の距離であり、Nlはdlを0と1の間
に正規化する最大許容差であり、dlがNlより大きいとき
Δe =1であり、これにより0≦Δl ≦1である。もし
距離dlでの差が距離Nlでの差より重要だとみなされるな
らば、dlがNlより大きい場合には、Δl =Δs =Δe =
1と設定する。式(c) において、ΔθはΔs およびΔe
という意味である。したがって、0≦Δθ≦1である。
に正規化する最大許容差であり、dlがNlより大きいとき
Δe =1であり、これにより0≦Δl ≦1である。もし
距離dlでの差が距離Nlでの差より重要だとみなされるな
らば、dlがNlより大きい場合には、Δl =Δs =Δe =
1と設定する。式(c) において、ΔθはΔs およびΔe
という意味である。したがって、0≦Δθ≦1である。
【0043】式(b) において、重みwlおよび wθを利用
して係数Δl およびΔθをΔに調整し、差を0および1
に正規化する。式(a) において、ΔはCij(h,k)と反比例
している。0≦Δ≦1により、0.5 ≦Cij(h,k)≦ 1.0と
なる。数回調整を重ねると、適合する可能性は1から0
に下がっていく。その結果、適合した点の対はより高い
適合確率をもち、他の対は0に近い適合確率をもつこと
になる。
して係数Δl およびΔθをΔに調整し、差を0および1
に正規化する。式(a) において、ΔはCij(h,k)と反比例
している。0≦Δ≦1により、0.5 ≦Cij(h,k)≦ 1.0と
なる。数回調整を重ねると、適合する可能性は1から0
に下がっていく。その結果、適合した点の対はより高い
適合確率をもち、他の対は0に近い適合確率をもつこと
になる。
【0044】上記計算から、テストパターンからの点1
つ1つと参照パターンからの点1つ1つとの適合確率を
得ることができる。このアプローチもまた「ファジー弛
緩法」と呼ぶことができる。 〔適合対の予備選択〕適合確率を繰り返し調整した後
で、適合確率の値S(r)(pi,qj) に従いパターンPとパタ
ーンQ間の最適適合対を選択する。ここでは、該適合確
率の値は適合対の選択基準として利用される。したがっ
て、選択装置4では値S(r)(pi,qj) によって最適適合点
の選択を行なう(104) 。
つ1つと参照パターンからの点1つ1つとの適合確率を
得ることができる。このアプローチもまた「ファジー弛
緩法」と呼ぶことができる。 〔適合対の予備選択〕適合確率を繰り返し調整した後
で、適合確率の値S(r)(pi,qj) に従いパターンPとパタ
ーンQ間の最適適合対を選択する。ここでは、該適合確
率の値は適合対の選択基準として利用される。したがっ
て、選択装置4では値S(r)(pi,qj) によって最適適合点
の選択を行なう(104) 。
【0045】ファジー弛緩法で調整した後のS[pi][qj]
をパターンPのすべての点piとパターンQのすべての点
qjを適合する可能性S(pi,qj)からなる行列とする。ここ
においてi=1,2,3,...,m 、j=1,2,3,...,n である。mは
パターンPの点の数を意味し、nはパターンQの点の数
を意味する。したがって、適合した対の最大数K はmと
nより大きくはなり得ない。つまり、K ≦min(m,n)とな
る。
をパターンPのすべての点piとパターンQのすべての点
qjを適合する可能性S(pi,qj)からなる行列とする。ここ
においてi=1,2,3,...,m 、j=1,2,3,...,n である。mは
パターンPの点の数を意味し、nはパターンQの点の数
を意味する。したがって、適合した対の最大数K はmと
nより大きくはなり得ない。つまり、K ≦min(m,n)とな
る。
【0046】最大適合確率を有するN点の対は、下記の
ように、選択装置4によって順次S[pi][qj] より選択さ
れる。パターンPおよびパターンQのすべての点の適合
確率からなる行列が得られる(104a)。k 値(k=1) を設定
する(104b)。最大適合確率(smax)を有する対(paとqb)
がS[i][j] から選択され、paをop[k],qbをoq[k], smax
をsim[k]と考えた上で適合対であるとみなされる(104
c)。
ように、選択装置4によって順次S[pi][qj] より選択さ
れる。パターンPおよびパターンQのすべての点の適合
確率からなる行列が得られる(104a)。k 値(k=1) を設定
する(104b)。最大適合確率(smax)を有する対(paとqb)
がS[i][j] から選択され、paをop[k],qbをoq[k], smax
をsim[k]と考えた上で適合対であるとみなされる(104
c)。
【0047】行列S[i][j] の列a および行b におけるす
べての要素は0とラベルされる(104d)。K=K+1 とする(1
04e)。smax=0かどうか決定する(104f)。もしsmax=0
でないなら、ステップ(104c)へ戻る。そうでない限り、
N対(N=k-1) を適合対として予備選択する。 〔適合対の精密選択〕先のプロセスで選択された対は、
平面上の点パターンのマッチングに関する限り、重なり
合わないいくつかの対も含み得る。理論上では、より高
い適合確率を有する対は適合対となり得る。調整装置5
は最高適合確率を有するN点の対を用いて幾何学的変換
(tx,ty, θ) を算出してパターンPを調整する(105) 。
該幾何学的変換をそのようにして決定するので、N対の
“p”点を変換した後の、該N対の“p”および“q”
点間の距離の平方合計は最小値となる。幾何学的変換(t
x,ty, θ) が算出されることによりE(tx,ty,θ) は最小
値となる。ここに、
べての要素は0とラベルされる(104d)。K=K+1 とする(1
04e)。smax=0かどうか決定する(104f)。もしsmax=0
でないなら、ステップ(104c)へ戻る。そうでない限り、
N対(N=k-1) を適合対として予備選択する。 〔適合対の精密選択〕先のプロセスで選択された対は、
平面上の点パターンのマッチングに関する限り、重なり
合わないいくつかの対も含み得る。理論上では、より高
い適合確率を有する対は適合対となり得る。調整装置5
は最高適合確率を有するN点の対を用いて幾何学的変換
(tx,ty, θ) を算出してパターンPを調整する(105) 。
該幾何学的変換をそのようにして決定するので、N対の
“p”点を変換した後の、該N対の“p”および“q”
点間の距離の平方合計は最小値となる。幾何学的変換(t
x,ty, θ) が算出されることによりE(tx,ty,θ) は最小
値となる。ここに、
【0048】
【数27】
【0049】 x'op[i] =tx+xop[i]cosθ− yop[i]sinθ y'op[i] =ty+xop[i]sinθ+ yop[i]cosθ (8) であり、txおよびtyはX方向とY方向への移動を意味
し、θは回転角度を意味し、xop[i]およびyop[i]は点p
の座標を意味し、x'op[i] およびy'op[i] は変換された
点pの座標を意味している。
し、θは回転角度を意味し、xop[i]およびyop[i]は点p
の座標を意味し、x'op[i] およびy'op[i] は変換された
点pの座標を意味している。
【0050】N対のp点が変換(移動および回転)され
る間にN対のp点とq点間の平方距離の合計が計算され
る(106) 。もしその合計がしきい値d1より小さければ、
その対は保持される。そうでなければ、その対は適合し
ないとみなされ除去される。仮に、選択後にM対が保持
されるとすると、幾何学的変換(tx,ty, θ) が調整装置
5により再度算出される(107) 。つまり、E(tx,ty,θ)
の最小値を得るために幾何学的変換(tx,ty, θ) を探し
出すのである。ここに、
る間にN対のp点とq点間の平方距離の合計が計算され
る(106) 。もしその合計がしきい値d1より小さければ、
その対は保持される。そうでなければ、その対は適合し
ないとみなされ除去される。仮に、選択後にM対が保持
されるとすると、幾何学的変換(tx,ty, θ) が調整装置
5により再度算出される(107) 。つまり、E(tx,ty,θ)
の最小値を得るために幾何学的変換(tx,ty, θ) を探し
出すのである。ここに、
【0051】
【数28】
【0052】 x'op=tx+xop[i]cosθ− yop[i]sinθ y'op=ty+xop[i]sinθ+ yop[i]cosθ (9) である。上記M対の“p”点が(tx,ty, θ) で変換され
る間に、該M対のp点とq点間の距離の合計が調整装置
5によって計算される(108) 。もしその合計がしきい値
d2より小さければ、その対は保持される。そうでなけれ
ば、その対は適合しないとみなされ除去される。ここで
は、d2≦d1である。
る間に、該M対のp点とq点間の距離の合計が調整装置
5によって計算される(108) 。もしその合計がしきい値
d2より小さければ、その対は保持される。そうでなけれ
ば、その対は適合しないとみなされ除去される。ここで
は、d2≦d1である。
【0053】2回選択を行った後、K対が得られる。該
K対の平均距離はdiffとラベルされ、パターンPおよび
パターンQの平均適合率はmdとラベルされる(109) 。 〔2つのパターンの類似性の計算〕先のプロセスから、
2つのパターンの点の数(nおよびm)、各々の適合対の適
合確率S[i][j] および適合点の対の座標(px',py') およ
び(qx,qy) が得られる。類似性計算装置6では、いくつ
かの要素を計算する(110) 。これらの要素はその情報に
基づいたパターンの類似性を計算するために有効であ
る。これらの要素とは、適合対の数K 、参照パターンの
適合率S1、テストパターンの適合率S2、平均適合確率md
および適合点の対の平均距離S3である。これらの要素に
よって該2つのパターンの類似性が計算可能となる。類
似性の指数はスコア(Score )で表現される。ここで
は、スコアが高いほど類似性が高いことを意味し、スコ
アが低いほど類似性が低いことを意味する。
K対の平均距離はdiffとラベルされ、パターンPおよび
パターンQの平均適合率はmdとラベルされる(109) 。 〔2つのパターンの類似性の計算〕先のプロセスから、
2つのパターンの点の数(nおよびm)、各々の適合対の適
合確率S[i][j] および適合点の対の座標(px',py') およ
び(qx,qy) が得られる。類似性計算装置6では、いくつ
かの要素を計算する(110) 。これらの要素はその情報に
基づいたパターンの類似性を計算するために有効であ
る。これらの要素とは、適合対の数K 、参照パターンの
適合率S1、テストパターンの適合率S2、平均適合確率md
および適合点の対の平均距離S3である。これらの要素に
よって該2つのパターンの類似性が計算可能となる。類
似性の指数はスコア(Score )で表現される。ここで
は、スコアが高いほど類似性が高いことを意味し、スコ
アが低いほど類似性が低いことを意味する。
【0054】5つの要素の定義は以下の通りである。 (1) 適合対の数, K: 精密選択の結果 (2) 参照パターンの適合率, S1: S1=k/n (3) テストパターンの適合率, S2: S2=k/m (4) 平均適合率, md:
【0055】
【数29】
【0056】(5) 適合点の対の平均距離, S3: S3=1.0/
(1.0 + diff) 上記分母中の1.0 は分母が0にならないように加えられ
たものである。上記5つの要素はスコアとすべて正比例
である。該スコアはしたがって次の式で定義される。 Score = C * K2 * S12 * S2 * S32 * md (11) ここに、C は定数である。いくつかの要素は2乗操作で
強調される。
(1.0 + diff) 上記分母中の1.0 は分母が0にならないように加えられ
たものである。上記5つの要素はスコアとすべて正比例
である。該スコアはしたがって次の式で定義される。 Score = C * K2 * S12 * S2 * S32 * md (11) ここに、C は定数である。いくつかの要素は2乗操作で
強調される。
【0057】〔判定〕最後に、判定装置7でしきい値を
用いて2つのパターンが類似するかどうかの判定を行な
う(112) 。つまり、スコアがしきい値より大きい場合、
該2つのパターンは類似すると考えられる。そうでなけ
れば、類似しないものとみなされる。
用いて2つのパターンが類似するかどうかの判定を行な
う(112) 。つまり、スコアがしきい値より大きい場合、
該2つのパターンは類似すると考えられる。そうでなけ
れば、類似しないものとみなされる。
【0058】
【実施例】下記の実施例は本発明の平面上の点パターン
の自動マッチング装置および方法の実施形態を説明する
ために役立つものである。表1、2および3は8つの平
面点からなる3つのパターン(パターンA,パターン
B,パターンC)を表している。上記点の座標および特
徴方向はこれらの表に記載されている。上記パターンの
うち、移動および回転した後では、パターンBはパター
ンAに類似し、パターンCとパターンAは類似しない。
ここに、パターンAは参照パターンを意味し、パターン
BとCは適合させるためのテストパターンである。
の自動マッチング装置および方法の実施形態を説明する
ために役立つものである。表1、2および3は8つの平
面点からなる3つのパターン(パターンA,パターン
B,パターンC)を表している。上記点の座標および特
徴方向はこれらの表に記載されている。上記パターンの
うち、移動および回転した後では、パターンBはパター
ンAに類似し、パターンCとパターンAは類似しない。
ここに、パターンAは参照パターンを意味し、パターン
BとCは適合させるためのテストパターンである。
【0059】
【表1】
【0060】
【表2】
【0061】
【表3】
【0062】〔粗い重ね合わせ〕本実施例ではTXを50で
設定し、TYを50に設定し、(DR+θT)を60°で設定する。 〔A.パターンBとパターンAの重ね合わせ〕点a1とb1
の重ね合わせはパターンBとAでの適合対の重ね合わせ
の例として考える。表1および2から、a1=(24,48,0)お
よびb1=(33,36,20) である。
設定し、TYを50に設定し、(DR+θT)を60°で設定する。 〔A.パターンBとパターンAの重ね合わせ〕点a1とb1
の重ね合わせはパターンBとAでの適合対の重ね合わせ
の例として考える。表1および2から、a1=(24,48,0)お
よびb1=(33,36,20) である。
【0063】(a)特徴方向 |Da1 - Db1 | = |0-20| = 20 ≦ 60 必要条
件を満たしている。 (b)X方向への移動 |xa1 - xb1 | = |24-33 | = 9 ≦ 50 必要条
件を満たしている。 (c)Y方向への移動 |ya1 - yb1 | = |48-36 | = 12 ≦ 50 必要条
件を満たしている。
件を満たしている。 (b)X方向への移動 |xa1 - xb1 | = |24-33 | = 9 ≦ 50 必要条
件を満たしている。 (c)Y方向への移動 |ya1 - yb1 | = |48-36 | = 12 ≦ 50 必要条
件を満たしている。
【0064】上記3つの条件が満たされているので、S
[b1][a1] =1とする。点a1とb3の重ね合わせは、パタ
ーンBとAにおける非適合対の重ね合わせの例として見
る。表1および2から、a1=(24,48,0)およびb3=(76,53,
65) となる。 (a)特徴方向 |Da1 - Db3 | = |0-65| = 65 > 60 必要条
件を満たしていない。
[b1][a1] =1とする。点a1とb3の重ね合わせは、パタ
ーンBとAにおける非適合対の重ね合わせの例として見
る。表1および2から、a1=(24,48,0)およびb3=(76,53,
65) となる。 (a)特徴方向 |Da1 - Db3 | = |0-65| = 65 > 60 必要条
件を満たしていない。
【0065】(b)X方向への移動 |xa1 - xb3 | = |24-76 | = 52 > 50 必要条
件を満たしていない。 (c)Y方向への移動 |ya1 - yb3 | = |48-53 | = 5 ≦ 50 必要条
件を満たしている。 少なくとも1つの条件が満たされていない。よって、S
[b3][a1] =0とする。
件を満たしていない。 (c)Y方向への移動 |ya1 - yb3 | = |48-53 | = 5 ≦ 50 必要条
件を満たしている。 少なくとも1つの条件が満たされていない。よって、S
[b3][a1] =0とする。
【0066】他の点の重ね合わせも上記と同様に行われ
るので、その説明は省略する。パターンBとAの粗い重
ね合わせの結果を表4に示す。
るので、その説明は省略する。パターンBとAの粗い重
ね合わせの結果を表4に示す。
【0067】
【表4】
【0068】〔B.パターンCとパターンAの重ね合わ
せ〕パターンCとAの粗い重ね合わせにおいて同じプロ
セスを採用する。表5はパターンCとAの粗い重ね合わ
せの結果を示す。該粗い重ね合わせの後、適合しない対
のうち少なくとも半分が確認される。
せ〕パターンCとAの粗い重ね合わせにおいて同じプロ
セスを採用する。表5はパターンCとAの粗い重ね合わ
せの結果を示す。該粗い重ね合わせの後、適合しない対
のうち少なくとも半分が確認される。
【0069】
【表5】
【0070】〔ファジー弛緩法〕本実施例ではNsを45°
で設定し、Neを45°、Nlを10、Wlを1 、Wθを1で設定
する。適合確率を2回調整する。 r=2である。 〔A.パターンBとパターンAの重ね合わせ〕仮にb1と
a1が適合するならば、b2とa2の適合確率C11(2,2)は以下
のように算出される。
で設定し、Neを45°、Nlを10、Wlを1 、Wθを1で設定
する。適合確率を2回調整する。 r=2である。 〔A.パターンBとパターンAの重ね合わせ〕仮にb1と
a1が適合するならば、b2とa2の適合確率C11(2,2)は以下
のように算出される。
【0071】
【数30】
【0072】よって、Δl =dl/Nl =1/10= 0.1
【0073】
【数31】
【0074】よって、Δs =Ds/Ns =2/45= 0.0444
【0075】
【数32】
【0076】よって、Δe =De/Ne =2/45= 0.0444 Δθ= (Δs +Δe )/2= 0.0444 Δ=(wl *Δl +wθ*Δθ)/(wl +wθ) =(Δl +
Δθ)/2=0.0722 従って、 C11(2,2)=1/(1+Δ)=0.933 同じ条件の下にb2とb3の適合確率C11(2,3)を算出する。
その結果は0.5 となる。i=1, j=1, h=2, ..., 8 および
k=2, ..., 8 において、他の対の適合確率Cij(h,k)を算
出する。表6はa1とb1が適合すると仮定したときの他の
対の適合確率を示している。これらのデータを基に、a1
とb1の適合確率は式(7) にしたがい調整され得る。2回
調整を行った後、結果は0.714 となる。表7は、2回調
整を行った後のパターンAとパターンBの一つ一つの点
の適合確率を示している。
Δθ)/2=0.0722 従って、 C11(2,2)=1/(1+Δ)=0.933 同じ条件の下にb2とb3の適合確率C11(2,3)を算出する。
その結果は0.5 となる。i=1, j=1, h=2, ..., 8 および
k=2, ..., 8 において、他の対の適合確率Cij(h,k)を算
出する。表6はa1とb1が適合すると仮定したときの他の
対の適合確率を示している。これらのデータを基に、a1
とb1の適合確率は式(7) にしたがい調整され得る。2回
調整を行った後、結果は0.714 となる。表7は、2回調
整を行った後のパターンAとパターンBの一つ一つの点
の適合確率を示している。
【0077】
【表6】
【0078】
【表7】
【0079】〔B.パターンCとパターンAの重ね合わ
せ〕パターンCとパターンAの重ね合わせを同様の方法
で行なう。表8は、2回調整を行った後のパターンCと
パターンAの一つ一つの点の適合確率を示している。
せ〕パターンCとパターンAの重ね合わせを同様の方法
で行なう。表8は、2回調整を行った後のパターンCと
パターンAの一つ一つの点の適合確率を示している。
【0080】
【表8】
【0081】〔適合対の予備選択〕N対の適合点の対を
その適合確率により選択する。適合しない対に対して、
該適合確率は0で置き換えられる。 〔A.パターンBとパターンAの重ね合わせ〕8対の適
合点の対をその適合確率にしたがい選択する。(N=8) b1とa1はop[1]=b1, oq[1]=a1およびsim[1]=0.714で適合
する。列1および行1の適合確率は0で置き換えられ
る。
その適合確率により選択する。適合しない対に対して、
該適合確率は0で置き換えられる。 〔A.パターンBとパターンAの重ね合わせ〕8対の適
合点の対をその適合確率にしたがい選択する。(N=8) b1とa1はop[1]=b1, oq[1]=a1およびsim[1]=0.714で適合
する。列1および行1の適合確率は0で置き換えられ
る。
【0082】b2とa2はop[2]=b2, oq[2]=a2およびsim[2]
=0.670で適合する。列2および行2の適合確率は0で置
き換えられる。 b3とa3はop[3]=b3, oq[3]=a3およびsim[3]=0.617で適合
する。列3および行3の適合確率は0で置き換えられ
る。 b4とa4はop[4]=b4, oq[4]=a4およびsim[4]=0.601で適合
する。列4および行4の適合確率は0で置き換えられ
る。
=0.670で適合する。列2および行2の適合確率は0で置
き換えられる。 b3とa3はop[3]=b3, oq[3]=a3およびsim[3]=0.617で適合
する。列3および行3の適合確率は0で置き換えられ
る。 b4とa4はop[4]=b4, oq[4]=a4およびsim[4]=0.601で適合
する。列4および行4の適合確率は0で置き換えられ
る。
【0083】b5とa5はop[5]=b5, oq[5]=a5およびsim[5]
=0.567で適合する。列5および行5の適合確率は0で置
き換えられる。 b6とa6はop[6]=b6, oq[6]=a6およびsim[6]=0.547で適合
する。列6および行6の適合確率は0で置き換えられ
る。 b7とa7はop[7]=b7, oq[7]=a7およびsim[7]=0.547で適合
する。列7および行7の適合確率は0で置き換えられ
る。
=0.567で適合する。列5および行5の適合確率は0で置
き換えられる。 b6とa6はop[6]=b6, oq[6]=a6およびsim[6]=0.547で適合
する。列6および行6の適合確率は0で置き換えられ
る。 b7とa7はop[7]=b7, oq[7]=a7およびsim[7]=0.547で適合
する。列7および行7の適合確率は0で置き換えられ
る。
【0084】b8とa8はop[8]=b8, oq[8]=a8およびsim[8]
=0.529で適合する。列8および行8の適合確率は0で置
き換えられる。表9は、パターンBとパターンAの予備
選択の結果を示す。
=0.529で適合する。列8および行8の適合確率は0で置
き換えられる。表9は、パターンBとパターンAの予備
選択の結果を示す。
【0085】
【表9】
【0086】〔B.パターンCとパターンAの重ね合わ
せ〕6対の適合点の対をその適合確率より選択する。(N
=6) c8とa8はop[1]=c8, oq[1]=a8およびsim[1]=0.383で適合
する。列8および行8の適合確率は0で置き換えられ
る。 c4とa5はop[1]=c4, oq[1]=a5およびsim[1]=0.378で適合
する。列5および行4の適合確率は0で置き換えられ
る。
せ〕6対の適合点の対をその適合確率より選択する。(N
=6) c8とa8はop[1]=c8, oq[1]=a8およびsim[1]=0.383で適合
する。列8および行8の適合確率は0で置き換えられ
る。 c4とa5はop[1]=c4, oq[1]=a5およびsim[1]=0.378で適合
する。列5および行4の適合確率は0で置き換えられ
る。
【0087】c5とa4はop[1]=c5, oq[1]=a4およびsim[1]
=0.370で適合する。列4および行5の適合確率は0で置
き換えられる。 c3とa1はop[1]=c3, oq[1]=a1およびsim[1]=0.364で適合
する。列1および行3の適合確率は0で置き換えられ
る。 c6とa7はop[1]=c6, oq[1]=a7およびsim[1]=0.350で適合
する。列6および行7の適合確率は0で置き換えられ
る。
=0.370で適合する。列4および行5の適合確率は0で置
き換えられる。 c3とa1はop[1]=c3, oq[1]=a1およびsim[1]=0.364で適合
する。列1および行3の適合確率は0で置き換えられ
る。 c6とa7はop[1]=c6, oq[1]=a7およびsim[1]=0.350で適合
する。列6および行7の適合確率は0で置き換えられ
る。
【0088】c2とa2はop[1]=c2, oq[1]=a2およびsim[1]
=0.321で適合する。列2および行2の適合確率は0で置
き換えられる。表10は、パターンCとパターンAの予
備選択の結果を示す。
=0.321で適合する。列2および行2の適合確率は0で置
き換えられる。表10は、パターンCとパターンAの予
備選択の結果を示す。
【0089】
【表10】
【0090】〔適合対の精密選択〕本実施例において
は、d1は225 、d2は150 およびGは4で設定される。 〔A.パターンBとパターンAの重ね合わせ〕4つの適
合対を選択して幾何学的変換(tx,ty, θ) を算出し、最
小値E(tx,ty,θ) を得る。その結果は(tx,ty, θ)=(-1
9.92 , 27.54 , -22.5 °) となる。該変換はパターン
Bの点座標を変換するために利用される。表11は、変
換後のパターンBの座標および適合対間の距離を示して
いる。
は、d1は225 、d2は150 およびGは4で設定される。 〔A.パターンBとパターンAの重ね合わせ〕4つの適
合対を選択して幾何学的変換(tx,ty, θ) を算出し、最
小値E(tx,ty,θ) を得る。その結果は(tx,ty, θ)=(-1
9.92 , 27.54 , -22.5 °) となる。該変換はパターン
Bの点座標を変換するために利用される。表11は、変
換後のパターンBの座標および適合対間の距離を示して
いる。
【0091】
【表11】
【0092】該適合対のうち、8対はd1(=255)より小さ
い距離を持つ。よってM=8である。該8対を利用して
2回目の変換を計算する。(tx,ty, θ) =(-19.93 , 2
6,68,-21.3 °) となる。パターンBは再度変換され
る。表12は、第2回目変換後のパターンBの座標およ
び適合対間の距離を示している。
い距離を持つ。よってM=8である。該8対を利用して
2回目の変換を計算する。(tx,ty, θ) =(-19.93 , 2
6,68,-21.3 °) となる。パターンBは再度変換され
る。表12は、第2回目変換後のパターンBの座標およ
び適合対間の距離を示している。
【0093】
【表12】
【0094】適合対のうち、8対はd2(=150)より小さい
距離を持つ。よってK=8、したがって、diff=1.71 お
よびmd=2.398を得る。 〔B.パターンCとパターンAの重ね合わせ〕4つの適
合対を選択して幾何学的変換(tx,ty, θ) を算出し、最
小値E(tx,ty,θ) を得る。その結果は(tx,ty, θ) =(-
8.74, -0.20 , 6.48°) となる。該変換はパターンCの
点座標を変換するために利用される。表13は、変換後
のパターンCの座標および適合対間の距離を示してい
る。
距離を持つ。よってK=8、したがって、diff=1.71 お
よびmd=2.398を得る。 〔B.パターンCとパターンAの重ね合わせ〕4つの適
合対を選択して幾何学的変換(tx,ty, θ) を算出し、最
小値E(tx,ty,θ) を得る。その結果は(tx,ty, θ) =(-
8.74, -0.20 , 6.48°) となる。該変換はパターンCの
点座標を変換するために利用される。表13は、変換後
のパターンCの座標および適合対間の距離を示してい
る。
【0095】
【表13】
【0096】該適合対のうち、4対はd1(=255)より小さ
い距離を持つ。よってM=4である。該8対を利用して
2回目の変換を計算する。(tx,ty, θ) =(-23.12 , 9.
24,-0.93 °) となる。パターンCは再度変換される。
表14は、第2回目変換後のパターンCの座標および適
合対間の距離を示している。
い距離を持つ。よってM=4である。該8対を利用して
2回目の変換を計算する。(tx,ty, θ) =(-23.12 , 9.
24,-0.93 °) となる。パターンCは再度変換される。
表14は、第2回目変換後のパターンCの座標および適
合対間の距離を示している。
【0097】
【表14】
【0098】適合対のうち、4対はd2(=150)より小さい
距離を持つ。よってK=8、したがってdiff=11.68およ
びmd=0.369を得る。 〔パターンマッチング〕本実施例では、C は10000.0 で
設定される。 〔A.パターンBとパターンAのマッチング〕 K=8, S1=K/n=8/8=1, S2=K/m=8/8=1, md=0.598957, S3=1/(1+diff)=0.368846 よって、 Score =C * K2 *S12 * S2 * S32 * md = 52151.48 〔B.パターンCとパターンAのマッチング〕 K=4, S1=K/n=4/8=0.5, S2=K/m=4/8=0.5, md=0.368672, S3=1/(1+diff)=0.226394 よって、 Score =C * K2 *S12 * S2 * S32 * md = 377.92 〔判定〕本実施例においては、2つのパターンが類似す
るかどうかを判定するしきい値は5,000.0 に設定され
る。パターンBとパターンAの類似性が52,151.48 であ
るので、パターンBとパターンAは類似するとみなされ
る。パターンCとパターンAの類似性が377.92であるの
で、パターンCとパターンAは類似しないとみなされ
る。
距離を持つ。よってK=8、したがってdiff=11.68およ
びmd=0.369を得る。 〔パターンマッチング〕本実施例では、C は10000.0 で
設定される。 〔A.パターンBとパターンAのマッチング〕 K=8, S1=K/n=8/8=1, S2=K/m=8/8=1, md=0.598957, S3=1/(1+diff)=0.368846 よって、 Score =C * K2 *S12 * S2 * S32 * md = 52151.48 〔B.パターンCとパターンAのマッチング〕 K=4, S1=K/n=4/8=0.5, S2=K/m=4/8=0.5, md=0.368672, S3=1/(1+diff)=0.226394 よって、 Score =C * K2 *S12 * S2 * S32 * md = 377.92 〔判定〕本実施例においては、2つのパターンが類似す
るかどうかを判定するしきい値は5,000.0 に設定され
る。パターンBとパターンAの類似性が52,151.48 であ
るので、パターンBとパターンAは類似するとみなされ
る。パターンCとパターンAの類似性が377.92であるの
で、パターンCとパターンAは類似しないとみなされ
る。
【0099】
【発明の効果】本発明の効果を証明するために、本発明
の方法を採用したパーソナルコンピュータと台湾特許出
願第79109743号に開示された方法を採用したパ
ーソナルコンピュータで800種類の指紋のマッチング
を行い比較する。1つの指について20指紋という割合
で40指分の指紋が入力され、合計800指紋が得られ
る。特徴点(端点と分岐点)の座標および特徴方向は一
般技術により抽出される。一つの指から得られたパター
ンの1つ1つを同じ指からのそれ以外の19パターンと
マッチングする。40指あることから、そのマッチング
数は、40*(20*19)=15,200 回である。そのスコアは登録
される。
の方法を採用したパーソナルコンピュータと台湾特許出
願第79109743号に開示された方法を採用したパ
ーソナルコンピュータで800種類の指紋のマッチング
を行い比較する。1つの指について20指紋という割合
で40指分の指紋が入力され、合計800指紋が得られ
る。特徴点(端点と分岐点)の座標および特徴方向は一
般技術により抽出される。一つの指から得られたパター
ンの1つ1つを同じ指からのそれ以外の19パターンと
マッチングする。40指あることから、そのマッチング
数は、40*(20*19)=15,200 回である。そのスコアは登録
される。
【0100】一つの指から得られたパターンの1 つ1 つ
を他の指からのパターンとマッチングする。そのマッチ
ング数は、800*780=624,000 回である。マッチング数の
合計は、624,000 + 15,200 = 639,200回である。表15
は40指から得られた800個の指紋パターンのマッチ
ングを本発明の方法と一般技術の方法で処理した結果を
示している。該表からわかるように、本発明のFRR 値は
先行技術より少なくとも2倍高い。
を他の指からのパターンとマッチングする。そのマッチ
ング数は、800*780=624,000 回である。マッチング数の
合計は、624,000 + 15,200 = 639,200回である。表15
は40指から得られた800個の指紋パターンのマッチ
ングを本発明の方法と一般技術の方法で処理した結果を
示している。該表からわかるように、本発明のFRR 値は
先行技術より少なくとも2倍高い。
【0101】
【表15】
【0102】本発明の望ましい実施の形態はここまでに
提示、説明されてきたので、これに基づく様々な修正お
よび改良は当業者にとって容易明白となるであろう。し
たがって、本発明の精神および範囲は添付の請求項によ
ってのみ限定されるべきであり、開示された実施例によ
るものではない。
提示、説明されてきたので、これに基づく様々な修正お
よび改良は当業者にとって容易明白となるであろう。し
たがって、本発明の精神および範囲は添付の請求項によ
ってのみ限定されるべきであり、開示された実施例によ
るものではない。
【図1】本発明の平面上の点パターン自動のマッチング
装置の概略図である。
装置の概略図である。
【図2】本発明の平面上の点パターン自動マッチング方
法の流れ図である。
法の流れ図である。
1 サンプリング装置 2 粗い重ね合わせ装置(重ね合わせ装置) 3 適合確率計算装置 4 選択装置 5 調整装置 6 類似性計算装置(類似性指数計算装置) 7 判定装置
Claims (16)
- 【請求項1】 P={p1, p2, ..., pm)}はm個の点を
有する参照パターンであり、Q={q1, q2, ..., qn)}
はn個の点を有するテストパターンであり、該両パター
ンの点はすべて(x,y,D) と表現され、(x,y) は該点の座
標であり、Dは該点の特徴方向であり、 それぞれの座標平面に分布した点からなる2つのパター
ンPとQが類似するか否かを判定するために、パターンPとパターンQとが 同じ座標平面にあれば、パ
ターンPの1つの点piのみをパターンQのすべての点qj
と合わせこれによりpiとqjを重なり合わせるかまたはご
く短い距離間隔とする重ね合わせプロセスと、該重ね合
わせプロセスの結果により該2つのパターンの類似性を
計算する類似性指数計算プロセスと、該類似性指数とし
きい値を比較することにより該2つのパターンが類似す
るかどうかを判定する判定プロセスとを含み、 ここに、該重ね合わせプロセスは、パターンQ(qj, j=
1, 2,..., m) のすべての点とパターンP(pi, i=1,
2,..., n )のすべての点の適合確率を計算することか
らなり、該計算は、 パターンPの1つの点(pi)と適合させるパターンQの1
つの点(qj)を指定すること、パターンPの点pi以外のす
べての点(ph, h=1, 2, ..., n, h≠i)と適合させるパタ
ーンQの点qj以外のすべての点(qk, k=1, 2, ..., m, k
≠j)の適合確率をパターンPを角度θだけ回転した状態
で計算すること、すべての点qkとすべての点phの適合確
率を累積すること、その結果をqjとpiの適合確率とする
こと、及び点qjと点piの適合確率の値によって適合対を
選択することから成り、 ここにおいて、qjとpiの適合確率(S(pi,qj))は次の式で
計算され、 【数1】 ここで、Cij(h,k)=1/(1+Δ)であり、Cij(h,k)は
qk(k=1, 2, ..., m, k≠j)とph(h=1, 2, ..., n, h≠i)
の適合確率を意味し、Δ=(wl*Δl +wθ*Δθ)/
(wl+wθ)であり、ここで、Δθ=(Δs +Δe )/
2であり、ここで、Δsはpiの特徴方向と 【数2】 の方向との差とqjの特徴方向と 【数3】 の方向との差の相違を意味し、Δeは、phの特徴方向と 【数4】 の方向との差とqkの特徴方向と 【数5】 の方向との差の相違を意味し、Δl は、 【数6】 の長さと 【数7】 の長さの差を意味し、wlおよびwθは定数であり、ま
た、該2つのパターンの類似性の値Score は次の式で計
算され、 Score =C * K2 * S12* S2 * S32 * md C は定数、 K は適合対の数、 S1は参照パターンの適合率, K/n 、 S2はテストパターンの適合率, K/m 、 mdはすべての適合対の平均適合確率、 S3= 1.0/(1.0 + 適合対の平均距離) であり、 上記プロセスから構成されることを特徴とする平面上の
点パターンの自動マッチング方法。 - 【請求項2】 該参照パターンと該テストパターンは平
面画像データファイルから抽出され、該平面画像におけ
る直線または曲線の端点または分岐点であり、該特徴方
向は、対応点が端点であるときは該直線または該曲線の
正接方向であり、対応点が分岐点であるときは該直線ま
たは該曲線の二等分線方向であり、該特徴方向は水平線
からの角度で表現されることを特徴とする請求項1に記
載の平面上の点パターンの自動マッチング方法。 - 【請求項3】 該重ね合わせプロセスの前に、 同じ座標平面での該特徴方向および点間の距離の最大許
容差を設定する工程と、該特徴方向または該点間の距離
が該最大許容差を超過する異なるパターンに属する点の
対を判定する工程とからなる粗い重ね合わせプロセスを
行なうことを特徴とする請求項1または2に記載の平面
上の点パターンの自動マッチング方法。 - 【請求項4】 請求項1に記載の平面上の点パターンの
自動マッチング方法であって、調整プロセスを更に含
み、 前記調整プロセスは、関数E(tx, ty, θ) を最小値にす
るための変換(tx, ty,θ) を得る工程と、該テストパタ
ーンを該変換で変換する工程と、その変換結果によって
パターンを重ね合わせる工程とを含み、 ここに、 xqj=tx+xpicosθ− ypisinθ yqj=ty+xpisinθ+ ypicosθ Dqj=(Dpi + Dr)+θ であり、Dpi およびDqj はpiおよびqjの特徴方向をそれ
ぞれ意味し、Drは変換後のpiとqjの特徴方向間の差を意
味し、 【数8】 x'op[i] =tx+xop[i]cosθ− yop[i]sinθ y'op[i] =ty+xop[i]sinθ+ yop[i]cosθ ここで、Gはpiおよびqjの適合確率の最大値の整数値(S
MAX)であり、SMAX≦2であればG=2であることを特徴
とする請求項1に記載の平面上の点パターンの自動マッ
チング方法。 - 【請求項5】 該調整プロセスはG個の点の対に応用さ
れ、決められた値を超過する距離を有する点の対は適合
しないと判定されることを特徴とする請求項4に記載の
平面上の点パターンの自動マッチング方法。 - 【請求項6】 該調整プロセスは少なくとも2回行われ
ることを特徴とする請求項4に記載の平面上の点パター
ンの自動マッチング方法。 - 【請求項7】 該調整プロセスは少なくとも2回行われ
ることを特徴とする請求項5に記載の平面上の点パター
ンの自動マッチング方法。 - 【請求項8】 請求項3に記載の平面上の点パターンの
自動マッチング方法であって、該重ね合わせプロセスは
更に下記の式によってpi点とqj点の適合確率を繰り返し
調整する工程を含み、 【数9】 ここに、S(r)(pi,qj) は調整r 回目のpi点とqj点の適合
確率を意味し、該粗い重ね合わせの結果pi点とqj点は適
合しないことを示すならば、S(0)(pi,qj) は0であり、
そうでなければ1であることを特徴とする平面上の点パ
ターンの自動マッチング方法。 - 【請求項9】 P={p1, p2, ..., pm)}はm個の点を
有する参照パターンであり、Q={q1, q2, ..., qn)}
はn個の点を有するテストパターンであり、該両パター
ンの点はすべて(x,y,D) と表現され、(x,y) は該点の座
標であり、Dは該点の特徴方向であり、 それぞれの座標平面に分散した点からなる2つのパター
ンPとQが類似するか否かを判定するための装置であっ
て、 適合させる平面点パターンのサンプルを得るためのサン
プリング装置と、パターンPとパターンQとが同じ座標
平面であれば、パターンPの1つの点piのみをパターン
Qのすべての点qjと合わせこれによりpiとqjを重なり合
わせるかまたはごく短い距離間隔とする重ね合わせ装置
と、該重ね合わせプロセスの結果により該2つのパター
ンの類似性を計算する類似性指数計算装置と、該類似性
指数としきい値を比較することにより該2つのパターン
が類似するかどうかを判定する判定装置とを含み、 ここに、該重ね合わせ装置による重ね合わせは、パター
ンQ(qj, j=1, 2,...,m) のすべての点とパターンP(p
i, i=1, 2,..., n )のすべての点の適合確率を計算す
ることからなり、該計算は、 パターンPの1つの点(pi)と適合させるパターンQの1
つの点(qj)の指定すること、パターンPの点pi以外のす
べての点(ph, h=1, 2, ..., n, h≠i)と適合させるパタ
ーンQの点qj以外のすべての点(qk, k=1, 2, ..., m, k
≠j)の適合確率をパターンPを角度θだけ回転した状態
で計算すること、すべての点qkとすべての点phの適合確
率を累積すること、その結果をqjとpiの適合確率とする
こと及び点qjと点piの適合確率の値によって適合対を選
択することを含み、 ここにおいて、qjとpiの適合確率S(pi,qj)は次の式で計
算され、 【数10】 ここで、Cij(h,k)=1/(1+Δ)であり、Cij(h,k)は
qk(k=1, 2, ..., m, k≠j)とph(h=1, 2, ..., n, h≠i)
の適合確率を意味し、Δ=(wl*Δl +wθ*Δθ)/
(wl+wθ)であり、ここで、Δθ=(Δs +Δe )/
2であり、Δsはpiの特徴方向と 【数11】 の方向との差とqjの特徴方向と 【数12】 の方向との差の相違を意味し、Δeは、phの特徴方向と 【数13】 の方向との差とqkの特徴方向と 【数14】 の方向との差の相違を意味し、Δl は、 【数15】 の長さと 【数16】 の長さの差を意味し、wl およびwθは定数であり、ま
た、該類似性指数計算装置は2つのパターンの類似性の
値Score を次の式、 Score =C * K2 * S12* S2 * S32* md, C は定数 K は適合対の数 S1は参照パターンの適合率, K/n S2はテストパターンの適合率, K/m mdはすべての適合対の平均適合確率 S3= 1.0/(1.0 + 適合対の平均距離)で計算することを特
徴とする平面点パターン自動マッチング装置。 - 【請求項10】 該参照パターンと該テストパターンは
平面画像データファイルから抽出され、該平面画像にお
ける直線または曲線の端点または分岐点であり、 該特徴方向は、対応点が端点であるときは該直線または
該曲線の正接方向であり、対応点が分岐点であるときは
該直線または該曲線の二等分線方向であり、該特徴方向
は水平線からの角度で表現されることを特徴とする請求
項9に記載の平面上の点パターンの自動マッチング装
置。 - 【請求項11】 該重ね合わせプロセスの前に、同じ座
標平面での該特徴方向および点間の距離の最大許容差を
設定し、該特徴方向または該点間の距離が該最大許容差
を超過する異なるパターンに属する点の対を判定するこ
とからなる粗い重ね合わせプロセスを行なうことを特徴
とする請求項9または10に記載の平面上の点パターン
の自動マッチング装置。 - 【請求項12】 請求項9または10に記載の平面上の
点パターンの自動マッチング装置であって、 該重ね合わせ装置での重ね合わせの後、パターンPを変
換する調整装置を更に含み、 前記調整装置は、関数E(tx, ty, θ) を最小値にするた
めの変換(tx, ty,θ)を得る手段と、該テストパターン
を該変換で変換する手段と、その変換結果によってパタ
ーンを重ね合わせる手段とを含み、 ここで、 xqj=tx + xpicosθ− ypisinθ yqj=ty + xpisinθ+ ypicosθ Dqj=(Dpi+ Dr)+θ であり、Dpi およびDqj はpiおよびqjの特徴方向をそれ
ぞれ意味し、Drは変換後のpiとqjの特徴方向間の差を意
味し、 【数17】 x'op[i] =tx+xop[i]cosθ− yop[i]sinθ y'op[i] =ty+xop[i]sinθ+ yop[i]cosθ Gはpiおよびqjの適合確率の最大値の整数値(SMAX)であ
り、SMAX≦2であればG=2であることを特徴とする平
面上の点パターンの自動マッチング装置。 - 【請求項13】 該調整装置はG個の点の対に応用さ
れ、決められた値を超過する距離を有する点の対は適合
しないと判定されることを特徴とする請求項12に記載
の平面上の点パターンの自動マッチング装置。 - 【請求項14】 該調整装置はパターンPを少なくとも
2回変換することを特徴とする請求項12に記載の平面
上の点パターンの自動マッチング装置。 - 【請求項15】 該調整装置はパターンPを少なくとも
2回変換することを特徴とする請求項13に記載の平面
上の点パターンの自動マッチング装置。 - 【請求項16】 請求項11に記載の平面上の点パター
ンの自動マッチング装置であって、該重ね合わせ装置
は、下記の式によってpi点とqj点の適合確率を繰り返し
調整し、 【数18】 ここで、S(r)(pi,qj) は調整r 回目のpi点とqj点の適合
確率を意味し、該粗い重ね合わせの結果pi点とqj点は適
合しないことを示すならば、S(0)(pi,qj) は0であり、
そうでなければ、1であることを特徴とする平面上の点
パターンの自動マッチング装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9018879A JP2999970B2 (ja) | 1997-01-31 | 1997-01-31 | 平面上の点パターンの自動マッチング方法およびその装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9018879A JP2999970B2 (ja) | 1997-01-31 | 1997-01-31 | 平面上の点パターンの自動マッチング方法およびその装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10222666A JPH10222666A (ja) | 1998-08-21 |
JP2999970B2 true JP2999970B2 (ja) | 2000-01-17 |
Family
ID=11983848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9018879A Expired - Fee Related JP2999970B2 (ja) | 1997-01-31 | 1997-01-31 | 平面上の点パターンの自動マッチング方法およびその装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2999970B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001087159A1 (en) * | 2000-05-15 | 2001-11-22 | Telefonaktiebolaget Lm Ericsson (Publ) | A composite image generating method, and a fingerprint detection apparatus |
-
1997
- 1997-01-31 JP JP9018879A patent/JP2999970B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001087159A1 (en) * | 2000-05-15 | 2001-11-22 | Telefonaktiebolaget Lm Ericsson (Publ) | A composite image generating method, and a fingerprint detection apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH10222666A (ja) | 1998-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4303410B2 (ja) | 紋様中心決定装置および紋様方向決定装置並びに紋様位置合わせ装置および紋様照合装置 | |
Rowe et al. | A multispectral whole-hand biometric authentication system | |
US20020154794A1 (en) | Non-contact type human iris recognition method for correcting a rotated iris image | |
JPH077458B2 (ja) | 指紋照合方法 | |
JPH09288729A (ja) | 個人の手書き署名の符号化方法及び検証方法 | |
US5991430A (en) | Method and device for automatic matching of planar point patterns | |
JP2999970B2 (ja) | 平面上の点パターンの自動マッチング方法およびその装置 | |
Wu et al. | Line feature extraction and matching in palmprint | |
Nilsson et al. | Using linear symmetry features as a pre-processing step for fingerprint images | |
Moon et al. | Collaborative fingerprint authentication by smart card and a trusted host | |
Ahmed et al. | An advanced fingerprint matching using minutiae-based indirect local features | |
Lim et al. | Enhancing fingerprint recognition using minutiae-based and image-based matching techniques | |
KR20050094228A (ko) | 지문 인식 방법 | |
US5974176A (en) | Automatic matching device for planar point patterns and method thereof | |
Lee et al. | Fingerprint fusion based on minutiae and ridge for enrollment | |
Mandi et al. | Rotation–invariant fingerprint identification system | |
JP5045763B2 (ja) | 生体認証装置、生体認証方法、血管情報記憶装置および血管情報記憶方法 | |
JP2001243465A (ja) | 指紋画像照合方法および指紋画像照合装置 | |
JP4161942B2 (ja) | 画像照合方法、画像照合装置、プログラム | |
WO2004111919A1 (en) | Method of palm print identification | |
US20030053666A1 (en) | Method and apparatus for providing a binary fingerprint image | |
JP2999969B2 (ja) | 平面上の点パターンの自動マッチング方法およびその装置 | |
JP2992446B2 (ja) | 画像認識方法およびその装置 | |
Perez-Hernandez et al. | Simplified stroke-based approach for off-line signature recognition | |
Hu et al. | Accurate point matching based on combined moment invariants and their new statistical metric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |