JP2000065865A - Potential divider - Google Patents

Potential divider

Info

Publication number
JP2000065865A
JP2000065865A JP10240461A JP24046198A JP2000065865A JP 2000065865 A JP2000065865 A JP 2000065865A JP 10240461 A JP10240461 A JP 10240461A JP 24046198 A JP24046198 A JP 24046198A JP 2000065865 A JP2000065865 A JP 2000065865A
Authority
JP
Japan
Prior art keywords
capacitor
voltage
temperature
capacitance
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10240461A
Other languages
Japanese (ja)
Inventor
Yuzo Miyai
裕三 宮井
Tomohiro Yoshichika
友宏 吉近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin High Voltage Co Ltd
Original Assignee
Nissin High Voltage Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin High Voltage Co Ltd filed Critical Nissin High Voltage Co Ltd
Priority to JP10240461A priority Critical patent/JP2000065865A/en
Publication of JP2000065865A publication Critical patent/JP2000065865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute accurate waveform measurement even in the case of the occurrence of a temperature change, by multiplying a correction value of a capacitor capacity corresponding to the temperature. SOLUTION: A variable-capacity capacitor C3 is connected in parallel to a low-voltage side capacitor C1 having a known temperature characteristic, and an ambient temperature of the capacitor is measured, and the capacity of C3 is adjusted so that C1+C3 will become constant. Otherwise in the case that temperature characteristics of both a high-voltage side capacitor C2 and the low-voltage side capacitor C1 are already known, the variable-capacity capacitor C3 is connected in parallel to the low-voltage side capacitor C1, and a temperature is measured, and the capacity of C3 is adjusted so that (C1+C3)/C2 will become constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は高電圧機器の高い
電圧を、コンデンサ、抵抗により一定比に分圧し中間点
の低電圧を測定して高電圧を検出するための分圧器に関
する。高電圧の電源や電気機器において全電圧HVを測
定するのが難しいので、適当な比に電圧を分割し、分割
された低い電圧Vを求める。分割電圧Vに分割の比
率を掛けると全電圧HVが分かる。ここで対象にする電
圧(HV)は100kV〜1000kVの高電圧であ
る。ここで電圧というのは直流電圧、交流電圧、パルス
電圧を対象にする。分圧器には抵抗分圧のもの、コンデ
ンサ分圧のもの、両者を併合したものがある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage divider for detecting a high voltage by dividing a high voltage of a high-voltage device by a capacitor and a resistor at a constant ratio and measuring a low voltage at an intermediate point. Since it is difficult to measure the total voltage HV in the high voltage power supply and electrical equipment, a voltage is divided in the proper ratio to obtain the divided voltage lower V 1. All voltage HV is understood and multiplying the ratio of division to the division voltage V 1. The target voltage (HV) is a high voltage of 100 kV to 1000 kV. Here, the voltage refers to a DC voltage, an AC voltage, and a pulse voltage. The voltage divider includes a resistor voltage divider, a capacitor voltage divider, and a combination of both.

【0002】[0002]

【従来の技術】図1は分圧器の原理的な構成を示す。図
1(a)は抵抗分圧のものである。高電圧HVを二つの
直列抵抗R、Rによって分圧している。V=HV
/(R+R)である。HVは100kV以上の
高電圧であるが、分圧した電圧Vは100V以下とい
った低電圧である。分圧比はその場合1000:1以上
の大きなものである。分圧電圧Vを測定して、これに
分圧比(R+R)/Rを乗じることによって全電
圧HVを求めることができる。
2. Description of the Related Art FIG. 1 shows a principle configuration of a voltage divider. FIG. 1A shows a resistive voltage divider. The high voltage HV is divided by two series resistors R 2 and R 1 . V 1 = HV
R 1 / (R 1 + R 2 ). HV is a high voltage more than 100 kV, dividing voltages V 1 and is less and low voltage 100 V. The partial pressure ratio is then as large as 1000: 1 or more. By measuring the divided voltage V 1, can be obtained full voltage HV by multiplying this voltage division ratio (R 1 + R 2) / R 1.

【0003】図1(a)のものは抵抗によって分圧して
いるから直流電圧でも交流電圧でも測定できる。図1
(b)は抵抗とコンデンサの組み合わせによって分圧し
ている。これも直流、交流ともに測定できる。周波数に
よってインピーダンスが変化するが、分圧比は一定であ
り、Vに分圧比を掛けて全電圧HVを知る事ができ
る。図1(c)はコンデンサのみからなる分圧器であ
る。この場合直流では、周囲条件によって影響の受けや
すい絶縁抵抗で分圧されるので、直流電圧測定には不適
当であり、絶縁抵抗の影響の少ない交流領域より測定で
きる。これは交流のみ測定できる。この場合の分圧比は
=HVC/(C+C)である。分圧電圧V
に(C+C)/Cを掛けて全電圧HVを知る。C
は容量が小さく耐圧の高いコンデンサでなければなら
ない。Cは容量が大きく耐圧のより低いコンデンサで
ある。
In FIG. 1A, voltage can be measured by a DC voltage or an AC voltage because the voltage is divided by a resistor. FIG.
In (b), voltage is divided by a combination of a resistor and a capacitor. This can also be measured for both DC and AC. Impedance changes with frequency, but the partial pressure ratio is constant, it is possible to know the total voltage HV by multiplying the ratio V 2 bisection. FIG. 1C shows a voltage divider composed of only a capacitor. In this case, the direct current is divided by an insulation resistance which is easily affected by ambient conditions, and therefore is not suitable for measuring the DC voltage, and can be measured from an AC region where the influence of the insulation resistance is small. It can only measure AC. The partial pressure ratio in this case is V 3 = HVC 2 / (C 1 + C 2 ). Divided voltage V 3
Is multiplied by (C 1 + C 2 ) / C 2 to find the total voltage HV. C
2 must be a capacitor having a small capacity and a high withstand voltage. C 1 is a lower capacitor capacity is large breakdown voltage.

【0004】[0004]

【発明が解決しようとする課題】原理はまことに単純で
あるが測定装置なのであるから精度が問題である。抵抗
は温度特性の良いものが市販されている。温度変化が1
−5/℃つまり10ppm/℃の温度特性を持つ抵抗
を容易に入手できる。周囲温度が変動しても、抵抗の値
は余り変わらず分圧比は殆ど不変といえる。ところがコ
ンデンサはセラミックコンデンサでも温度特性は余りよ
くない。せいぜい10−3/℃の程度である。もしも周
囲温度が10℃変化すると、容量が10−2も変動する
可能性がある。すると分圧比(C+C)/Cも変
化する。CとCの温度特性が同じであれば温度変動
は打ち消し合って分圧比は一定である。しかし、二つの
コンデンサの温度特性が違うと温度変動が打ち消し合わ
ず分圧比も変化してしまう。
The principle is very simple, but accuracy is a problem because it is a measuring device. Resistors with good temperature characteristics are commercially available. 1 temperature change
A resistor having a temperature characteristic of 0 −5 / ° C., that is, 10 ppm / ° C., can be easily obtained. Even if the ambient temperature fluctuates, the value of the resistance does not change much, and the voltage division ratio is almost unchanged. However, even if the capacitor is a ceramic capacitor, the temperature characteristics are not so good. It is at most about 10 −3 / ° C. If the ambient temperature changes by 10 ° C., the capacity may change by as much as 10 −2 . Then, the partial pressure ratio (C 1 + C 2 ) / C 2 also changes. Temperature variations If temperature characteristics are the same of C 1 and C 2 are each other in partial pressure ratio is constant canceled. However, if the temperature characteristics of the two capacitors are different, the temperature fluctuations do not cancel each other and the voltage division ratio changes.

【0005】図2はコンデンサの温度特性の例を示すグ
ラフである。曲線gは温度と共に容量が増大するコンデ
ンサの特性を表している。曲線hは温度と共に容量が減
少するような性質のものを示している。これらは温度変
化と容量変化が比例するので関係は単純である。曲線k
は中間的なもので、ある温度までは温度と共に容量が増
えるが、ある温度を過ぎると容量が減少し始めるのであ
る。つまり容量に極大がある。これはより複雑な温度特
性である。
FIG. 2 is a graph showing an example of temperature characteristics of a capacitor. Curve g represents the characteristics of a capacitor whose capacitance increases with temperature. Curve h shows a property such that the capacity decreases with temperature. Since these are proportional to the change in temperature and the change in capacitance, the relationship is simple. Curve k
Is intermediate, with the capacity increasing with temperature up to a certain temperature, but after a certain temperature the capacity begins to decrease. That is, there is a maximum in capacity. This is a more complicated temperature characteristic.

【0006】このようにコンデンサは温度による容量変
化が大きいので、分圧比が温度によって変動する。する
と、分圧電圧Vに一定値を乗じて求めた値と実際の電
圧HVの間に食い違いが生ずる。それはコンデンサの温
度特性が悪い事から生ずる欠点である。図1(b)の分
圧器においてもコンデンサを含むからそのような欠点が
ある。図1(b)、(c)に示したようなコンデンサを
直列に繋いだ或いは抵抗とコンデンサを直列につないだ
分圧器において、温度変化があっても正しく高電圧HV
を求めることができる分圧器を提供する事が本発明の目
的である。
As described above, since the capacitance of the capacitor changes greatly with temperature, the voltage division ratio varies with temperature. Then, discrepancy between the actual voltage HV and value obtained by multiplying a constant value divided voltage V 1 is generated. It is a disadvantage resulting from the poor temperature characteristics of the capacitor. The voltage divider of FIG. 1B also has such a disadvantage because it includes a capacitor. In a voltage divider in which a capacitor is connected in series or a resistor and a capacitor are connected in series as shown in FIGS.
It is an object of the present invention to provide a voltage divider that can determine

【0007】[0007]

【課題を解決するための手段】本発明の分圧器は、低圧
側のコンデンサに可変コンデンサを並列に取付け、温度
変化に対応して、低圧側測定回路のコンデンサ容量を一
定とするよう可変コンデンサの容量値を変化させるよう
にする。或いは、低圧側のコンデンサに可変コンデンサ
を並列に取付け、温度変化に対応して、分圧比が一定と
なるように可変コンデンサの容量値を変化させる。
According to the voltage divider of the present invention, a variable capacitor is mounted in parallel with a capacitor on the low voltage side so that the capacitance of the variable capacitor is fixed so as to keep the capacitance of the low voltage side measuring circuit constant in response to a temperature change. Change the capacitance value. Alternatively, a variable capacitor is attached in parallel to the capacitor on the low voltage side, and the capacitance value of the variable capacitor is changed in accordance with the temperature change so that the division ratio becomes constant.

【0008】[0008]

【発明の実施の形態】図3は本発明の実施の形態を示
す。交流の高圧HVに対して、コンデンサC+C
直列体が接続される。Cの容量が小さく、Cの容量
は大きいから、分圧比は大きい。高電圧HVが100k
V〜200kVであっても、分圧電圧は100V以下に
できる。低圧側のコンデンサCに並列に可変容量コン
デンサC を接続する。これは回転軸を回転することに
よって容量が変化する可変容量コンデンサである。感熱
素子(TM)3によって周囲温度Tを測定するようにな
っている。温度Tに対する大容量コンデンサCの容量
変化C(T)は予め測定してあり既知である。図2の
ように温度Tと容量Cの関係が具体的に分かってい
る。シーケンサ4はステッピングモータ5を順逆に回転
させ、可変容量コンデンサの容量Cを増減変化させ
る。このとき低圧側のコンデンサC、Cの容量の合
計(C+C)が一定になるようにCを調整する。
FIG. 3 shows an embodiment of the present invention.
You. Capacitor C against AC high voltage HV2+ C1of
A series body is connected. C2Capacity is small and C1Capacity
Is large, the partial pressure ratio is large. High voltage HV is 100k
Even if the voltage is between V and 200 kV, the divided voltage should be 100 V or less.
it can. Low voltage side capacitor C1Variable capacitor in parallel with
Densa C 3Connect. This is to rotate the rotation axis
Therefore, it is a variable capacitor whose capacitance changes. Heat
The ambient temperature T is measured by the element (TM) 3.
ing. Large capacity capacitor C for temperature T1Capacity
Change C1(T) is measured in advance and is known. Of FIG.
Temperature T and capacitance C1I know the relationship
You. Sequencer 4 rotates stepping motor 5 in reverse order
And the capacitance C of the variable capacitor3Increase or decrease
You. At this time, the low voltage side capacitor C1, C3Of capacity
Total (C1+ C3) So that C is constant3To adjust.

【0009】 C+C(T)=一定 (1)C 3 + C 1 (T) = constant (1)

【0010】感熱素子3によってTが分かり、C
(T)は予め分かっているから、Cのあるべき値が
分かりステッピングモータによって、その値になるよう
にCの値を調整する。Cによって温度補償をするの
で分圧比が温度に拘らず一定になり、Vから目的の高
電圧HVを求めることができる。シーケンサはパソコン
によって置き換えることもできる。C(T)が図2の
h(負の温度特性)、g(正の温度特性)、k(極大を
もつ温度特性)の何れの類型であっても、Cを調整し
て、コンデンサ容量の和を一定に保持することができ
る。
[0010] T is known from the thermosensitive element 3, C
Since it has been found 1 (T) is pre-by the stepping motor found value to a C 3, to adjust the value of C 3 so that its value. Since the temperature compensation voltage division ratio becomes constant irrespective of the temperature by C 3, it is possible to obtain a high voltage HV of interest from V 1. The sequencer can be replaced by a personal computer. C 1 (T) is as shown in FIG. 2 h (negative temperature characteristic), g (positive temperature characteristic), be any type of k (temperature characteristic having a maximum), by adjusting the C 3, the capacitor The sum of the capacitances can be kept constant.

【0011】(1)式の制御は、高圧側のコンデンサC
の容量は温度変化がないとしている。Cは高耐圧小
容量のコンデンサであり、温度による容量変化は少ない
場合もある。しかし必ずしもCの温度変化が小さいと
は限らない場合もある。その場合は、(1)のように低
圧側(測定側)のコンデンサ容量が一定であっても温度
によって分圧比は変動してしまう。その場合は、(1)
でなく分圧比そのものが温度によらず一定になるような
制御をすれば良い。分圧比はC/(C+C
)であるから、これを一定にすれば良いのである。
分母の上下にCがあるから分母のCを省いて、C
/(C+C)を一定とすれば良いのである。あるい
は逆数を取って、
The control of the equation (1) is based on the high voltage side capacitor C
The capacity of No. 2 is assumed to have no temperature change. C 2 is a capacitor of a high withstand voltage small capacity, the capacity change with temperature is sometimes small. However, there always may not necessarily change in temperature of the C 2 is small. In this case, even if the capacitance of the capacitor on the low voltage side (measurement side) is constant as in (1), the voltage division ratio varies depending on the temperature. In that case, (1)
Instead, control may be performed so that the partial pressure ratio itself becomes constant regardless of the temperature. The partial pressure ratio is C 2 / (C 1 + C 3 +
Since C 2 ), this should be kept constant.
Since C 2 is above and below the denominator, C 2 of the denominator is omitted, and C 2
It suffices to keep / (C 1 + C 3 ) constant. Or take the reciprocal,

【0012】 (C(T)+C)/C(T)=一定 (2)(C 1 (T) + C 3 ) / C 2 (T) = constant (2)

【0013】というような制御を行う。Cの制御は、
に対しては追随的に、Cに対しては相反的にな
る。もしもCとCの温度特性が同一だとしても、C
を変化させなければならない。
The following control is performed. Control of the C 3 is,
Follow manner for C 2, it becomes reciprocal for C 1. Even if the temperature characteristics of C 1 and C 2 are the same,
3 must be changed.

【0014】以上に説明したものはコンデンサを直列に
繋いだ交流型のもの(図1(c))である。本発明は抵
抗を並列に繋いだ交直両用のもの(図1(b))にも適
用することができる。先述のように抵抗は温度特性が良
くて10−5/℃のものが入手できるから抵抗について
は温度補償の必要がない。コンデンサについてのみ温度
補償をする。(1)式のように低圧側の容量を一定に保
持するという思想であれば、抵抗R、Rを含む場合
であっても、
What has been described above is an AC type in which capacitors are connected in series (FIG. 1 (c)). The present invention can also be applied to an AC / DC dual-use device in which resistors are connected in parallel (FIG. 1B). As described above, since a resistor having a good temperature characteristic and a resistance of 10 −5 / ° C. is available, there is no need for temperature compensation for the resistor. Temperature compensation is performed only for the capacitor. If the idea of keeping the capacitance on the low voltage side constant as in equation (1), even when the resistors R 2 and R 1 are included,

【0015】C(T)+C=一定 (3)C 1 (T) + C 3 = constant (3)

【0016】となる。つまり抵抗が並列に繋がれていて
も同じ制御をすれば良いのである。またCの温度特性
が悪い場合は、これを含めて分圧比が一定になるような
制御をするべきである。インピーダンスは周波数ωを含
み分圧比はより複雑になるが、特にC=C
というようにHVでの位相と、分圧点での位相が合致す
るような抵抗、容量比を選んだ場合は、(2)と同じよ
うに
## EQU1 ## In other words, the same control may be performed even if the resistors are connected in parallel. In the case the temperature characteristics of C 2 is poor, it should be, including this partial pressure ratio is controlled such that constant. Although the impedance includes the frequency ω and the voltage division ratio becomes more complicated, in particular, C 2 R 2 = C 1 R 1
Thus, when the resistance and capacitance ratios are selected so that the phase at the HV and the phase at the voltage dividing point match, as in (2),

【0017】 (C(T)+C)/C(T)=一定 (4)(C 1 (T) + C 3 ) / C 2 (T) = constant (4)

【0018】とすることによって分圧比を一定に保つ事
ができる。そうでない場合は、抵抗とコンデンサの温度
特性が相互に浸透しあうから分圧比はより複雑なものに
なる。しかしそれでもCの容量変化によって温度補償
を行う事は可能である。
By doing so, the partial pressure ratio can be kept constant. Otherwise, the voltage division ratio becomes more complicated because the temperature characteristics of the resistor and the capacitor penetrate each other. Nevertheless to perform temperature compensation by the capacitance change of C 3 is possible.

【0019】[0019]

【発明の効果】コンデンサを直列に繋いだ分圧器におい
て第3の可変容量コンデンサを低圧側に並列に接続し、
可変容量コンデンサの容量を調整することによって低圧
側容量或いは分圧比を一定に保つから、温度による高電
圧HVの測定誤差が生じない。パルス電圧、交流電圧測
定において、測定波形への温度変化の影響がなくなる。
In a voltage divider in which capacitors are connected in series, a third variable capacitor is connected in parallel to the low voltage side,
By adjusting the capacitance of the variable capacitor, the low-voltage-side capacitance or the division ratio is kept constant, so that a measurement error of the high voltage HV due to the temperature does not occur. In pulse voltage and AC voltage measurement, the influence of temperature change on the measurement waveform is eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高電圧を抵抗、コンデンサによって分圧し低電
圧にして測定できるようにする分圧器の例を示す図。
(a)は抵抗接続型の分圧器。(b)は抵抗・コンデン
サ接続型の分圧器。(c)はコンデンサ接続型の分圧
器。
FIG. 1 is a diagram showing an example of a voltage divider that can measure a high voltage by dividing the voltage with a resistor and a capacitor to a low voltage so that the voltage can be measured.
(A) is a resistor connection type voltage divider. (B) is a resistor / capacitor connection type voltage divider. (C) is a capacitor-connected voltage divider.

【図2】コンデンサの温度特性の例を示すグラフ。FIG. 2 is a graph showing an example of temperature characteristics of a capacitor.

【図3】本発明の温度補償回路を備えた分圧器の概略構
成図。
FIG. 3 is a schematic configuration diagram of a voltage divider provided with the temperature compensation circuit of the present invention.

【符号の説明】[Explanation of symbols]

低圧側(測定側)抵抗 R 高圧側抵抗 C 低圧側(測定側)コンデンサ C 高圧側コンデンサ 2 分圧器 3 感熱素子 4 シーケンサ 5 ステッピングモータR 1 Low voltage side (measurement side) resistance R 2 High voltage side resistance C 1 Low voltage side (measurement side) capacitor C 2 High voltage side capacitor 2 Voltage divider 3 Thermal element 4 Sequencer 5 Stepping motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高電圧部位と接地部位の間に複数のコン
デンサを直列に接続し、或いはコンデンサと抵抗の並列
体を直列に接続し、中間点の低電圧を検出するようにし
た分圧器において、温度特性が既知であるコンデンサC
、Cを直列に接続し、低電圧側のコンデンサC
容量可変コンデンサCを並列につなぎ、コンデンサの
周囲の温度Tを感熱素子によって測定し、その温度での
低圧側コンデンサCと容量可変コンデンサCの容量
の和が一定になるように容量可変コンデンサを制御する
ようにした事を特徴とする分圧器。
1. A voltage divider in which a plurality of capacitors are connected in series between a high voltage part and a ground part, or a parallel body of a capacitor and a resistor is connected in series to detect a low voltage at an intermediate point. , Capacitor C whose temperature characteristic is known
2 , C 1 are connected in series, the variable-capacitance capacitor C 3 is connected in parallel to the low-voltage-side capacitor C 1 , the temperature T around the capacitor is measured by a thermo-sensitive element, and the low-voltage-side capacitor C 1 at that temperature is measured. voltage divider, characterized in that the sum of the capacitance of the variable capacitance capacitor C 3 is to control the variable capacitance capacitor to be constant and.
【請求項2】 高電圧部位と接地部位の間に複数のコン
デンサを直列に接続し、或いはコンデンサと抵抗の並列
体を直列に接続し、中間点の低電圧を検出するようにし
た分圧器において、温度特性が既知であるコンデンサC
、Cを直列に接続し、低電圧側のコンデンサC
容量可変コンデンサCを並列につなぎ、コンデンサの
周囲の温度Tを感熱素子によって測定し、その温度での
低圧側コンデンサCと容量可変コンデンサCの容量
の和を高圧側コンデンサの容量Cで割った値が一定に
なるように容量可変コンデンサを制御するようにした事
を特徴とする分圧器。
2. A voltage divider in which a plurality of capacitors are connected in series between a high voltage portion and a ground portion, or a parallel connection of a capacitor and a resistor is connected in series to detect a low voltage at an intermediate point. , Capacitor C whose temperature characteristic is known
2, a C 1 connected in series, the capacitance variable capacitor C 3 to the capacitor C 1 of the low-voltage side connecting in parallel, the low-pressure side capacitor C 1 of the temperature T around the capacitor as measured by the heat sensitive element, at that temperature divider, characterized in that the sum of the capacitance of the variable capacitance capacitor C 3 as divided by capacitance C 2 of the high-voltage-side capacitor controls the capacitance variable capacitor to be constant and.
JP10240461A 1998-08-26 1998-08-26 Potential divider Pending JP2000065865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10240461A JP2000065865A (en) 1998-08-26 1998-08-26 Potential divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10240461A JP2000065865A (en) 1998-08-26 1998-08-26 Potential divider

Publications (1)

Publication Number Publication Date
JP2000065865A true JP2000065865A (en) 2000-03-03

Family

ID=17059857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10240461A Pending JP2000065865A (en) 1998-08-26 1998-08-26 Potential divider

Country Status (1)

Country Link
JP (1) JP2000065865A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063999A (en) * 2000-08-21 2002-02-28 Fuji Electric Co Ltd Plasma potential measuring method and probe for measurement
WO2002097454A1 (en) * 2001-05-31 2002-12-05 Mcgraw-Edison Company Three-phase voltage sensor with active crosstalk cancellation
JP2007205785A (en) * 2006-01-31 2007-08-16 Energy Support Corp Voltage measuring device of power apparatus
JP2010127725A (en) * 2008-11-27 2010-06-10 Hioki Ee Corp Noncontact voltage measuring apparatus and noncontact voltage measuring method
JP2012213294A (en) * 2011-03-31 2012-11-01 Meidensha Corp Voltage balance circuit of semiconductor switch circuit
CN110297121A (en) * 2019-08-01 2019-10-01 贵州电网有限责任公司 A kind of capacitive divider low pressure measurement circuit and measurement method
WO2020241517A1 (en) * 2019-05-29 2020-12-03 三菱電機株式会社 Voltage divider device
WO2024004208A1 (en) * 2022-07-01 2024-01-04 三菱電機株式会社 Electric power conversion device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063999A (en) * 2000-08-21 2002-02-28 Fuji Electric Co Ltd Plasma potential measuring method and probe for measurement
WO2002097454A1 (en) * 2001-05-31 2002-12-05 Mcgraw-Edison Company Three-phase voltage sensor with active crosstalk cancellation
JP2007205785A (en) * 2006-01-31 2007-08-16 Energy Support Corp Voltage measuring device of power apparatus
JP2010127725A (en) * 2008-11-27 2010-06-10 Hioki Ee Corp Noncontact voltage measuring apparatus and noncontact voltage measuring method
JP2012213294A (en) * 2011-03-31 2012-11-01 Meidensha Corp Voltage balance circuit of semiconductor switch circuit
WO2020241517A1 (en) * 2019-05-29 2020-12-03 三菱電機株式会社 Voltage divider device
JPWO2020241517A1 (en) * 2019-05-29 2021-10-21 三菱電機株式会社 Pressure divider
CN113841056A (en) * 2019-05-29 2021-12-24 三菱电机株式会社 Voltage divider
JP7069414B2 (en) 2019-05-29 2022-05-17 三菱電機株式会社 Pressure divider
CN113841056B (en) * 2019-05-29 2024-06-28 三菱电机株式会社 Voltage divider
CN110297121A (en) * 2019-08-01 2019-10-01 贵州电网有限责任公司 A kind of capacitive divider low pressure measurement circuit and measurement method
WO2024004208A1 (en) * 2022-07-01 2024-01-04 三菱電機株式会社 Electric power conversion device

Similar Documents

Publication Publication Date Title
US11029338B2 (en) Current sensor
US20010003424A1 (en) Capacitive voltage divider for measuring high voltage pulses with millisecond pulse duration
JPS6214783B2 (en)
JP2000065865A (en) Potential divider
US7813885B2 (en) Method and apparatus for measurement of AC voltages in an HVAC system
US4189778A (en) Method and instrumentation for the measurement of parameters of system devices
JP3135245B2 (en) Pulse output type hot wire air flow meter
Cutkosky An ac resistance thermometer bridge
US4294115A (en) Measuring device for practically simultaneous ΔT and T measurement
JP3522596B2 (en) Nonlinear current mirror for loop gain control
US3307398A (en) Condition responsive bridge balancing circuit
JP2954449B2 (en) Capacitance measuring circuit and LCR meter having the same
JP2997527B2 (en) Ground voltage detection circuit
KR101446759B1 (en) Output specification calibrating apparatus for a capacitance press sensor
Daneman et al. Method of Applying a Modern Potentiometer for Resistance Thermometry
EP4019984B1 (en) Temperature compensation circuit in a voltage measurement
JPH05149977A (en) Comparing apparatus for ac/dc difference of thermoelectric ac/dc converter
JPS6152945B2 (en)
JPH0453574Y2 (en)
SU132330A1 (en) Device for measuring the ratio of two alternating voltages
JPS635011Y2 (en)
SU1193554A1 (en) Apparatus for determining material heat capacity
US2883620A (en) High frequency power measuring bridge circuit
JP2575357Y2 (en) High voltage electric double layer capacitor device
KR910000688Y1 (en) Thermal compensation circuit of electronic range