JP2997527B2 - Ground voltage detection circuit - Google Patents

Ground voltage detection circuit

Info

Publication number
JP2997527B2
JP2997527B2 JP2269228A JP26922890A JP2997527B2 JP 2997527 B2 JP2997527 B2 JP 2997527B2 JP 2269228 A JP2269228 A JP 2269228A JP 26922890 A JP26922890 A JP 26922890A JP 2997527 B2 JP2997527 B2 JP 2997527B2
Authority
JP
Japan
Prior art keywords
detection circuit
output voltage
ground voltage
capacitors
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2269228A
Other languages
Japanese (ja)
Other versions
JPH04145374A (en
Inventor
渡辺  弘
禎記 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Support Corp
Original Assignee
Energy Support Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Support Corp filed Critical Energy Support Corp
Priority to JP2269228A priority Critical patent/JP2997527B2/en
Publication of JPH04145374A publication Critical patent/JPH04145374A/en
Application granted granted Critical
Publication of JP2997527B2 publication Critical patent/JP2997527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は対地電圧検出回路に関するものである。Description: TECHNICAL FIELD The present invention relates to a ground voltage detection circuit.

〔従来の技術〕[Conventional technology]

従来、開閉器に備えられた対地電圧検出回路としては
第11図に示すものがある。この検出回路は双方の配電線
Lの電圧を各相毎にセラミックコンデンサC1〜C3とフィ
ルムコンデンサC4〜C6とで分圧し(互いの静電容量比約
1:1000)、その電圧トランス1にてインピーダンス変換
した後に子局2に入力するようになっている。そして、
子局2は入力された電圧に基づいて対地電圧とその位相
を判定し、例えば、ループ点で開閉器の投入可否、系統
の電圧降下、断線の有無等を判断している。
Conventionally, there is a circuit shown in FIG. 11 as a ground voltage detecting circuit provided in a switch. This detection circuit divides the voltage of both distribution lines L into ceramic capacitors C1 to C3 and film capacitors C4 to C6 for each phase (capacity ratio of each other is about
1: 1000), and impedance-converted by the voltage transformer 1 before being input to the slave station 2. And
The slave station 2 determines the ground voltage and its phase based on the input voltage, and determines, for example, whether or not the switch is turned on, the voltage drop of the system, the presence or absence of a disconnection, and the like at the loop point.

又、第12図に示すように、上記した対地電圧検出回路
は地絡継電器3にも使用されており、地絡継電器3は対
地電圧検出回路にて検出された零相電圧と、変流器4に
て検出された零相電流とによって地絡方向を判定して開
閉器5をトリップするようになっている。
Further, as shown in FIG. 12, the above-described ground voltage detecting circuit is also used for the ground fault relay 3, and the ground fault relay 3 is connected to the zero-phase voltage detected by the ground voltage detecting circuit and the current transformer. The switch 5 is tripped by determining the direction of the ground fault based on the zero-phase current detected at 4.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、周知のようにセラミックコンデンサC1
〜C3の静電容量は±10%程度の大きなばらつきがあり、
その結果、このセラミックコンデンサC1〜C3とフィルム
コンデンサC4〜C6で検出された電圧の誤差も非常に大き
くなってしまう。よって、前者のループ点に設置された
開閉器においては大雑把な判定結果しか得られないとい
う問題がある。
However, as is well known, ceramic capacitor C1
~ C3 has a large variation of about ± 10%,
As a result, the error between the voltages detected by the ceramic capacitors C1 to C3 and the film capacitors C4 to C6 becomes very large. Therefore, there is a problem that only a rough determination result can be obtained with the switch installed at the former loop point.

又、後者の地絡継電器3においては、セラミックコン
デンサC1〜C3のばらつきを補正するために静電容量の異
なる2,3種類のフィルムコンデンサC4〜C6を用意し、セ
ラミックコンデンサC1〜C3とフィルムコンデンサC4〜C6
との静電容量が所望の比率となるようにフィルムコンデ
ンサC4〜C6を選択して用いている。従って、検出回路の
組付作業が非常に煩雑であるという問題がある。
In the latter, two or three types of film capacitors C4 to C6 having different capacitances are prepared in order to correct variations in the ceramic capacitors C1 to C3. C4-C6
The film capacitors C4 to C6 are selected and used so that the capacitance of the film capacitors C4 and C4 has a desired ratio. Therefore, there is a problem that the work of assembling the detection circuit is very complicated.

さらに、第4図に示すように、セラミックコンデンサ
C1〜C3とフィルムコンデンサC4〜C6と温度特性は一般的
に逆の傾向を示すため温度変化に伴って分圧に誤差が生
じてしまい、上記した各判定精度を低下させる要因の1
つとなっている。そこで、このフィルムコンデンサC4〜
C6をセラミックコンデンサC1〜C3に変更して温度特性を
同一傾向にすることも考えられるが、上記したようにフ
ィルムコンデンサC4〜C6側に要求される静電容量が非常
に大きいため現在のセラミックコンデンサC1〜C3では実
現できない。
Further, as shown in FIG.
Since the temperature characteristics of C1 to C3 and the film capacitors C4 to C6 generally show the opposite tendency, an error occurs in the partial pressure due to the temperature change.
Has become one. Therefore, this film capacitor C4 ~
Although it is conceivable to change C6 to ceramic capacitors C1 to C3 to make the temperature characteristics the same, it is conceivable that the capacitance required for the film capacitors C4 to C6 is extremely large as described above, so the current ceramic capacitors This cannot be achieved with C1 to C3.

本発明の目的は、コンデンサの静電容量の誤差を補正
して高い検出精度を実現することができるとともに、コ
ンデンサの選択等の煩雑な作業を必要とせず容易に組付
けることができ、又、温度変化による誤差を補正して高
い検出精度を実現することができる対地電圧検出回路を
提供することにある。
An object of the present invention is to achieve high detection accuracy by correcting an error in the capacitance of a capacitor, and to easily assemble without requiring complicated work such as selection of a capacitor. An object of the present invention is to provide a ground voltage detection circuit that can realize high detection accuracy by correcting an error caused by a temperature change.

〔課題を解決するための手段〕[Means for solving the problem]

又、本発明は、電線に流れる交流電流の電圧を一対の
コンデンサにて分圧するようにした対地電圧検出回路に
おいて、少なくとも一方のコンデンサに可変抵抗又は可
変容量コンデンサとサーミスタとをそれぞれ並列接続し
た対地電圧検出回路を要旨するものである。
Also, the present invention provides a ground voltage detection circuit in which a voltage of an alternating current flowing through an electric wire is divided by a pair of capacitors, wherein at least one of the capacitors is connected in parallel with a variable resistor or a variable capacitor and a thermistor, respectively. This is a summary of a voltage detection circuit.

〔作用〕[Action]

本発明においては、いずれかのコンデンサの静電容量
に誤差が生じると出力電圧にも誤差が生じる。このとき
可変抵抗の抵抗値やコンデンサの静電容量を調整するこ
とで出力電圧を適性値に調整することが可能となる。
In the present invention, if an error occurs in the capacitance of any of the capacitors, an error also occurs in the output voltage. At this time, the output voltage can be adjusted to an appropriate value by adjusting the resistance value of the variable resistor and the capacitance of the capacitor.

又、温度が変化すると両コンデンサの温度特性の相違
による出力電圧に誤差が生じる。このとき温度変化に伴
ってサーミスタの抵抗値が変化して出力電圧の誤差が補
正される。
When the temperature changes, an error occurs in the output voltage due to the difference in the temperature characteristics of the two capacitors. At this time, the resistance value of the thermistor changes with the temperature change, and the error of the output voltage is corrected.

〔実施例〕〔Example〕

以下、この発明を具体化した一実施例を第1〜4図に
従って説明する。
An embodiment of the present invention will be described below with reference to FIGS.

本実施例の対地電圧検出回路は従来技術において説明
した検出回路とほとんど同様の構成をなし、各相に補償
回路を付加したのが相違点である。従って、その補償回
路の構成を1相分について説明する。
The ground voltage detection circuit according to the present embodiment has almost the same configuration as the detection circuit described in the related art, and is different in that a compensation circuit is added to each phase. Therefore, the configuration of the compensation circuit will be described for one phase.

第1図に示すように、電線としての配電線Lにはセラ
ミックコンデンサC1とフィルムコンデンサC4とが直列接
続され、フィルムコンデンサC4には直列接続された一対
の可変抵抗R1,R2が並列接続されている。一方の抵抗R1
には負特性サーミスタNTCが並列接続され、他方の抵抗R
2の両端の電圧が出力電圧|v|として子局2(第11図に示
す)や地絡継電器3(第12図に示す)に出力されるよう
になっている。負特性サーミスタNTCは第3図に示すよ
うに温度上昇に伴って抵抗値が低下する性質を有する。
As shown in FIG. 1, a ceramic capacitor C1 and a film capacitor C4 are connected in series to a distribution line L as an electric wire, and a pair of variable resistors R1 and R2 connected in series are connected to the film capacitor C4 in parallel. I have. One resistor R1
Is connected in parallel with a negative thermistor NTC, and the other resistor R
The voltage at both ends of the output terminal 2 is output to the slave station 2 (shown in FIG. 11) and the ground fault relay 3 (shown in FIG. 12) as the output voltage | v |. As shown in FIG. 3, the negative characteristic thermistor NTC has a property that its resistance value decreases with an increase in temperature.

次に、このように構成した対地電圧検出回路の作用を
説明する。
Next, the operation of the above-described ground voltage detection circuit will be described.

本実施例の対地電圧検出回路は第2図に示す等価回路
に置き換えることができる。まず、この等価回路におい
て入力電圧|V|(配電線Lに印加される対地電圧値)に
対する出力電圧|v|の位相差θの調整手順を説明する
と、この位相差θは次式で表される。
The ground voltage detection circuit of this embodiment can be replaced with an equivalent circuit shown in FIG. First, the procedure for adjusting the phase difference θ of the output voltage | v | with respect to the input voltage | V | (ground voltage value applied to the distribution line L) in this equivalent circuit will be described. This phase difference θ is expressed by the following equation. You.

尚、fは配電線Lに流れる交流電流の周波数、R1′は
可変抵抗R1と負特性サーミスタNTCとの合成抵抗値、R
2′は可変抵抗R2の抵抗値、C1,C4はそれぞれコンデンサ
C1,C4の静電容量である。
Here, f is the frequency of the alternating current flowing through the distribution line L, R1 'is the combined resistance value of the variable resistor R1 and the negative characteristic thermistor NTC, R
2 'is the resistance value of the variable resistor R2, C1 and C4 are capacitors
These are the capacitances of C1 and C4.

今、仮にC1→大であるとするとθは小さくなる。この
ときR1′+R2′を小さくすればC1の誤差が吸収されてθ
を適性値に、即ち、各相の位相差θを互いに120゜ずら
した値に調整することができる。又、逆にC1→小である
ときにはR1′+R2′を大きくすればθを適性値に調整す
ることができる。従って、可変抵抗R1,R2の抵抗値の和
を増大又は減少させることでR1′+R2′を増減し、その
結果、位相差θを適性値に調整することが可能となる。
Now, assuming that C1 → large, θ becomes small. At this time, if R1 '+ R2' is reduced, the error of C1 is absorbed and θ
Can be adjusted to an appropriate value, that is, the phase difference θ of each phase can be adjusted to a value shifted from each other by 120 °. Conversely, when C1 → small, θ can be adjusted to an appropriate value by increasing R1 ′ + R2 ′. Therefore, R1 ′ + R2 ′ is increased or decreased by increasing or decreasing the sum of the resistance values of the variable resistors R1 and R2, and as a result, the phase difference θ can be adjusted to an appropriate value.

又はセラミックコンデンサC1の静電容量C1の誤差に起
因する出力電力|v|の補正手順を説明すると、この検出
回路の出力電圧|v|は次式で表される。
Or, a procedure for correcting the output power | v | caused by an error in the capacitance C1 of the ceramic capacitor C1 will be described. The output voltage | v | of this detection circuit is expressed by the following equation.

ここで、R1′+R2′=一定の条件においてC1以外の各
値を定数としてA,B,Dに置き換えると、 となる。
Here, when R1 ′ + R2 ′ = constant conditions, each value other than C1 is replaced by A, B, D as a constant, Becomes

尚、上記式においてA=C1,B=C4,D=1/{2πf(R
1′+R2′)}である。
In the above equation, A = C1, B = C4, D = 1 / {2πf (R
1 ′ + R2 ′)} 2 .

今、仮に静電容量C1→大であるとすると、 が小となり出力電圧|v|が大となる。このときR1′に対
するR2′の割合を小さくすればR2′/(R1′+R2′)が
大きくなり、C1の誤差が補正されて出力電圧vを適性値
に調整することができる。又、逆に静電容量C1→小であ
るときは、R1′に対するR2′の割合を大きくすればR2′
/(R1′+R2′)が小さくなり出力電圧|v|を適性値に
調整することができる。従って、可変抵抗R1,R2の抵抗
値の比率を増大又は減少することでR1′とR2′の比率を
増減し、その結果、出力電圧|v|を適性値に調整するこ
とが可能となる。尚、この調整時には上記した位相差θ
を適性値に保つためにR1′+R2′を一定値に保持する必
要がある。
Assuming now that the capacitance C1 is large, Becomes small and the output voltage | v | becomes large. At this time, if the ratio of R2 'to R1' is reduced, R2 '/ (R1' + R2 ') increases, and the error of C1 is corrected, so that the output voltage v can be adjusted to an appropriate value. Conversely, when the capacitance C1 is smaller, the ratio of R2 'to R1' is increased to increase R2 '.
/ (R1 '+ R2') becomes smaller, and the output voltage | v | can be adjusted to an appropriate value. Therefore, by increasing or decreasing the ratio between the resistance values of the variable resistors R1 and R2, the ratio between R1 'and R2' is increased or decreased, and as a result, the output voltage | v | can be adjusted to an appropriate value. During this adjustment, the phase difference θ
It is necessary to keep R1 '+ R2' at a constant value in order to keep the value at an appropriate value.

一方、第4図に示すように、セラミックコンデンサC1
は温度上昇に伴い静電容量C1が減少してそのインピーダ
ンスを増加させ、逆にフィルムコンデンサC4は温度上昇
に伴って静電容量C4が増加してそのインピーダンスを減
少させる。その結果、温度が上昇すると検出回路の出力
電圧|v|が減少するが、このとき負特性サーミスタNTCの
抵抗値が低下するため出力電圧|v|の減少が補正され、
温度変化による出力電圧vの変動が防止される。
On the other hand, as shown in FIG.
As the temperature rises, the capacitance C1 decreases and its impedance increases, and conversely, the film capacitor C4 increases its capacitance C4 and decreases its impedance as the temperature rises. As a result, when the temperature rises, the output voltage | v | of the detection circuit decreases. At this time, the resistance of the negative characteristic thermistor NTC decreases, so that the decrease of the output voltage | v |
The fluctuation of the output voltage v due to the temperature change is prevented.

尚、他の2相に付加された補償回路も同一構成であ
り、よって、同様に出力電圧|v|の位相調整、セラミッ
クコンデンサC2,C3の静電容量の誤差による出力電圧|v|
の補正、温度変化による出力電圧|v|の補正が行われ
る。
Note that the compensating circuits added to the other two phases have the same configuration. Therefore, similarly, the phase adjustment of the output voltage | v | and the output voltage | v |
And the output voltage | v | is corrected by the temperature change.

このように本実施例の対地電圧検出回路は、可変抵抗
R1,R2の抵抗値の比率を変更することでセラミックコン
デンサC1の静電容量C1の誤差を補正して出力電圧|v|を
適性値に調整することができる。従って、この検出回路
を開閉器や地絡継電器に使用した場合には正確な判定結
果を得ることができる。又、検出回路の組付の際にはフ
ィルムコンデンサC4を選択することなく可変抵抗R1,R2
の抵抗値を調整するだけで容易にセラミックコンデンサ
C1の誤差を補正することができる。
As described above, the ground voltage detection circuit according to the present embodiment includes the variable resistor
By changing the ratio of the resistance values of R1 and R2, the error of the capacitance C1 of the ceramic capacitor C1 can be corrected, and the output voltage | v | can be adjusted to an appropriate value. Therefore, when this detection circuit is used for a switch or a ground fault relay, an accurate determination result can be obtained. Also, when assembling the detection circuit, the variable resistors R1, R2
Simply adjust the resistance of the ceramic capacitor
The error of C1 can be corrected.

又、セラミックコンデンサC1とフィルムコンデンサC4
との温度特性の相違を負特性サーミスタNTCによって補
正するようにしたため、温度変化に関係なく常に正確な
出力電圧|v|を得ることができる。
Also, ceramic capacitor C1 and film capacitor C4
The difference in temperature characteristics between the two is corrected by the negative-characteristic thermistor NTC, so that an accurate output voltage | v | can always be obtained regardless of temperature changes.

尚、この発明は上記実施例に限定されることはなく、
例えば、以下に説明するように構成してもよい。
The present invention is not limited to the above embodiment,
For example, it may be configured as described below.

(1)第5図に示すように、負特性サーミスタNTCに代
えて正特性サーミスタPTCを可変抵抗R2に並列接続す
る。第3図に示すように、正特性サーミスタPTCは温度
上昇に伴って抵抗値が増加するため、上記実施例と同様
に温度上昇による出力電圧|v|の減少を補正することが
できる。
(1) As shown in FIG. 5, a positive characteristic thermistor PTC is connected in parallel to the variable resistor R2 instead of the negative characteristic thermistor NTC. As shown in FIG. 3, since the resistance of the positive temperature coefficient thermistor PTC increases as the temperature rises, the decrease in the output voltage | v | due to the temperature rise can be corrected in the same manner as in the above embodiment.

(2)第6図に示すように、負特性サーミスタNTCを可
変抵抗R1に直列接続する。上記実施例と同様に、温度上
昇に伴って負特性サーミスタNTCの抵抗値が低下して出
力電圧|v|の減少を補正することができる。
(2) As shown in FIG. 6, a negative thermistor NTC is connected in series to the variable resistor R1. Similarly to the above embodiment, the resistance value of the negative temperature coefficient thermistor NTC decreases as the temperature rises, and the decrease in the output voltage | v | can be corrected.

(3)第7図に示すように、正特性サーミスタPTCを可
変抵抗R2に直列接続する。上記1項目の回路と同様に、
温度上昇に伴って正特性サーミスタPTCの抵抗値が増加
して出力電圧|v|の減少を補正することができる。
(3) As shown in FIG. 7, a positive temperature coefficient thermistor PTC is connected in series to the variable resistor R2. Like the circuit of the above one item,
As the temperature rises, the resistance value of the positive temperature coefficient thermistor PTC increases and the decrease in the output voltage | v | can be corrected.

(4)第8図に示すように、負特性サーミスタNTCを可
変抵抗R1に並列接続し、正特性サーミスタPTCを可変抵
抗R2に並列接続する。この場合も出力電圧|v|の減少を
補正することができる。
(4) As shown in FIG. 8, the negative characteristic thermistor NTC is connected in parallel to the variable resistor R1, and the positive characteristic thermistor PTC is connected in parallel to the variable resistor R2. Also in this case, the decrease in the output voltage | v | can be corrected.

(5)第9図に示すように、負特性サーミスタNTCを可
変抵抗R1に直列接続し、正特性サーミスタPTCを可変抵
抗R2に直列接続する。この場合も出力電圧|v|の減少を
補正することができる。
(5) As shown in FIG. 9, the negative characteristic thermistor NTC is connected in series to the variable resistor R1, and the positive characteristic thermistor PTC is connected in series to the variable resistor R2. Also in this case, the decrease in the output voltage | v | can be corrected.

(6)第10図に示すように、フィルムコンデンサC4に対
して可変抵抗R1及び正特性サーミスタPTCを並列接続す
る。このように構成してもセラミックコンデンサC1の静
電容量の誤差を可変抵抗R1で補正し、温度変化による誤
差を正特性サーミスタPTCで補正することができる。
(6) As shown in FIG. 10, a variable resistor R1 and a positive temperature coefficient thermistor PTC are connected in parallel to the film capacitor C4. Even with such a configuration, an error in the capacitance of the ceramic capacitor C1 can be corrected by the variable resistor R1, and an error due to a temperature change can be corrected by the positive temperature coefficient thermistor PTC.

又、上記実施例では温度変化によって生じる誤差を負
特性サーミスタNTCにて補正したが、この補正は必ずし
も行う必要はなくサーミスタNTCを省略してもよい。
Further, in the above embodiment, the error caused by the temperature change is corrected by the negative characteristic thermistor NTC. However, the correction is not necessarily performed, and the thermistor NTC may be omitted.

さらに、上記実施例では可変抵抗R1,R2を直列接続し
て用いたが、その代わりに可変容量の一対のコンデンサ
を直列接続して使用してもよい。このように構成しても
セラミックコンデンサC1の静電容量の誤差を補正するこ
とができる。
Further, in the above embodiment, the variable resistors R1 and R2 are connected in series, but instead, a pair of capacitors having variable capacitance may be connected in series. Even with such a configuration, an error in the capacitance of the ceramic capacitor C1 can be corrected.

〔発明の効果〕〔The invention's effect〕

以上詳述したように本発明の対地電圧検出回路によれ
ば、コンデンサの静電容量の誤差を補正して高い検出精
度を実現することができるとともに、コンデンサの選択
等の煩雑な作業を必要とせず容易に組付けことができ、
又、温度変化による誤差を補正して高い検出精度を実現
することができるという優れた効果を発揮する。
As described in detail above, according to the ground voltage detection circuit of the present invention, it is possible to correct the error of the capacitance of the capacitor to achieve high detection accuracy and to perform complicated operations such as selection of the capacitor. It can be easily assembled without
Further, an excellent effect that a high detection accuracy can be realized by correcting an error due to a temperature change is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

第1〜4図は実施例の対地電圧検出回路を示し、第1図
は検出回路の1相分を示す電気回路図、第2図はその等
価回路を示す電気回路図、第3図はサーミスタの温度特
性を示す図、第4図はコンデンサの温度特性を示す図、
第5〜10図は別例の対地電圧検出回路の1相分を示す電
気回路図、第11図は従来の対地電圧検出回路を備えた開
閉器を示す電気回路図、第12図は同じく従来の対地電圧
検出回路を備えた地絡継電器を示す電気回路図である。 Lは電線としての配電線、C1はセラミックコンデンサ、
C4はフィルムコンデンサ、R1,R2は可変抵抗、NTCは負特
性サーミスタ、PTCは正特性サーミスタ。
1 to 4 show a ground voltage detecting circuit of an embodiment, FIG. 1 is an electric circuit diagram showing one phase of the detecting circuit, FIG. 2 is an electric circuit diagram showing an equivalent circuit thereof, and FIG. 3 is a thermistor FIG. 4 is a diagram showing temperature characteristics of a capacitor;
5 to 10 are electric circuit diagrams showing one phase of another example of the earth voltage detecting circuit, FIG. 11 is an electric circuit diagram showing a switch provided with a conventional earth voltage detecting circuit, and FIG. FIG. 2 is an electric circuit diagram showing a ground fault relay provided with the ground voltage detection circuit of FIG. L is a distribution line as an electric wire, C1 is a ceramic capacitor,
C4 is a film capacitor, R1 and R2 are variable resistors, NTC is a negative thermistor, and PTC is a positive thermistor.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 15/06 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01R 15/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電線(L)に流れる交流電流の電圧を一対
のコンデンサ(C1,C4)にて分圧するようにした対地電
圧検出回路において、 少なくとも一方のコンデンサ(C4)に可変抵抗(R1,R
2)又は可変容量コンデンサとサーミスタ(NTC,PTC)と
をそれぞれ並列接続したことを特徴とする対地電圧検出
回路。
In a ground voltage detection circuit wherein a voltage of an alternating current flowing through an electric wire (L) is divided by a pair of capacitors (C1, C4), a variable resistor (R1, R1) is connected to at least one of the capacitors (C4). R
2) A ground voltage detection circuit characterized by connecting a variable capacitor and a thermistor (NTC, PTC) in parallel.
JP2269228A 1990-10-05 1990-10-05 Ground voltage detection circuit Expired - Fee Related JP2997527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269228A JP2997527B2 (en) 1990-10-05 1990-10-05 Ground voltage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269228A JP2997527B2 (en) 1990-10-05 1990-10-05 Ground voltage detection circuit

Publications (2)

Publication Number Publication Date
JPH04145374A JPH04145374A (en) 1992-05-19
JP2997527B2 true JP2997527B2 (en) 2000-01-11

Family

ID=17469448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269228A Expired - Fee Related JP2997527B2 (en) 1990-10-05 1990-10-05 Ground voltage detection circuit

Country Status (1)

Country Link
JP (1) JP2997527B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257870A (en) * 2008-04-15 2009-11-05 Nakajima Denki Seisakusho:Kk Method for detecting phase voltage of three-phase distribution line, zero-phase voltage, line voltage, phase voltage higher harmonic wave of three-phase distribution line, zero-phase voltage higher harmonic wave, and line voltage higher harmonic wave and voltage detecting apparatus used for detection in the method
JP5495233B2 (en) * 2010-05-25 2014-05-21 三菱電機株式会社 Voltage divider
DE102018208292A1 (en) * 2018-02-19 2019-08-22 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Discharge device, electrical unit and discharge method

Also Published As

Publication number Publication date
JPH04145374A (en) 1992-05-19

Similar Documents

Publication Publication Date Title
JPH0127346B2 (en)
US5053697A (en) Input circuit for an electrical energy meter
US2734169A (en) Douma
JP2997527B2 (en) Ground voltage detection circuit
TW201917975A (en) Current balance circuit
EP0088561A1 (en) Capacitor monitoring circuit
GB2353366A (en) Four-terminal impedance measuring device with a contact detection arrangement
CA2055633C (en) Electrical measuring device having two connection configurations
US4447843A (en) Negative sequence network having a frequency compensated filter
US4278932A (en) A.C. Bridges
JP4155560B2 (en) Current detection circuit
JP2000065865A (en) Potential divider
US2285211A (en) Radio frequency wattmeter
JP4421062B2 (en) Impedance measurement method and apparatus
JPS5975614A (en) Voltage transformer provided with series compensating circuit
WO2018037463A1 (en) Capacitance detection device and optical wavelength-selective filter device
JP4919592B2 (en) Zero phase voltage detector
US4554513A (en) Replica circuit
JPS5950720A (en) Zero-phase voltage detector
JP2542245B2 (en) Voltage output circuit
JP3853567B2 (en) Detection circuit
SU457038A1 (en) AC bridge with close inductive coupling
JPH0586090B2 (en)
JPH0229176B2 (en)
JP2001257617A (en) Impedance detection circuit for communication unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees