JP2987440B1 - Photocatalyst comprising titanium mesoporous silica and method for producing the same - Google Patents

Photocatalyst comprising titanium mesoporous silica and method for producing the same

Info

Publication number
JP2987440B1
JP2987440B1 JP10250800A JP25080098A JP2987440B1 JP 2987440 B1 JP2987440 B1 JP 2987440B1 JP 10250800 A JP10250800 A JP 10250800A JP 25080098 A JP25080098 A JP 25080098A JP 2987440 B1 JP2987440 B1 JP 2987440B1
Authority
JP
Japan
Prior art keywords
titanium
mesoporous silica
silica material
alkylamine
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10250800A
Other languages
Japanese (ja)
Other versions
JP2000070710A (en
Inventor
勝典 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10250800A priority Critical patent/JP2987440B1/en
Application granted granted Critical
Publication of JP2987440B1 publication Critical patent/JP2987440B1/en
Publication of JP2000070710A publication Critical patent/JP2000070710A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

【要約】 【課題】 高活性な光触媒能を有するチタン含有シリカ
メソ多孔体と、その製造方法を提供する。 【解決手段】 シリカメソ多孔体中のケイ素原子の1〜
6モル%がチタン原子で同形置換されていることを特徴
とするチタン含有シリカメソ多孔体が提供される。チタ
ン含有シリカメソ多孔体の製造方法において、Si−ア
ルコキシド、Ti−アルコキシド及び1−アルキルアミ
ンからなる混合液に酸性水溶液を添加して、チタン、ケ
イ素及び1−n−アルキルアミンからなる複合体微粒子
を生成させ、得られた懸濁液から該複合体微粒子を分離
し、乾燥した後、該複合体微粒子を焼成し、それに含ま
れている1−n−アルキルアミンを分解除去することを
特徴とする前記方法。シリカメソ多孔体中のケイ素原子
の1〜6モル%がチタン原子で同形置換されているチタ
ン含有シリカメソ多孔体からなる光触媒。
A titanium-containing mesoporous silica having high photocatalytic activity and a method for producing the same are provided. SOLUTION: One to one of silicon atoms in a mesoporous silica material is provided.
A titanium-containing mesoporous silica material is provided, wherein 6 mol% is isomorphously substituted with a titanium atom. In the method for producing a titanium-containing mesoporous silica material, an acidic aqueous solution is added to a mixed solution composed of Si-alkoxide, Ti-alkoxide and 1-alkylamine to form composite fine particles composed of titanium, silicon and 1-n-alkylamine. After the composite fine particles are separated from the resulting suspension and dried, the composite fine particles are baked, and the 1-n-alkylamine contained therein is decomposed and removed. The method. A photocatalyst comprising a titanium-containing mesoporous silica material in which 1 to 6 mol% of silicon atoms in the mesoporous silica material are isomorphously substituted with titanium atoms.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタン含有シリカ
メソ多孔体からなる光触媒及びその製造方法に関するも
のである。
The present invention relates to a photocatalyst comprising a titanium-containing mesoporous silica material and a method for producing the same.

【0002】[0002]

【従来の技術】Siの一部をTiで同形置換した多孔性
物質は酸化触媒能、光触媒能を有することから、基礎研
究及び応用開発の両面で極めて注目されている。酸化触
媒能の発現はシリケート骨格中のSiを同形置換したT
iが、H22あるいはTBHP等の酸化剤と容易に反応
し、活性なperoxo型複合体を形成することに起因
することが知られている。また、光触媒能の発現もSi
を置換したTiが紫外線から可視光領域の光を吸収する
ことに起因していると考えられる。近年、Siの一部を
Tiで置換した種々のマイクロ孔及びメソ孔多孔体、例
えばTS−1,TS−2、Ti−β、Ti−MCM−4
1(48)およびTi−HMSが開発されている。TS
−1、TS−2およびTi−βはゼオライト類縁化合物
のマイクロ孔多孔体であり、界面活性剤である1分子を
鋳型分子として合成される。これに対してTi−MCM
−41等は多くの界面活性剤の協調的な集合体である液
晶型分子を鋳型にして無機溶存種を析出させることで合
成されるメソ孔多孔体である。
2. Description of the Related Art A porous substance in which a part of Si is replaced by Ti in the same form has an oxidation catalytic activity and a photocatalytic activity, and thus has been attracting much attention in both basic research and application development. Oxidation catalytic activity is expressed by isomorphous substitution of Si in the silicate skeleton.
It is known that i reacts easily with an oxidizing agent such as H 2 O 2 or TBHP to form an active peroxo-type complex. In addition, the expression of photocatalytic ability
Is considered to be caused by the absorption of light in the visible light region from ultraviolet light. In recent years, various microporous and mesoporous materials in which a part of Si is replaced with Ti, for example, TS-1, TS-2, Ti-β, Ti-MCM-4
1 (48) and Ti-HMS have been developed. TS
-1, TS-2 and Ti-β are microporous bodies of zeolite analogs, and are synthesized using one molecule as a surfactant as a template molecule. On the other hand, Ti-MCM
-41 and the like are mesoporous materials synthesized by precipitating inorganic dissolved species using a liquid crystal type molecule, which is a coordinated aggregate of many surfactants, as a template.

【0003】しかし、上記のマイクロ及びメソ孔多孔体
の合成は、(i)常温で行われる場合には溶媒としてア
ルコール等の添加を行ったり、(ii)溶媒の添加が行わ
れない場合には100℃以上の高温での水熱反応を必要
とする。また、シリケート骨格中のSi置換率は低く、
Ti含有率は2〜3モル%程度であって、新規触媒を開
発するためにはその置換率を増加するための合成方法の
確立が期待されている。また、Ti及びSi−アルコキ
シドを出発原料としてこれらを作製する場合には、両化
合物の加水分解速度の差異を解消することが主要な課題
である。そのため活性なTi−アルコキシドをキレート
化することによって安定化したり、活性の低いSi−ア
ルコキシドをあらかじめ加水分解させることによって、
両アルコキシドの加水分解速度および縮合速度の差異を
解消することが一般的に良く行われている。しかし、得
られる生成物は非晶質なTi−Si混合酸化物であり、
高活性な触媒として利用することはできない。
[0003] However, the synthesis of the micro and mesoporous materials described above involves (i) addition of an alcohol or the like as a solvent when performed at room temperature, or (ii) addition of a solvent when not performed. It requires a hydrothermal reaction at a high temperature of 100 ° C. or higher. Also, the Si substitution rate in the silicate skeleton is low,
The Ti content is about 2 to 3 mol%, and in order to develop a new catalyst, establishment of a synthesis method for increasing the substitution rate is expected. In the case where Ti and Si-alkoxides are prepared as starting materials, it is a major problem to eliminate the difference between the hydrolysis rates of the two compounds. Therefore, by stabilizing the active Ti-alkoxide by chelation or by previously hydrolyzing the low-activity Si-alkoxide,
It is common practice to eliminate the difference between the hydrolysis and condensation rates of both alkoxides. However, the resulting product is an amorphous Ti-Si mixed oxide,
It cannot be used as a highly active catalyst.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、高活
性なチタン含有シリカメソ多孔体からなる光触媒と、そ
の製造方法を提供することをその課題とする。
Accordingly, an object of the present invention is to provide a photocatalyst comprising a highly active titanium-containing mesoporous silica material and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、本発明を完成す
るに至った。即ち、本発明によれば、シリカメソ多孔体
中のケイ素原子の1〜6モル%がチタン原子で同形置換
されていることを特徴とするチタン含有シリカメソ多孔
体からなる光触媒が提供される。また、本発明によれ
ば、前記チタン含有シリカメソ多孔体からなる光触媒
製造方法において、Si−アルコキシド、Ti−アルコ
キシド及び1−アルキルアミンからなる混合液に酸性水
溶液を添加して、チタン、ケイ素及び1−n−アルキル
アミンからなる複合体微粒子を生成させ、得られた懸濁
液から該複合体微粒子を分離し、乾燥した後、該複合体
微粒子を焼成し、それに含まれている1−n−アルキル
アミンを分解除去することを特徴とする前記方法が提供
される。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, titanium-containing silica mesoporous material is characterized in that 1 to 6 mol% of silicon atoms in the mesoporous silica material are isomorphously substituted with titanium atoms.
A photocatalyst comprising a body is provided. According to the present invention, in the method for producing a photocatalyst comprising the titanium-containing mesoporous silica, an acidic aqueous solution is added to a mixed solution comprising Si-alkoxide, Ti-alkoxide and 1-alkylamine, and titanium, silicon and After generating composite fine particles composed of 1-n-alkylamine, separating the composite fine particles from the obtained suspension, and drying, the composite fine particles are baked, and the 1-n -The method is provided, wherein the alkylamine is decomposed and removed.

【0006】[0006]

【発明の実施の形態】本発明のチタン含有シリカメソ多
孔体からなる光触媒(以下、単にチタン含有シリカメソ
多孔体ともいう。)の製造においては、先ず、Si−ア
ルコキシドとTi−アルコキシドと1−n−アルキルア
ミンを含む混合液中に酸性溶液を添加する。これによ
り、酸性混合溶液が得られるが、この酸性混合溶液中で
イオン化して生成した各々の溶存種が、酸由来の陰イオ
ンを媒介として協調的な相互作用を行い、有機・無機溶
存種が規則構造を持って配列した複合体を形成される。
すなわち、本発明のチタン含有シリカメソ多孔体の合成
では、境界相である酸性水溶液相中における、アルコキ
シドから生成したアルコキシド溶存種と1−n−アルキ
ルアミンとの急速な相互作用によって生成する微粒子状
の有機/無機複合体を前駆体として作製する。次に、こ
の複合体を溶液相から分離・乾燥後、1−n−アルキル
アミンを除去する。これによって、メソ孔が規則的に配
列したチタン含有シリカメソ多孔体が生成する。メソ孔
の大きさは酸溶液の種類、濃度、容量及びアミンの種類
によって制御が可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The titanium-containing silica mesopoly of the present invention
Porous photocatalyst (hereinafter simply referred to as titanium-containing silica meso
Also called a porous body. In the production of (1 ) , first, an acidic solution is added to a mixed solution containing Si-alkoxide, Ti-alkoxide, and 1-n-alkylamine. As a result, an acidic mixed solution is obtained, and the respective dissolved species generated by ionization in the acidic mixed solution interact in a coordinated manner via an anion derived from an acid, and organic and inorganic dissolved species are formed. A complex is formed that has an ordered structure.
That is, in the synthesis of the titanium-containing mesoporous silica material of the present invention, in the acidic aqueous solution phase as the boundary phase, the fine particles formed by rapid interaction between the alkoxide dissolved species generated from the alkoxide and 1-n-alkylamine. An organic / inorganic composite is prepared as a precursor. Next, after separating and drying this complex from the solution phase, the 1-n-alkylamine is removed. Thereby, a titanium-containing mesoporous silica material in which mesopores are regularly arranged is produced. The size of the mesopores can be controlled by the type, concentration and volume of the acid solution and the type of amine.

【0007】本発明のチタン含有シリカメソ多孔体は、
前記のように、従来になく単純な反応系において室温で
合成でき、しかも周期的に配列する細孔を有し、その大
きさが容易にコントロール可能で耐熱性にも優れている
ことはもとより、光触媒能を有することから、これまで
にない新規なチタン含有シリカメソ多孔体として分類で
きる。
[0007] The titanium-containing mesoporous silica material of the present invention comprises:
As described above, it can be synthesized at room temperature in an unprecedented simple reaction system, and has pores that are periodically arranged, and in addition to being easily controllable in size and excellent in heat resistance, Since it has photocatalytic activity, it can be classified as a novel titanium-containing mesoporous silica.

【0008】図1は、チタン含有シリカメソ多孔体のX
線回折図であり、底面反射の存在は細孔の配列が不規則
的ではないことを示している。しかし高温ではTi含有
量が多いとピークとしては認めがたくなるが、依然とし
て低角に高い反射が認められ、完全には細孔構造が破壊
されていないことが分かる。また、図2はその紫外可視
スペクトルであり、比較のため市販アナターゼのスペク
トルも示す。220nm付近のピークはTiが4配位で
ありSiと置換したTiに対応している。310nm付
近のピークはアナターゼのピークに対応しており、Ti
含有率が高くなると6配位のTiが共存することが明ら
かである。
FIG. 1 is a cross-sectional view of a mesoporous silica containing titanium.
FIG. 4 is a line diffraction diagram, showing the presence of bottom surface reflection that the arrangement of pores is not irregular. However, at high temperatures, when the Ti content is large, the peak is hardly recognized, but high reflection is still observed at a low angle, indicating that the pore structure is not completely destroyed. FIG. 2 shows the ultraviolet-visible spectrum, and also shows the spectrum of commercially available anatase for comparison. The peak near 220 nm corresponds to Ti in which Ti has four coordinates and is substituted for Si. The peak near 310 nm corresponds to the peak of anatase,
It is clear that the higher the content, the more the coordination of hexacoordinated Ti.

【0009】本発明のチタン含有シリカメソ多孔体の合
成用出発原料であるSi−アルコキシドとしては、テト
ラメチルオルトシリケート、テトラエチルオルトシリケ
ート、テトライソプロピルオルトシリケート、テトラ−
n−ブチルオルトシリケート等を用いることが可能で、
好ましくはテトラエチルオルトシリケート(以下TEO
Sと略す)を使用する。Ti−アルコキシドとしては、
テトラエチルオルトチタネート、テトライソプロピルオ
ルトチタネート、テトラ−n−ブチルオルトチタネート
等の使用が可能であり、好ましくはテトラエチルオルト
チタネート(以下TEOTと略す)を用いる。1−n−
アルキルアミンとしては、カーボン数8〜12のものを
使用する。酸としては、塩酸、硝酸あるいは硫酸等を使
用することができるが、好ましくは塩酸が用いられる。
The Si-alkoxide which is a starting material for synthesizing the mesoporous titanium-containing silica of the present invention includes tetramethylorthosilicate, tetraethylorthosilicate, tetraisopropylorthosilicate, and tetra-orthosilicate.
It is possible to use n-butyl orthosilicate or the like,
Preferably, tetraethyl orthosilicate (hereinafter TEO)
S). As the Ti-alkoxide,
Tetraethyl orthotitanate, tetraisopropyl orthotitanate, tetra-n-butyl orthotitanate and the like can be used, and tetraethyl orthotitanate (hereinafter abbreviated as TEOT) is preferably used. 1-n-
As the alkylamine, one having 8 to 12 carbon atoms is used. As the acid, hydrochloric acid, nitric acid, sulfuric acid or the like can be used, but hydrochloric acid is preferably used.

【0010】本発明においては、Ti含有シリカメソ多
孔体を好ましく製造するために、まず前記Si−アルコ
シキドとTi−アルコキシドとの混合溶液を5〜30分
間の短時間攪拌する。この混合物に1−n−アルキルア
ミンを添加しさらに1〜20分間攪拌後、塩酸水溶液を
一気に添加して攪拌を継続する。
In the present invention, in order to preferably produce a mesoporous silica material containing Ti, first, the mixed solution of the above-mentioned Si-alkoxide and Ti-alkoxide is stirred for a short time of 5 to 30 minutes. 1-n-Alkylamine is added to this mixture, and the mixture is further stirred for 1 to 20 minutes.

【0011】Si−アルコシキドとTi−アルコキシド
の混合割合は、SiとTiとのモル比(Si/Ti)で
3以上、好ましくは10以上である。その上限値は、特
に制約されないが、通常、200程度である。1−n−
アルキルアミンは、Si:1モルに対して0.4〜2.
7モル、好ましくは0.5〜1.0モルである。TEO
SとTEOTの混合アルコキシド溶液を5分間以上20
0〜1000rpmで攪拌混合後、アルキルアミンを添
加してそのまま1分以上攪拌する。さらに本混合溶液に
塩酸水溶液を加え、200〜1000rpmで攪拌しな
がら、室温で10分以上好ましくは1〜24時間反応さ
せる。出発原料の混合モル比は、TEOS:TEOT:
1−アルキルアミン:HCl:水=1:〜0.1:0.
4〜2.7:0.07〜1.0:6〜120で、好まし
くは、TEOS:TEOT:1−アルキルアミン:HC
l:水=1:〜0.1:0.5〜1.0:0.1〜0.
7:12〜75である。塩酸は一挙に添加する。
The mixing ratio of Si-alkoxide and Ti-alkoxide is 3 or more, preferably 10 or more in molar ratio of Si to Ti (Si / Ti). The upper limit is not particularly limited, but is usually about 200. 1-n-
Alkylamine is used in an amount of from 0.4 to 2.
7 mol, preferably 0.5 to 1.0 mol. TEO
Mix alkoxide solution of S and TEOT for more than 5 minutes 20
After stirring and mixing at 0 to 1000 rpm, alkylamine is added and the mixture is stirred for 1 minute or more. Further, an aqueous hydrochloric acid solution is added to the mixed solution, and the mixture is reacted at room temperature for 10 minutes or more, preferably 1 to 24 hours while stirring at 200 to 1000 rpm. The mixing molar ratio of the starting materials is TEOS: TEOT:
1-alkylamine: HCl: water = 1: to 0.1: 0.
4-2.7: 0.07-1.0: 6-120, preferably TEOS: TEOT: 1-alkylamine: HC
1: water = 1: to 0.1: 0.5 to 1.0: 0.1 to 0.
7: 12-75. Hydrochloric acid is added all at once.

【0012】前記の反応により、Ti、Si及び1−n
−アルキルアミンからなる微粒子状複合体が形成され
る。前記の混合操作により、このような微粒子状複合を
含む懸濁液が生成されるが、この懸濁液は、これを固液
分離、例えば、遠心分離し、複合体を得る。この複合体
は、これを室温〜100℃、好ましくは50℃で24時
間以上乾燥させる。最後に1−n−アルキルアミンを除
去して多孔体を作製するために、400℃以上で1時間
以上、好ましくは500℃〜900℃で1〜2時間加熱
処理する。このようにして得られる本発明のチタン含有
シリカメソ多孔体において、その平均細孔径は、1.8
〜4nm、好ましくは2〜3.4nmであり、そのTi
含有率は、0.5〜10モル%、好ましくは1〜6モル
%である。本発明のチタン含有シリカメソ多孔体は、シ
リカメソ多孔体中の1〜6モル%ケイ素原子がチタン原
子で同形置換されている。この場合のケイ素原子がチタ
ン原子で同形置換されているということは、チタン原子
が4配位で存在することを意味する。
By the above reaction, Ti, Si and 1-n
A particulate composite of the alkylamine is formed. By the mixing operation, a suspension containing such a particulate composite is produced. The suspension is subjected to solid-liquid separation, for example, centrifugation to obtain a composite. The complex is dried at room temperature to 100 ° C, preferably at 50 ° C for 24 hours or more. Finally, in order to remove the 1-n-alkylamine to form a porous body, heat treatment is performed at 400 ° C. or more for 1 hour or more, preferably at 500 ° C. to 900 ° C. for 1 to 2 hours. The thus obtained titanium-containing mesoporous silica material of the present invention has an average pore diameter of 1.8.
-4 nm, preferably 2-3.4 nm, and the Ti
The content is 0.5 to 10 mol%, preferably 1 to 6 mol%. In the mesoporous silica material containing titanium of the present invention, 1 to 6 mol% of silicon atoms in the mesoporous silica material are isomorphously substituted with titanium atoms. In this case, the fact that the silicon atom is isomorphously substituted by the titanium atom means that the titanium atom exists in a tetracoordinate.

【0013】[0013]

【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はこの実施例によって限定されな
い。 実施例1 TEOSとTEOTをモル比1:0.026で混合して
15分間攪拌後、オクチルアミン(TEOSに対するモ
ル比0.675)を添加する。この混合溶液を10分攪
拌後、0.5N塩酸水溶液(水のTEOSに対するモル
比24.78)を一挙に添加して、生成した懸濁液をさ
らに24時間攪拌する。生成物を遠心分離し、50℃で
2日間乾燥させ、最後に500℃で2時間加熱し有機化
合物を除去してチタン含有シリカメソ多孔体を作製す
る。生成チタン含有シリカメソ多孔体のTi含有率およ
び比表面積等の細孔特性を表1に示す。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Example 1 After mixing TEOS and TEOT at a molar ratio of 1: 0.026 for 15 minutes, octylamine (a molar ratio to TEOS of 0.675) is added. After stirring this mixed solution for 10 minutes, a 0.5N aqueous hydrochloric acid solution (water molar ratio to TEOS is 24.78) is added at once, and the resulting suspension is further stirred for 24 hours. The product is centrifuged, dried at 50 ° C. for 2 days, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a titanium-containing mesoporous silica material. Table 1 shows the pore characteristics such as the Ti content and the specific surface area of the produced mesoporous silica material containing titanium.

【表1】 [Table 1]

【0014】実施例2 TEOSとTEOTをモル比1:0.054で混合して
15分間攪拌後、オクチルアミン(TEOSに対するモ
ル比0.675)を添加する。この混合溶液を10分攪
拌後、0.5N塩酸水溶液(水のTEOSに対するモル
比24.78)を一挙に添加して、生成した懸濁液をさ
らに24時間攪拌する。生成物を遠心分離し、50℃で
2日間乾燥させ、最後に500℃で2時間加熱し有機化
合物を除去してチタン含有シリカメソ多孔体を作製す
る。生成チタン含有シリカメソ多孔体のTi含有率およ
び比表面積等の細孔特性を表2に示す。
Example 2 After mixing TEOS and TEOT at a molar ratio of 1: 0.054 and stirring for 15 minutes, octylamine (a molar ratio to TEOS of 0.675) is added. After stirring this mixed solution for 10 minutes, a 0.5N aqueous hydrochloric acid solution (water molar ratio to TEOS is 24.78) is added at once, and the resulting suspension is further stirred for 24 hours. The product is centrifuged, dried at 50 ° C. for 2 days, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a titanium-containing mesoporous silica material. Table 2 shows the pore characteristics such as the Ti content and the specific surface area of the produced mesoporous silica material containing titanium.

【表2】 [Table 2]

【0015】実施例3 TEOSとTEOTをモル比1:0.080で混合して
15分間攪拌後、オクチルアミン(TEOSに対するモ
ル比0.675)を添加する。この混合溶液を10分攪
拌後、0.5N塩酸水溶液(水のTEOSに対するモル
比24.78)を一挙に添加して、生成した懸濁液をさ
らに24時間攪拌する。生成物を遠心分離し、50℃で
2日間乾燥させ、最後に500℃で2時間加熱し有機化
合物を除去してチタン含有シリカメソ多孔体を作製す
る。生成物の粉末X線回折パターンには低強度のアナタ
ーゼの反射が認められる。生成チタン含有シリカメソ多
孔体のTi含有率および比表面積等の細孔特性を表3に
示す。
Example 3 After mixing TEOS and TEOT at a molar ratio of 1: 0.080 for 15 minutes, octylamine (a molar ratio to TEOS is 0.675) is added. After stirring this mixed solution for 10 minutes, a 0.5N aqueous hydrochloric acid solution (water molar ratio to TEOS is 24.78) is added at once, and the resulting suspension is further stirred for 24 hours. The product is centrifuged, dried at 50 ° C. for 2 days, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a titanium-containing mesoporous silica material. The powder X-ray diffraction pattern of the product shows low intensity of anatase reflection. Table 3 shows the pore characteristics such as the Ti content and the specific surface area of the produced mesoporous silica material containing titanium.

【表3】 [Table 3]

【0016】実施例4 TEOSとTEOTをモル比1:0.106で混合して
15分間攪拌後、オクチルアミン(TEOSに対するモ
ル比0.675)を添加する。この混合溶液を10分攪
拌後、0.5N塩酸水溶液(水のTEOSに対するモル
比24.78)を一挙に添加して、生成した懸濁液をさ
らに24時間攪拌する。生成物を遠心分離し、50℃で
2日間乾燥させ、最後に500℃で2時間加熱し有機化
合物を除去してチタン含有シリカメソ多孔体を作製す
る。生成物の粉末X線回折パターンには低強度のアナタ
ーゼの反射が認められる。生成チタン含有シリカメソ多
孔体のTi含有率および比表面積等の細孔特性を表4に
示す。
Example 4 After mixing TEOS and TEOT at a molar ratio of 1: 0.106 and stirring for 15 minutes, octylamine (a molar ratio to TEOS of 0.675) is added. After stirring this mixed solution for 10 minutes, a 0.5N aqueous hydrochloric acid solution (water molar ratio to TEOS is 24.78) is added at once, and the resulting suspension is further stirred for 24 hours. The product is centrifuged, dried at 50 ° C. for 2 days, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a titanium-containing mesoporous silica material. The powder X-ray diffraction pattern of the product shows low intensity of anatase reflection. Table 4 shows the pore characteristics such as the Ti content and the specific surface area of the produced mesoporous silica containing titanium.

【表4】 [Table 4]

【0017】実施例5 TEOSとTEOTをモル比1:0.026で混合して
15分間攪拌後、ドデシルアミン(TEOSに対するモ
ル比0.485)を添加する。この混合溶液を10分攪
拌後、0.5N塩酸水溶液(水のTEOSに対するモル
比24.78)を一挙に添加して、生成した懸濁液をさ
らに24時間攪拌する。生成物を遠心分離し、50℃で
2日間乾燥させ、最後に500℃で2時間加熱し有機化
合物を除去してチタン含有シリカメソ多孔体を作製す
る。生成チタン含有シリカメソ多孔体のTi含有率およ
び比表面積等の細孔特性を表5に示す。
Example 5 After mixing TEOS and TEOT at a molar ratio of 1: 0.026 and stirring for 15 minutes, dodecylamine (molar ratio to TEOS 0.485) is added. After stirring this mixed solution for 10 minutes, a 0.5N aqueous hydrochloric acid solution (water molar ratio to TEOS is 24.78) is added at once, and the resulting suspension is further stirred for 24 hours. The product is centrifuged, dried at 50 ° C. for 2 days, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a titanium-containing mesoporous silica material. Table 5 shows the pore characteristics such as the Ti content and the specific surface area of the produced mesoporous silica material containing titanium.

【表5】 [Table 5]

【0018】実施例6 TEOSとTEOTをモル比1:0.106で混合して
15分間攪拌後、ドデシルアミン(TEOSに対するモ
ル比0.485)を添加する。この混合溶液を10分攪
拌後、0.5N塩酸水溶液(水のTEOSに対するモル
比24.78)を一挙に添加して、生成した懸濁液をさ
らに24時間攪拌する。生成物を遠心分離し、50℃で
2日間乾燥させ、最後に500℃で2時間加熱し有機化
合物を除去してチタン含有シリカメソ多孔体を作製す
る。生成チタン含有シリカメソ多孔体のTi含有率およ
び比表面積等の細孔特性を表6に示す。
EXAMPLE 6 After mixing TEOS and TEOT at a molar ratio of 1: 0.106 and stirring for 15 minutes, dodecylamine (molar ratio to TEOS 0.485) is added. After stirring this mixed solution for 10 minutes, a 0.5N aqueous hydrochloric acid solution (water molar ratio to TEOS is 24.78) is added at once, and the resulting suspension is further stirred for 24 hours. The product is centrifuged, dried at 50 ° C. for 2 days, and finally heated at 500 ° C. for 2 hours to remove organic compounds, thereby producing a titanium-containing mesoporous silica material. Table 6 shows the pore characteristics such as the Ti content and the specific surface area of the produced mesoporous silica material containing titanium.

【表6】 [Table 6]

【0019】実施例7 実施例1の生成物を900℃で1時間加熱し有機化合物
を除去してチタン含有シリカメソ多孔体を作製する。生
成チタン含有シリカメソ多孔体の細孔特性を表7に示
す。
Example 7 The product of Example 1 is heated at 900 ° C. for 1 hour to remove organic compounds, thereby producing a titanium-containing mesoporous silica material. Table 7 shows the pore characteristics of the resulting mesoporous silica material containing titanium.

【表7】 [Table 7]

【0020】実施例8 実施例2の生成物を900℃で1時間加熱し有機化合物
を除去してチタン含有シリカメソ多孔体を作製する。生
成チタン含有シリカメソ多孔体の細孔特性を表8に示
す。
Example 8 The product of Example 2 is heated at 900 ° C. for 1 hour to remove organic compounds, thereby producing a titanium-containing mesoporous silica material. Table 8 shows the pore characteristics of the produced mesoporous silica material containing titanium.

【表8】 [Table 8]

【0021】実施例9 実施例1、実施例4、実施例7、及び実施例8のチタン
含有シリカメソ多孔体の光触媒能を酢酸水溶液の分解反
応によって検討した。生成多孔体0.5gを500ml
ビーカーに秤取り、2.66mMの酢酸水溶液400m
lを添加した。懸濁液に波長254nmに最大強度を有
する紫外線ランプ(栄光社製)を直接浸し攪拌しなが
ら、出力120Wの光源を1時間照射し、反応前後の全
有機炭素を島津(株)製TOC計で測定し、酢酸の分解
率を求めた。なお、同一反応条件で光触媒として高活性
で知られる市販アナターゼ(石原産業製ST−01)に
ついても光触媒反応を行った。表9に示す結果より、T
i1モルに対する光触媒能はアナターゼと比較するとい
ずれの場合も高く、実施例7では38倍にも及ぶことが
わかる。
Example 9 The photocatalytic activity of the mesoporous titanium-containing silica materials of Examples 1, 4, 7, and 8 was examined by a decomposition reaction of an aqueous acetic acid solution. 0.5 g of the resulting porous body is 500 ml
Weigh into beaker, 400m 2.66mM acetic acid aqueous solution
1 was added. The suspension was directly immersed in an ultraviolet lamp (manufactured by Eiko Co., Ltd.) having a maximum intensity at a wavelength of 254 nm and irradiated with a light source having an output of 120 W for 1 hour while stirring, and all organic carbon before and after the reaction was measured with a TOC meter manufactured by Shimadzu Corporation. The acetic acid decomposition rate was measured. In addition, the photocatalytic reaction was also performed on commercially available anatase (ST-01, manufactured by Ishihara Sangyo) which is known as a photocatalyst with high activity under the same reaction conditions. From the results shown in Table 9, T
It can be seen that the photocatalytic activity per mole of i was higher than that of anatase in all cases, and was 38 times higher in Example 7.

【表9】 [Table 9]

【0022】[0022]

【発明の効果】本発明のチタン含有シリカメソ多孔体
は、TiのSi置換率が約5.5原子%まで自由にコン
トロール可能であり、しかもこのものは、Tiが高比表
面積担体に高分散で担持した光触媒と捉えることができ
る。さらに適当な径の細孔を多数有していることから形
状選択能を発揮して効率的に種々の有用あるいは有害な
分子、イオンをトラップすることができる。したがっ
て、本発明のチタン含有シリカメソ多孔体は、工業およ
び環境保全の両面で有用な反応に対して優れた光触媒能
を有する。また、本発明の上記チタン含有シリカメソ多
孔体製造方法は、メソ孔ばかりでなくマイクロ孔を有す
るチタン含有シリカ多孔体の製造にも応用可能である。
さらにTi以外、例えばAl、VあるいはZr等を含む
種々の新規多孔性物質を製造することが可能と考えられ
る。
According to the mesoporous titanium-containing silica of the present invention, the substitution ratio of Ti to Si can be freely controlled up to about 5.5 atomic%. It can be regarded as a supported photocatalyst. Further, since it has a large number of pores having an appropriate diameter, it can exhibit various shapes and selectivity to efficiently trap various useful or harmful molecules and ions. Therefore, the mesoporous titanium-containing silica of the present invention has an excellent photocatalytic ability for a reaction useful in both industrial and environmental conservation. Further, the method for producing a mesoporous titanium-containing silica material of the present invention can be applied to the production of a porous titanium-containing silica material having not only mesopores but also micropores.
Further, it is considered that various novel porous substances including, for example, Al, V, Zr, etc. other than Ti can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粉末X線回析図を示し、図中の(a)〜(d)
は、それぞれ(a)実施例1、(b)実施例4、(c)
実施例7、(d)実施例8のチタン含有シリカメソ多孔
体の粉末X線回折図であり、(e)は実施例9の表9中
の市販アナターゼの粉末X線回析図である。
FIG. 1 shows a powder X-ray diffraction diagram, in which (a) to (d) are shown.
Are (a) Example 1, (b) Example 4, and (c), respectively.
9 (d) is a powder X-ray diffraction diagram of the titanium-containing mesoporous silica material of Example 8, and (e) is a powder X-ray diffraction diagram of commercially available anatase in Table 9 of Example 9.

【図2】紫外可視スペクトルを示し、図中の(a)〜
(e)はそれぞれ図1の多孔体粉末に対応するものであ
る。
FIG. 2 shows an ultraviolet-visible spectrum, and (a) to (a) in the figure.
(E) respectively correspond to the porous material powder of FIG.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリカメソ多孔体中のケイ素原子の1〜1. The method according to claim 1, wherein the silicon mesoporous material has one or more silicon atoms.
6モル%がチタン原子で同形置換されているチタン含有Titanium containing 6 mol% is isomorphously substituted with titanium atoms
シリカメソ多孔体からなる光触媒。Photocatalyst consisting of mesoporous silica.
【請求項2】 請求項1のチタン含有シリカメソ多孔体
からなる光触媒の製造方法において、 Si−アルコキシ
ド、Ti−アルコキシド及び1−n−アルキルアミンか
らなる混合液に酸性水溶液を添加して、チタン、ケイ素
及び1−n−アルキルアミンからなる複合体微粒子を生
成させ、得られた懸濁液から該複合体微粒子を分離し、
乾燥した後、該複合体微粒子を焼成し、それに含まれて
いる1−アルキルアミンを分解除去することを特徴とす
る前記方法。
2. The mesoporous silica material containing titanium according to claim 1.
A method for producing a photocatalyst comprising: adding an acidic aqueous solution to a mixed solution comprising Si-alkoxide, Ti-alkoxide and 1-n-alkylamine to form composite fine particles comprising titanium, silicon and 1-n-alkylamine; Generating, separating the composite fine particles from the obtained suspension,
After drying, the composite fine particles are fired, and the 1-alkylamine contained therein is decomposed and removed.
JP10250800A 1998-09-04 1998-09-04 Photocatalyst comprising titanium mesoporous silica and method for producing the same Expired - Lifetime JP2987440B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10250800A JP2987440B1 (en) 1998-09-04 1998-09-04 Photocatalyst comprising titanium mesoporous silica and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10250800A JP2987440B1 (en) 1998-09-04 1998-09-04 Photocatalyst comprising titanium mesoporous silica and method for producing the same

Publications (2)

Publication Number Publication Date
JP2987440B1 true JP2987440B1 (en) 1999-12-06
JP2000070710A JP2000070710A (en) 2000-03-07

Family

ID=17213246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10250800A Expired - Lifetime JP2987440B1 (en) 1998-09-04 1998-09-04 Photocatalyst comprising titanium mesoporous silica and method for producing the same

Country Status (1)

Country Link
JP (1) JP2987440B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626099B2 (en) 2000-07-17 2011-02-02 株式会社豊田中央研究所 Photocatalyst
FR2838734B1 (en) * 2002-04-17 2005-04-15 Saint Gobain SELF-CLEANING COATING SUBSTRATE
JP2003335515A (en) * 2002-05-17 2003-11-25 National Institute Of Advanced Industrial & Technology Highly three-dimensionally regular nanoporous inorganic body having micropore, method for producing the same, and method for evaluating the same
JP4831663B2 (en) * 2004-10-27 2011-12-07 独立行政法人産業技術総合研究所 Thin plate-like porous silica metal composite particles and production method thereof
JP4955992B2 (en) * 2005-12-17 2012-06-20 本荘ケミカル株式会社 Method for photo-oxidative decomposition of volatile organic compounds in the gas phase

Also Published As

Publication number Publication date
JP2000070710A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP4897321B2 (en) Titanium silicalite molecular sieve and method for producing the same
KR100542959B1 (en) Titanium silicalite-1 containing granules, preparation methods thereof, suspension catalysts containing them and methods for using them in various chemical reactions
US5783167A (en) Structure material of the zeolite type with ultralarge pores and a lattice comprised of silicone and titanium oxides: its synthesis and utilization for the selective oxidation of organic products
CN104556111B (en) A kind of Titanium Sieve Molecular Sieve and its synthetic method
EP1216092B1 (en) Silicon-containing titanium dioxyde, method for preparing the same and catalytic compositions thereof
JP2000178022A (en) Tin(ii) silicate molecular sieve having zeolite beta- structure
JP7354108B2 (en) Production of porous crystalline metal silicates in powder form by flame spray pyrolysis
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
US5474754A (en) Preparation of an aluminosilicotitanate isomorphous with zeolite beta
JP2003514751A (en) High surface area microporous material active in oxidation reaction (TIQ-6 and METIQ-6)
Lang et al. Post-synthesis introduction of transition metals in surfactant-containing MCM-41 materials
KR100604138B1 (en) The manufacturing method of titanium silicalite zeolite
JP2987440B1 (en) Photocatalyst comprising titanium mesoporous silica and method for producing the same
JP2004122056A (en) Porous titanium oxide and production method of the same
JPH1072212A (en) Mesoporous molecular sieve and its production
JP2000109312A (en) Amorphous silicic acid and metallic silicate having narrow mesopore radius distribution produced by precipitation method, their production, method for modifying silicic acid and metallic silicate and their use
US5958369A (en) Titanium-containing porous silica and process of preparing same
JP3886594B2 (en) Method for producing silica three-dimensional network photocatalyst supporting titanium oxide
JP4424905B2 (en) Anatase type titania-silica composite, production method thereof and photocatalytic material
CN100450618C (en) Catalyst for epoxidation reactions
KR101063194B1 (en) Method for producing nanoporous bodies having meso-micropores and nanoporous catalysts having meso-micropores
JP3136339B2 (en) Titanium oxide photocatalyst and method for producing the same
JP2001302241A (en) Method for producing titanium oxide
JP3366163B2 (en) Titanium-containing mordenite and method for producing the same
JP2015044142A (en) Composite particle and manufacturing method thereof, and adsorbent for organic substance and decomposition method of organic substance

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term