JP2989995B2 - Positioning device - Google Patents

Positioning device

Info

Publication number
JP2989995B2
JP2989995B2 JP5158085A JP15808593A JP2989995B2 JP 2989995 B2 JP2989995 B2 JP 2989995B2 JP 5158085 A JP5158085 A JP 5158085A JP 15808593 A JP15808593 A JP 15808593A JP 2989995 B2 JP2989995 B2 JP 2989995B2
Authority
JP
Japan
Prior art keywords
light
illumination
illuminated
illumination light
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5158085A
Other languages
Japanese (ja)
Other versions
JPH06347413A (en
Inventor
一男 守矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP5158085A priority Critical patent/JP2989995B2/en
Publication of JPH06347413A publication Critical patent/JPH06347413A/en
Application granted granted Critical
Publication of JP2989995B2 publication Critical patent/JP2989995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はレーザトモグラフィ装置
や顕微鏡等において、被照明物と照明光間の位置関係を
調整する位置合せ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positioning apparatus for adjusting a positional relationship between an object to be illuminated and illumination light in a laser tomography apparatus or a microscope.

【0002】[0002]

【従来の技術】従来、半導体ウエハ等の被検物体の欠陥
等を評価するためのレーザトモグラフィ装置としては、
例えば図7に示すように、集光レンズ103で集光させ
たレーザ光101により試料105の内部を照明面10
7を介して照明し、その集光点近傍部分913により照
明された部分からの散乱光を観察面113側から観察レ
ンズ115を介して顕微鏡により観察するものが知られ
ている(特開平1−151243号公報)。この装置で
は、レーザ光101の位置は固定とし、照明面107か
ら集光点までの距離L1については、レーザ光101に
対して位置が固定された精密位置検出器915によりあ
るいは顕微鏡の画像に基づいて位置合せが行われる。ま
た、観察面113から観察部分までの距離L2について
は、顕微鏡のオートフォーカス機能を用い、顕微鏡の焦
点が観察面113上にあるときの位置とレーザ光の集光
点にあるときの位置との距離をL2として位置合せが行
われる。
2. Description of the Related Art Conventionally, as a laser tomography apparatus for evaluating a defect or the like of a test object such as a semiconductor wafer,
For example, as shown in FIG. 7, the inside of a sample 105 is illuminated by a laser beam 101 condensed by a condenser lens 103.
7 and scattered light from the portion illuminated by the portion 913 near the focal point is observed from the observation surface 113 side by a microscope via an observation lens 115. No. 151243). In this apparatus, the position of the laser beam 101 is fixed, and the distance L1 from the illumination surface 107 to the focal point is determined by a precision position detector 915 whose position is fixed relative to the laser beam 101 or based on an image of a microscope. Alignment is performed. The distance L2 from the observation surface 113 to the observation portion is determined by using the autofocus function of the microscope to determine the distance between the position when the microscope is on the observation surface 113 and the position when the laser beam is at the focal point of the laser beam. Positioning is performed with the distance set to L2.

【0003】[0003]

【発明が解決しようとしている課題】しかしながら、こ
の従来技術においては、長時間を経るうちに、温度の変
動による熱膨張等により、レーザ光の集光点位置の変
動、被検物体の固定治具や観察レンズの変形等が生じる
ため、位置合せ精度の劣化を防止するためには、装置の
使用前に各部の位置関係を設定し直さなければならない
という問題がある。
However, in this prior art, the position of the focal point of the laser beam fluctuates due to thermal expansion or the like due to temperature fluctuations over a long period of time, and the jig for fixing the object to be inspected. This causes a problem that the positional relationship of each part must be reset before using the apparatus in order to prevent the deterioration of the alignment accuracy.

【0004】本発明の目的は、この従来技術の問題点に
鑑み、位置合せ装置において、煩雑な各部の位置関係の
設定を要することなく、かつより簡単な構成および方法
によって位置合せが行えるようにすることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a positioning apparatus which can perform positioning with a simpler configuration and method without the need for complicated setting of the positional relationship of each part. Is to do.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
本発明の位置合わせ装置は、光源からの照明光を集光手
段により集光させて被照明物をその照明面にほぼ垂直な
方向から照明し、その照明光による内部からの散乱光を
照明光軸と90度の方向より観察する装置における照明
光と被照明物との位置関係を調整する位置合せ装置であ
って、光源から前記集光手段までの光路中に介在し光源
からの照明光を前記集光手段の方へ反射する反射手段
と、前記照明面で反射された照明光部分のうち前記集光
手段を経て戻りそして前記反射手段を透過した光を検出
する光電変換手段と、この光電変換手段の出力に基き照
明光と被照明物間の位置関係を調整するための位置調整
手段とを具備し、前記光電変換手段は、前記照明面を照
明光に垂直な方向に移動させた場合、照明光の前記集光
手段による集光位置またはその近傍が該照明面の端部を
横切るとき、その出力が不連続に変動するものであり、
また、前記集光位置が前記照明面上に位置しているとき
その出力が最大となるものであることを特徴とする。こ
こで、前記反射手段としては、誘電体膜を用いた反射ミ
ラーを用いることができる。
In order to achieve the above object, an alignment apparatus according to the present invention converges illumination light from a light source by a condensing means, and moves an object to be illuminated from a direction substantially perpendicular to the illumination surface. An alignment device for adjusting the positional relationship between illumination light and an object to be illuminated in a device for illuminating and observing scattered light from the interior due to the illumination light from a direction at an angle of 90 degrees with respect to an illumination optical axis, the alignment device comprising: Reflecting means interposed in the optical path to the light means for reflecting illumination light from the light source toward the light condensing means; and a part of the illumination light reflected on the illumination surface, which returns through the light condensing means and is reflected by the reflection means. Photoelectric conversion means for detecting light transmitted through the means, and a position adjustment means for adjusting the positional relationship between the illumination light and the illuminated object based on the output of the photoelectric conversion means, the photoelectric conversion means, The illumination surface in the direction perpendicular to the illumination light If you are moving, when a focusing position or the vicinity thereof by the focusing means of the illumination light crosses the end of the illumination plane, which output varies discontinuously,
Further, when the light condensing position is located on the illumination surface, its output is maximum. Here, as the reflection means, a reflection mirror using a dielectric film can be used.

【0006】また、本発明の位置合わせ装置は、光源か
らの照明光を集光手段により集光させて被照明物をその
照明面にほぼ垂直な方向から照明し、その照明光による
内部からの散乱光を照明光軸と90度の方向より観察す
る装置における照明光と被照明物との位置関係を調整す
る位置合せ装置であって、光源から前記集光手段までの
光路中に介在し光源からの照明光を前記集光手段の方へ
反射する反射手段と、前記照明面で反射された照明光部
分のうち前記集光手段を経て戻りそして前記反射手段を
透過した光を検出する光電変換手段と、この光電変換手
段の出力に基き照明光と被照明物間の位置関係を調整す
るための位置調整手段とを具備し、前記反射手段と集光
手段との間に偏光回転子を備え、前記反射手段は光の偏
光方向に応じて反射率が変化するプリズムであり、光源
が発する照明光は所定の方向に偏光しており、前記プリ
ズムは、この照明光に対しては高い反射率を有し、前記
偏光回転子を経て照射され戻ってくることにより偏光方
向が回転された照明光部分に対しては低い反射率を有す
るものであることを特徴とする。
In the positioning apparatus of the present invention, illumination light from a light source is condensed by a light condensing means to illuminate an object to be illuminated from a direction substantially perpendicular to the illumination surface. What is claimed is: 1. A positioning device for adjusting a positional relationship between illumination light and an object to be illuminated in a device for observing scattered light from a direction at an angle of 90 degrees with respect to an illumination optical axis, comprising a light source interposed in an optical path from a light source to the condensing means. Reflecting means for reflecting the illumination light from the light source toward the light condensing means; and photoelectric conversion for detecting light transmitted through the light condensing means and returned from the light condensing means in the illumination light portion reflected on the illumination surface. Means, and a position adjusting means for adjusting the positional relationship between the illumination light and the object to be illuminated based on the output of the photoelectric conversion means, and a polarization rotator provided between the reflecting means and the condensing means. The reflecting means is adapted to respond in accordance with the polarization direction of the light. A prism having a changing rate, the illumination light emitted from the light source is polarized in a predetermined direction, and the prism has a high reflectance to the illumination light, and is irradiated and returned through the polarization rotator. Thus, the illumination light portion has a low reflectance with respect to the illumination light portion whose polarization direction has been rotated.

【0007】また、レーザトモグラフィへ適用した場合
は、例えば、被照明物はその前記照明面の端部を介して
隣接する観察面を介してその内部が観察されるものであ
り、照明光はその観察される内部をその集光位置近傍に
おいて照明するレーザ光であり、前記調整手段は、該照
明面および観察面から所望の深さに前記集光位置を位置
させるように照明光と被照明物間の位置関係を調整する
ためのものである。
Further, in the case of application to laser tomography, for example, an object to be illuminated is one in which the inside is observed through an adjacent observation surface through an end of the illumination surface, and illumination light is emitted. A laser beam for illuminating the observed interior in the vicinity of the converging position, wherein the adjusting unit adjusts the illuminating light and the illuminated light so that the converging position is located at a desired depth from the illuminating surface and the observing surface. This is for adjusting the positional relationship between objects.

【0008】[0008]

【作用】この構成において、光源からの照明光が、反射
手段によって反射され集光手段により集光されて被照明
物の照明面をほぼ垂直な方向から照明すると、その照明
光の一部は、照明面で反射され集光手段を逆に経てから
反射手段を透過する。この透過光の強度は、照明光の集
光位置が照明面に一致しているとき最大となる。また、
照明面を照明光に垂直な方向に移動させた場合において
照明光の集光位置近傍が照明面の端部を横切るとき、不
連続に変動する。そして、これら透過光強度の最大値お
よび不連続変動点を光電変換手段を介して検出すること
によって、集光位置と照明面および集光位置と照明面端
部とが一致するような照明光と被照明物間の位置関係が
認識され、それを基準にして照明光と被照明物間の位置
関係が調整される。以下、実施例を通じて本発明をより
詳細に説明する。
In this configuration, when the illumination light from the light source is reflected by the reflection means and condensed by the light condensing means and illuminates the illumination surface of the illuminated object from a substantially vertical direction, a part of the illumination light becomes The light is reflected by the illumination surface, passes through the condensing means in reverse, and then passes through the reflecting means. The intensity of the transmitted light becomes maximum when the condensing position of the illumination light coincides with the illumination surface. Also,
When the illuminating surface is moved in a direction perpendicular to the illuminating light, when the vicinity of the convergence position of the illuminating light crosses the end of the illuminating surface, it fluctuates discontinuously. Then, by detecting the maximum value and the discontinuous variation point of the transmitted light intensity through the photoelectric conversion means, the light converging position and the illuminating surface and the illuminating light such that the converging position and the end of the illuminating surface coincide. The positional relationship between the illuminated objects is recognized, and the positional relationship between the illumination light and the illuminated object is adjusted based on the recognized positional relationship. Hereinafter, the present invention will be described in more detail through examples.

【0009】[0009]

【実施例】図1は本発明の一実施例に係る位置合せ装置
を適用したレーザトモグラフィ装置の構成を示す模式図
である。同図に示すように、この位置合せ装置は、光源
からのレーザ光101を集光レンズ103により集光さ
せて試料105をその照明面107にほぼ垂直な方向か
ら照明する装置においてレーザ光101と試料105と
の位置関係を調整するものであり、光源から集光レンズ
103までの光路中に介在し光源からのレーザ光101
を集光レンズ103の方へ反射する誘電体ミラー109
と、照明面107で反射されたレーザ光部分のうち集光
レンズ103を経て戻りそして誘電体ミラー109を透
過した光を検出する受光素子111と、受光素子111
の出力に基きレーザ光101と試料105間の位置関係
を調整するための位置調整手段とを備える。誘電体ミラ
ー109は、適当な反射率をもったものが良く、ここで
は99%の反射率を有する誘電体膜で構成したものを用
いている。レーザ光101の集光位置におけるビーム径
は数μm程度である。
FIG. 1 is a schematic diagram showing a configuration of a laser tomography apparatus to which a positioning apparatus according to one embodiment of the present invention is applied. As shown in the figure, this alignment device is a device that irradiates a laser beam 101 from a light source with a condenser lens 103 and illuminates a sample 105 from a direction substantially perpendicular to an illumination surface 107 thereof. It adjusts the positional relationship with the sample 105, and intervenes in the optical path from the light source to the condenser lens 103 and emits laser light 101 from the light source.
Mirror 109 that reflects light toward the condenser lens 103
And a light receiving element 111 for detecting light that has returned through the condenser lens 103 and transmitted through the dielectric mirror 109 in the laser light portion reflected by the illumination surface 107, and a light receiving element 111
And a position adjusting means for adjusting the positional relationship between the laser beam 101 and the sample 105 based on the output of the laser beam 101. The dielectric mirror 109 preferably has an appropriate reflectivity. In this case, a dielectric mirror made of a dielectric film having a reflectivity of 99% is used. The beam diameter at the condensing position of the laser beam 101 is about several μm.

【0010】試料105はその照明面107の端部を介
して隣接する観察面113を介してその内部が観察され
るものであり、その際、レーザ光101はその観察され
る内部をその集光位置近傍において照明するように、照
明面107および観察面113から所望の深さに集光位
置を位置させるようにレーザ光101と試料105間の
位置関係が調整される。観察は、レーザ光101によっ
て照明される集光位置近傍からの散乱光を、観察面11
3を介し、観察レンズ115および結像レンズ117を
経て撮像素子119により検出することによって行われ
る。この観察系は、その光軸がレーザ光101の照明方
向とほぼ直角となるように配置される。
The inside of the sample 105 is observed through an observation surface 113 adjacent to the end of the illumination surface 107. At this time, the laser light 101 focuses the inside of the observation on the observation surface 113. The positional relationship between the laser beam 101 and the sample 105 is adjusted so that the light condensing position is located at a desired depth from the illumination surface 107 and the observation surface 113 so that the light is illuminated near the position. For observation, scattered light from the vicinity of the converging position illuminated by the laser light 101 is reflected on the observation surface
3 through the observation lens 115 and the imaging lens 117 to be detected by the image pickup device 119. This observation system is arranged so that its optical axis is substantially perpendicular to the illumination direction of the laser beam 101.

【0011】この構成において、試料105とレーザ光
101とを位置合せする際には、まず、照明方向に対し
照明面107がほぼ垂直となるように、かつ照明面10
7の端部近傍にレーザ光101の集光位置が来るよう
に、試料105を配置する。次に、試料105を観察レ
ンズ115の方向へ、レーザ光101の集光されたビー
ム径による解析能より数段小さな所定距離毎にステップ
移動させる。そして、レーザ光101が照明面107上
を照射する位置まで到達すると、レーザ光101の一部
は照明面107で反射され、集光レンズ103を経て誘
電体ミラー109へ戻り、さらに一部が誘電体ミラー1
09を透過する。
In this configuration, when aligning the sample 105 and the laser beam 101, first, the illumination surface 107 is set to be substantially perpendicular to the illumination direction, and
The sample 105 is arranged so that the condensing position of the laser beam 101 is located near the end of 7. Next, the sample 105 is moved stepwise in the direction of the observation lens 115 by a predetermined distance that is several steps smaller than the analysis capability based on the diameter of the focused beam of the laser beam 101. When the laser beam 101 reaches a position where the laser beam 101 irradiates the illumination surface 107, a part of the laser beam 101 is reflected by the illumination surface 107, returns to the dielectric mirror 109 through the condenser lens 103, and further has a part. Body mirror 1
09.

【0012】このとき、誘電体ミラー109の透過率を
t、照明面107での反射率をλとすると、光源からの
レーザ光101の入射光量I0 に対し、誘電体ミラー1
09を透過する光量Iは、I=I0 t(1−t)λとな
る。したがって、例えば、t=1%、λ=30%、I0
=300mWとすると、I=I0 0.01(0.99)
×0.3=2.97×10-30 =約1mWとなる。
At this time, assuming that the transmittance of the dielectric mirror 109 is t and the reflectance at the illumination surface 107 is λ, the dielectric mirror 1 is incident on the incident light amount I 0 of the laser beam 101 from the light source.
The amount of light I passing through 09 is I = I 0 t (1−t) λ. Therefore, for example, t = 1%, λ = 30%, I 0
= 300 mW, I = I 0 0.01 (0.99)
× 0.3 = 2.97 × 10 −3 I 0 = about 1 mW.

【0013】この光量は、受光素子111によって検出
されるに十分なものであるため、誘電体ミラー109を
透過した光は、受光素子111によって検出される。こ
の検出があったときの試料105の位置が、レーザ光1
01の集光位置が試料105の端部すなわち観察面11
3に一致している位置である。したがって、次に、この
位置を基準にして試料105をさらに観察レンズ115
の方向へ、観察を行いたい位置の観察面113からの深
さDだけ移動させることにより、レーザ光101と試料
105間の観察面113に平行な方向の位置合せが完了
する。
This light amount is enough to be detected by the light receiving element 111, so that the light transmitted through the dielectric mirror 109 is detected by the light receiving element 111. The position of the sample 105 at the time of this detection is the laser beam 1
01 is located at the end of the sample 105, that is, the observation surface 11
This is the position corresponding to 3. Therefore, next, the sample 105 is further placed on the observation lens 115 based on this position.
Is moved by the depth D from the observation surface 113 at the position where the observation is desired to be performed, so that the alignment between the laser beam 101 and the sample 105 in the direction parallel to the observation surface 113 is completed.

【0014】次に、集光レンズ103を光軸方向に移動
させ、受光素子111の出力が最大となる位置に合わせ
る。このとき、照明面107からの反射光の外形は図2
に破線で示すように変化する。同図(b)は集光位置が
照明面107に一致している場合を示し、このとき、反
射光は集光レンズ103を介し、入射時と同様に平行光
となって戻り、誘電体ミラー109を透過する。同図
(a)は試料105と集光レンズ103間の距離が同図
(b)の場合よりも大きい場合を示し、このときは、反
射光のうちのかなりの部分は誘電体ミラー109まで戻
らずに失われ、かつ受光素子111は誘電体ミラー10
9から十分離れているため、誘電体ミラー109を透過
した光は発散され、受光素子111における光強度は図
(b)の場合よりも小さい。同図(c)は試料105と
集光レンズ103間の距離が同図(b)の場合よりも小
さい場合を示し、このときも同様に、受光素子111に
おける光強度は図(b)の場合よりも小さい。したがっ
て、受光素子111の出力Oは、試料105と集光レン
ズ103間の距離Lに対して図3に示すように変化す
る。図3において、(a)〜(c)は、それぞれ図2
(a)〜(c)の場合に対応する距離を示す。(b)の
距離は、集光レンズ103の焦点距離fに対応する。
Next, the condenser lens 103 is moved in the direction of the optical axis, and adjusted to a position where the output of the light receiving element 111 is maximized. At this time, the external shape of the reflected light from the illumination surface 107 is shown in FIG.
Changes as shown by the broken line. FIG. 7B shows a case where the light condensing position coincides with the illumination surface 107. At this time, the reflected light returns through the condensing lens 103 as parallel light as in the case of incidence, and the dielectric mirror 109 is transmitted. FIG. 9A shows a case where the distance between the sample 105 and the condenser lens 103 is larger than that in the case of FIG. 9B. In this case, a considerable part of the reflected light returns to the dielectric mirror 109. And the light receiving element 111 is
9, the light transmitted through the dielectric mirror 109 is diverged, and the light intensity at the light receiving element 111 is smaller than that in the case of FIG. FIG. 3C shows a case where the distance between the sample 105 and the condenser lens 103 is smaller than that in the case of FIG. 3B. Less than. Therefore, the output O of the light receiving element 111 changes as shown in FIG. 3 with respect to the distance L between the sample 105 and the condenser lens 103. In FIG. 3, (a) to (c) correspond to FIG.
The distances corresponding to the cases (a) to (c) are shown. The distance (b) corresponds to the focal length f of the condenser lens 103.

【0015】なお、試料105と観察レンズ115との
間の距離設定は、通常のオートフォーカス機構を用いて
行うことができる。
The distance between the sample 105 and the observation lens 115 can be set using a normal auto-focus mechanism.

【0016】図4は本発明の他の実施例に係る位置合せ
装置を示す模式図である。また、図5はこの装置におけ
るレーザ光の偏光の様子を示す説明図である。この装置
では誘電対ミラー109の代わりに、光の偏光方向に応
じて反射率が変化するプリズム121、およびプリズム
121と集光レンズ103との間に偏光回転子123を
備える。光源が発するレーザ光101は図中のx方向に
偏光している。プリズム121は、この光源からのレー
ザ光101に対してはほぼ100%の反射率を有すると
ともに、偏光回転子123を経て照射され戻ってくるこ
とにより偏光方向が回転された光に対してはほぼ100
%の透過率を有するものである。偏光回転子123とし
ては、ファラデー素子等を用いることができる。
FIG. 4 is a schematic diagram showing a positioning apparatus according to another embodiment of the present invention. FIG. 5 is an explanatory view showing the state of polarization of laser light in this device. This device includes a prism 121 whose reflectance changes in accordance with the polarization direction of light, and a polarization rotator 123 between the prism 121 and the condenser lens 103, instead of the dielectric pair mirror 109. Laser light 101 emitted from the light source is polarized in the x direction in the figure. The prism 121 has a reflectance of almost 100% with respect to the laser beam 101 from the light source, and has a reflectance of approximately 100% with respect to the light whose polarization direction has been rotated by being irradiated through the polarization rotator 123 and returned. 100
% Transmittance. As the polarization rotator 123, a Faraday element or the like can be used.

【0017】この構成において、試料105とレーザ光
101との位置合せは、上述と同様にして行われる。そ
の場合、偏光方向125が図中のx方向である光源から
のレーザ光101は、ほとんどがプリズム121により
反射され、その後、偏光回転子123を通過するが、そ
の際、偏光方向が45°回転する。そして、その後、集
光レンズ103を経て、照明面107で反射され、再び
集光レンズ103を経てから偏光回転子123を逆方向
に通過するするが、その際、偏光方向がさらに45°回
転する。そして、これによって偏光方向がy方向となっ
た光のほとんどがプリズム121を透過し、受光素子1
11によって検出される。
In this configuration, the alignment between the sample 105 and the laser beam 101 is performed in the same manner as described above. In that case, most of the laser light 101 from the light source whose polarization direction 125 is the x direction in the drawing is reflected by the prism 121, and then passes through the polarization rotator 123, at which time the polarization direction is rotated by 45 °. I do. Then, after that, the light passes through the condenser lens 103, is reflected by the illumination surface 107, passes through the condenser lens 103 again, and passes through the polarization rotator 123 in the opposite direction. At this time, the polarization direction is further rotated by 45 °. . As a result, most of the light whose polarization direction has changed to the y-direction is transmitted through the prism 121 and the light-receiving element 1
11 is detected.

【0018】これによれば、プリズム121における光
の損失が殆どないため、受光素子111による検出感度
が向上する。また、反射光がプリズム121を経てすべ
て光路上から排除されて光源方向に戻らないため、多重
反射等による迷光発生等の悪影響が防止される。
According to this, since there is almost no loss of light in the prism 121, the detection sensitivity of the light receiving element 111 is improved. Further, since all the reflected light is eliminated from the optical path via the prism 121 and does not return to the light source direction, adverse effects such as generation of stray light due to multiple reflection and the like are prevented.

【0019】なお、図6に示すように、誘電体ミラー1
09やプリズム121等の反射手段の位置は、上述に限
らず、受光素子111等の位置を対応させれば、照明光
の光路上のどこでも良い。また、この位置合せ装置は、
レーザトモグラフィに限らず、通常の顕微鏡に対しても
適用することができる。また、照明光としてレーザ光を
用いる場合に限らず、通常のランプからの光を用いる場
合にも適用することができる。
Note that, as shown in FIG.
The position of the reflection means such as 09 and the prism 121 is not limited to the above, and may be anywhere on the optical path of the illumination light as long as the position of the light receiving element 111 and the like is made to correspond. Also, this positioning device
The present invention can be applied not only to laser tomography but also to an ordinary microscope. Further, the present invention can be applied not only to the case where laser light is used as illumination light but also to the case where light from a normal lamp is used.

【0020】[0020]

【発明の効果】本発明によれば、被照明物や照明光の位
置を計測することなく、被照明物と照明光間の位置合せ
を直接的に行うことができる。したがって、特別な測定
器を用いる必要や、煩雑な各部の位置関係の設定を行う
必要もなく、受光素子や誘電体ミラー等の簡単で安価な
素子を用いるだけで、簡単に位置合せを行うことができ
る。したがって、装置のコストを最小限に抑えることが
できる。また、照明光そのものを用いて直接的に位置合
せを行うため、各部の位置計測のためのセンサ用プロー
ブなどを用いたときに生じる相互誤差を生じることもな
い。
According to the present invention, the position between the illuminated object and the illumination light can be directly adjusted without measuring the position of the illuminated object and the illumination light. Therefore, it is not necessary to use a special measuring instrument or to set complicated positional relations of each part, and the alignment can be performed simply by using a simple and inexpensive element such as a light receiving element or a dielectric mirror. Can be. Therefore, the cost of the apparatus can be minimized. In addition, since the alignment is performed directly using the illumination light itself, there is no mutual error that occurs when a sensor probe or the like for measuring the position of each unit is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る位置合せ装置を適用
したレーザトモグラフィ装置の構成を示す模式図であ
る。
FIG. 1 is a schematic diagram showing a configuration of a laser tomography apparatus to which an alignment apparatus according to one embodiment of the present invention is applied.

【図2】 図1の装置において照明面107からの反射
光の様子を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of reflected light from an illumination surface 107 in the apparatus of FIG.

【図3】 図1の装置において受光素子111の出力O
が試料105と集光レンズ103間の距離Lに対してど
のように変化するかを示すグラフである。
FIG. 3 shows an output O of a light receiving element 111 in the apparatus of FIG.
6 is a graph showing how the distance varies with the distance L between the sample 105 and the condenser lens 103.

【図4】 本発明の他の実施例に係る位置合せ装置を示
す模式図である。
FIG. 4 is a schematic diagram showing a positioning device according to another embodiment of the present invention.

【図5】 図4の装置におけるレーザ光の偏光の様子を
示す説明図である。
FIG. 5 is an explanatory view showing a state of polarization of laser light in the apparatus of FIG.

【図6】 複数のミラーによる照明の場合の計測法を示
す模式図である。
FIG. 6 is a schematic diagram showing a measurement method in the case of illumination by a plurality of mirrors.

【図7】 従来例に係るレーザトモグラフィ装置を説明
するための説明図である。
FIG. 7 is an explanatory diagram for explaining a laser tomography apparatus according to a conventional example.

【符号の説明】[Explanation of symbols]

101:レーザ光、103:集光レンズ、105:試
料、107:照明面、109:誘電体ミラー、111:
受光素子、113:観察面、115:観察レンズ、11
7:結像レンズ、119:撮像素子、121:プリズ
ム、123:偏光回転子。
101: laser light, 103: condenser lens, 105: sample, 107: illumination surface, 109: dielectric mirror, 111:
Light receiving element, 113: observation surface, 115: observation lens, 11
7: imaging lens, 119: image sensor, 121: prism, 123: polarization rotator.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源からの照明光を集光手段により集光
させて被照明物をその照明面にほぼ垂直な方向から照明
し、その照明光による内部からの散乱光を照明光軸と9
0度の方向より観察する装置における照明光と被照明物
との位置関係を調整する位置合せ装置であって、光源か
ら前記集光手段までの光路中に介在し光源からの照明光
を前記集光手段の方へ反射する反射手段と、前記照明面
で反射された照明光部分のうち前記集光手段を経て戻り
そして前記反射手段を透過した光を検出する光電変換手
段と、この光電変換手段の出力に基き照明光と被照明物
間の位置関係を調整するための位置調整手段とを具備
し、前記光電変換手段は、前記照明面を照明光に垂直な
方向に移動させた場合、照明光の前記集光手段による集
光位置またはその近傍が該照明面の端部を横切るとき、
その出力が不連続に変動するものであり、また、前記集
光位置が前記照明面上に位置しているときその出力が最
大となるものであることを特徴とする位置合せ装置。
An illumination light from a light source is condensed by a light condensing means to illuminate an object to be illuminated from a direction substantially perpendicular to the illumination surface.
Then, the scattered light from inside due to the illumination light is
What is claimed is: 1. A positioning device for adjusting a positional relationship between illumination light and an object to be illuminated in a device observing from a direction of 0 degrees, wherein the illumination light from the light source intervenes in an optical path from a light source to the light condensing means. Reflection means for reflecting light toward the light means, photoelectric conversion means for detecting light transmitted through the reflection means and returning through the light condensing means of the illumination light portion reflected on the illumination surface, and the photoelectric conversion means Position adjusting means for adjusting the positional relationship between the illumination light and the illuminated object based on the output of the
And the photoelectric conversion means sets the illumination surface perpendicular to the illumination light.
Direction, the illumination light is collected by the light collecting means.
When the light position or its vicinity crosses the edge of the illumination surface,
Its output fluctuates discontinuously;
When the light position is located on the illumination surface, its output is
A positioning apparatus characterized by being a large one .
【請求項2】 前記反射手段は、誘電体膜を用いた反射
ミラーであることを特徴とする請求項1記載の位置合せ
装置。
2. An apparatus according to claim 1, wherein said reflection means is a reflection mirror using a dielectric film.
【請求項3】 光源からの照明光を集光手段により集光
させて被照明物をその照明面にほぼ垂直な方向から照明
し、その照明光による内部からの散乱光を照明光軸と9
0度の方向より観察する装置における照明光と被照明物
との位置関係を調整する位置合せ装置であって、光源か
ら前記集光手段までの光路中に介在し光源からの照明光
を前記集光手段の方へ反射する反射手段と、前記照明面
で反射された照明光部分のうち前記集光手段を経て戻り
そして前記反射手段を透過した光を検出する光電変換手
段と、この光電変換手段の出力に基き照明光と被照明物
間の位置関係を調整するための位置調整手段とを具備
し、前記反射手段と集光手段との間に偏光回転子を備
え、前記反射手段は光の偏光方向に応じて反射率が変化
するプリズムであり、光源が発する照明光は所定の方向
に偏光しており、前記プリズムは、この照明光に対して
は高い反射率を有し、前記偏光回転子を経て照射され戻
ってくることにより偏光方向が回転された照明光部分に
対しては低い反射率を有するものであることを特徴とす
る位置合せ装置。
3. Illumination light from a light source is condensed by condensing means to illuminate an object to be illuminated from a direction substantially perpendicular to the illumination surface.
Then, the scattered light from inside due to the illumination light is
What is claimed is: 1. A positioning device for adjusting a positional relationship between illumination light and an object to be illuminated in a device observing from a direction of 0 degrees, wherein the illumination light from the light source intervenes in an optical path from a light source to the light condensing means. Reflection means for reflecting light toward the light means, photoelectric conversion means for detecting light transmitted through the reflection means and returning through the light condensing means of the illumination light portion reflected on the illumination surface, and the photoelectric conversion means Position adjusting means for adjusting the positional relationship between the illumination light and the illuminated object based on the output of the
A polarizing rotator between the reflecting means and the condensing means.
The reflection means changes the reflectance according to the polarization direction of light.
The illumination light emitted from the light source is directed in a predetermined direction.
And the prism is
Has a high reflectivity and is illuminated back through the polarization rotator
The illumination light part whose polarization direction has been rotated
An alignment apparatus characterized by having a low reflectance .
【請求項4】 被照明物はその前記照明面の端部を介し
て隣接する観察面を介してその内部が観察されるもので
あり、照明光はその観察される内部をその集光位置近傍
において照明するレーザ光であり、前記調整手段は、該
照明面および観察面から所望の深さに前記集光位置を位
置させるように照明光と被照明物間の位置関係を調整す
るためのものであることを特徴とする請求項記載の位
置合せ装置。
4. An object to be illuminated has its interior observed through an adjacent observation surface through an end portion of the illumination surface, and the illumination light illuminates the observed interior in the vicinity of its converging position. The adjusting means adjusts a positional relationship between the illuminating light and the object to be illuminated so as to position the light condensing position at a desired depth from the illuminating surface and the observation surface. The alignment device according to claim 1, wherein:
JP5158085A 1993-06-04 1993-06-04 Positioning device Expired - Lifetime JP2989995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5158085A JP2989995B2 (en) 1993-06-04 1993-06-04 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5158085A JP2989995B2 (en) 1993-06-04 1993-06-04 Positioning device

Publications (2)

Publication Number Publication Date
JPH06347413A JPH06347413A (en) 1994-12-22
JP2989995B2 true JP2989995B2 (en) 1999-12-13

Family

ID=15663976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5158085A Expired - Lifetime JP2989995B2 (en) 1993-06-04 1993-06-04 Positioning device

Country Status (1)

Country Link
JP (1) JP2989995B2 (en)

Also Published As

Publication number Publication date
JPH06347413A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
US5159412A (en) Optical measurement device with enhanced sensitivity
US7245375B2 (en) Optical measurement device and method
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
KR20130030686A (en) Auto focusing apparatus for optical microscope
US7397553B1 (en) Surface scanning
JP4751156B2 (en) Autocollimator and angle measuring device using the same
JP2004317424A (en) Autocollimator
JPS5979104A (en) Optical device
JP2989995B2 (en) Positioning device
CN115031629A (en) Device and method for detecting positioning of cube beam splitter prism before gluing
US6486942B1 (en) Method and system for measurement of a characteristic of lens
JP2542754B2 (en) Positioning method and apparatus for probe for electric field measurement of integrated circuit
JPS63241510A (en) Optical type scanner with telecentric train camera
JPH08334317A (en) Measuring microscope
US7046354B2 (en) Surface foreign matter inspecting device
JPH07294231A (en) Optical surface roughness sensor
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
TWI836749B (en) Apparatus for optical inspection
JPH08261734A (en) Shape measuring apparatus
JPH0139041B2 (en)
JP2002090302A (en) Light quantity measuring device
JPH0661115A (en) Gap detection and setting device
JPH10239014A (en) Focal point detecting device and inspecting device
JPH10122831A (en) Surface inspection equipment
JPS60211304A (en) Measuring instrument for parallelism

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 14

EXPY Cancellation because of completion of term