JP2987012B2 - Exhaust gas purification equipment - Google Patents

Exhaust gas purification equipment

Info

Publication number
JP2987012B2
JP2987012B2 JP4191534A JP19153492A JP2987012B2 JP 2987012 B2 JP2987012 B2 JP 2987012B2 JP 4191534 A JP4191534 A JP 4191534A JP 19153492 A JP19153492 A JP 19153492A JP 2987012 B2 JP2987012 B2 JP 2987012B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
amount
heating element
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4191534A
Other languages
Japanese (ja)
Other versions
JPH0610654A (en
Inventor
晃洋 松江
史宏 黒木
稔 山中
昌史 笠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Diesel Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diesel Kiki Co Ltd filed Critical Diesel Kiki Co Ltd
Priority to JP4191534A priority Critical patent/JP2987012B2/en
Publication of JPH0610654A publication Critical patent/JPH0610654A/en
Application granted granted Critical
Publication of JP2987012B2 publication Critical patent/JP2987012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/802Apparatus for specific applications for heating fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/03Heating of hydrocarbons

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車から排出
される排ガスを、加熱された触媒によって浄化する装置
に係り、特に触媒を加熱する電磁波吸収発熱体の電磁波
吸収量を検出して制御をおこなう装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for purifying exhaust gas discharged from an automobile, for example, by using a heated catalyst, and more particularly, to detecting and controlling the amount of electromagnetic wave absorption of an electromagnetic wave absorbing heating element for heating the catalyst. It relates to the device to perform.

【0002】[0002]

【従来の技術】自動車などから排出される排ガスの浄化
は、一般に、排ガスを触媒と接触させることにより、排
ガス中のHC、すす、CO、NOx 、などを酸化又は還
元させることによりおこなわれる。これらの酸化や還元
をおこなわせるために、触媒を約350℃〜400℃加
熱して十分に活性化させる必要がある。
2. Description of the Related Art Generally, purification of exhaust gas discharged from automobiles or the like is performed by contacting the exhaust gas with a catalyst to oxidize or reduce HC, soot, CO, NOx, and the like in the exhaust gas. In order to perform these oxidations and reductions, it is necessary to heat the catalyst at about 350 ° C. to 400 ° C. to sufficiently activate it.

【0003】触媒の加熱には排ガスの熱を利用するのが
一般的である。しかし、これだと触媒が上記の温度範囲
に達するのは、数分程度の時間が必要である。そのため
に、例えば自動車の冷間始動時においては、加熱が不十
分な状態が続き、その間、触媒が十分に働かず、排ガス
中の前記NOx などの有害成分がそのまま排出されてし
まうという状態があった。
In general, the heat of the exhaust gas is used for heating the catalyst. However, in this case, it takes several minutes for the catalyst to reach the above temperature range. Therefore, for example, at the time of a cold start of an automobile, there is a state where heating is insufficiently continued, during which the catalyst does not work sufficiently, and the harmful components such as NOx in the exhaust gas are directly discharged. Was.

【0004】このような状態を避けるため、例えば自動
車の冷間始動時には触媒を電熱線によって加熱し、排ガ
スの熱に頼らずに積極的に上記温度範囲に達するように
したものが提案されている(特開平03−31510
号)。しかし、電熱線による加熱は、均一加熱が難しく
また加熱時間もかかり過ぎるものであった。
[0004] In order to avoid such a state, for example, a catalyst has been proposed in which a catalyst is heated by a heating wire at the time of a cold start of an automobile so as to positively reach the above temperature range without relying on heat of exhaust gas. (Japanese Patent Application Laid-Open No. 03-31510)
issue). However, heating by a heating wire is difficult to perform uniform heating and takes too long a heating time.

【0005】そこで、マイクロ波加熱装置を用いて、均
一且つ急速な加熱を可能にすることが考えられる。これ
によれば、触媒が前記温度範囲に達するまでの時間、す
なわち活性温度の範囲に達するまでの時間が短縮され、
冷間始動時の排ガスに含まれる有害成分の低減が可能と
なる。
Therefore, it is conceivable to use a microwave heating device to enable uniform and rapid heating. According to this, the time required for the catalyst to reach the temperature range, that is, the time required to reach the activation temperature range is reduced,
It is possible to reduce harmful components contained in exhaust gas during cold start.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、触媒を
マイクロ波加熱装置で加熱すると、活性温度に達するま
での時間が短いために、今度は温度制御が難しく、過加
熱により、マイクロ波吸収発熱体(以下、発熱体とい
う)にクラック(亀裂)やメルディング(溶媒)などに
よる劣化が起こる可能性がある。
However, when the catalyst is heated by the microwave heating device, the time required to reach the activation temperature is short, so that the temperature control is difficult this time, and the microwave absorption heating element ( There is a possibility that deterioration due to cracks (cracks), melting (solvent) or the like may occur in the heating element.

【0007】このような過加熱を防止するために、前記
発熱体の温度を検出する熱電対やサーミスタなどからな
る温度検出手段を設け、発熱体の温度が触媒の活性温度
に達したことを検出した場合には、加熱を終了させた
り、または、発熱体の温度がそれ以上に上昇しないよう
に制御することが考えられる。
In order to prevent such overheating, temperature detecting means such as a thermocouple or thermistor for detecting the temperature of the heating element is provided to detect that the temperature of the heating element has reached the activation temperature of the catalyst. In such a case, it is conceivable to terminate the heating or control the temperature of the heating element so as not to rise any more.

【0008】しかし、熱電対は高周波電界の影響により
正しい温度検出ができない。また、サーミスタは、それ
自体がマイクロ波を吸収して発熱するので、これにより
抵抗値変化が生じ、従って、温度検出の応答性が、マイ
クロ波加熱による発熱体の急速な温度上昇に対して十分
でなく、温度検出が遅れ、発熱体の温度を正しく検出し
にくくなる。
However, a thermocouple cannot detect a correct temperature due to the influence of a high-frequency electric field. Also, the thermistor itself absorbs microwaves and generates heat, which causes a change in the resistance value. Therefore, the responsiveness of temperature detection is not sufficient for a rapid temperature rise of the heating element due to microwave heating. Rather, the temperature detection is delayed, making it difficult to correctly detect the temperature of the heating element.

【0009】本発明は、以上の熱電対やサーミスタの欠
点を除き、電磁波吸収発熱体の温度をより正確に検出し
て、電磁波加熱装置の制御を確実におこなうことのでき
る排ガス浄化装置を提供することを目的とする。
The present invention provides an exhaust gas purifying apparatus capable of more accurately detecting the temperature of an electromagnetic wave absorbing and heating element and reliably controlling an electromagnetic wave heating apparatus, excluding the above-mentioned drawbacks of the thermocouple and thermistor. The purpose is to:

【0010】[0010]

【課題を解決するための手段】以上の目的を達成するた
めに、本発明は、電磁波発振器からの電磁波を吸収して
発熱し、触媒の浄化性能を発揮させる温度にまで触媒を
加熱するための電磁波吸収発熱体を備える排ガス浄化装
置において、電磁波吸収発熱体の電磁波吸収量を検出す
るセンサを設け、このセンサの検出値に応じて、電磁波
発振器からの電磁波発振量を制御することを特徴とする
ものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for heating a catalyst to a temperature at which it absorbs electromagnetic waves from an electromagnetic wave oscillator, generates heat, and exerts the purification performance of the catalyst. In an exhaust gas purifying apparatus having an electromagnetic wave absorbing heating element, a sensor for detecting an electromagnetic wave absorption amount of the electromagnetic wave absorbing heating element is provided, and an electromagnetic wave oscillation amount from an electromagnetic wave oscillator is controlled according to a detection value of the sensor. Things.

【0011】ただし、センサとしては、電磁波発振器の
発振量を検出する発振量検出センサと、電磁波吸収発熱
体を透過する透過量を検出する透過量検出センサとから
なるセンサや、電磁波発振器の発振量を検出する発振量
検出センサと、電磁波吸収発熱体で反射する反射量を検
出する反射量検出センサとからなるセンサや、電磁波吸
収発熱体の下流側の排ガス中に含まれる有害成分を検出
する有害成分検出センサなどが考えられ、これらセンサ
の検出値により電磁波吸収発熱体の電磁波吸収量を求め
ることを特徴とするものである。
However, the sensors include an oscillation amount detection sensor for detecting the oscillation amount of the electromagnetic wave oscillator and a transmission amount detection sensor for detecting the transmission amount transmitted through the electromagnetic wave absorbing heating element, and the oscillation amount of the electromagnetic wave oscillator. detecting the amount of oscillation detection sensor for detecting, sensor and comprising a reflection amount detecting sensor for detecting the amount of reflection is reflected by the electromagnetic wave absorbing heating element, the harmful substances contained in exhaust gas downstream side of the electromagnetic wave absorbing heating element A harmful component detection sensor or the like is conceivable, and the amount of electromagnetic wave absorption of the electromagnetic wave absorbing heating element is obtained from the detection values of these sensors.

【0012】[0012]

【作用】電磁波吸収発熱体からの電磁波の透過量または
反射量は、電磁波吸収発熱体の温度と所定の関係(図
2)を有し、下流の排ガス温度は、電磁波吸収発熱体の
温度にいわば直接に関係し、下流側の排ガス中に含まれ
る有害成分は、電磁波吸収発熱体の温度にいわば間接的
な関係(図11)があり、従来の熱電対やサーミスタに
頼らずに、電磁波吸収発熱体の温度を推定して検出し、
電磁波発振器からの発振量を制御することができる。
The amount of transmission or reflection of electromagnetic waves from the electromagnetic wave absorbing and heating element has a predetermined relationship with the temperature of the electromagnetic wave absorbing and heating element (FIG. 2), and the temperature of the exhaust gas downstream is the temperature of the electromagnetic wave absorbing and heating element. The harmful components that are directly related and contained in the exhaust gas on the downstream side have an indirect relationship with the temperature of the electromagnetic wave absorbing heating element (FIG. 11). Estimate and detect body temperature,
The oscillation amount from the electromagnetic wave oscillator can be controlled.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1〜図13にお
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.

【0014】まず第1の実施例を図1〜図5において説
明する。
First, a first embodiment will be described with reference to FIGS.

【0015】図1に示すように、自動車の排気管1に設
けられる排ガス浄化装置3は、ハニカム構造の電磁波吸
収発熱体5(単に発熱体という)を有し、電磁波(ここ
ではマイクロ波という)を吸収して発熱する。この発熱
により触媒を加熱する。この触媒(図示せず)は発熱体
5の下流に置かれるか、あるいは発熱体5の内部に組み
込まれる。
As shown in FIG. 1, an exhaust gas purifying apparatus 3 provided in an exhaust pipe 1 of an automobile has an electromagnetic wave absorbing and heating element 5 (hereinafter simply referred to as a heating element) having a honeycomb structure, and an electromagnetic wave (hereinafter referred to as a microwave). Absorb and generate heat. The heat is used to heat the catalyst. This catalyst (not shown) is placed downstream of the heating element 5 or incorporated inside the heating element 5.

【0016】マイクロ波は電磁波発振器7であるマグネ
トロンによって発生し、電磁波導波管9を通って、前記
発熱体5に照射される。電磁波導波管9には発振量検出
センサ11(パワーモニタなどからなる)が設けられ、
電磁波の発熱体5への照射量(電磁波入力量)を検出す
る。
The microwave is generated by a magnetron, which is an electromagnetic wave oscillator 7, and is applied to the heating element 5 through an electromagnetic wave guide 9. The electromagnetic wave waveguide 9 is provided with an oscillation amount detection sensor 11 (comprising a power monitor or the like),
The irradiation amount of the electromagnetic wave to the heating element 5 (the input amount of the electromagnetic wave) is detected.

【0017】同様に電磁波導波管9に対し発熱体5を挟
んで反対側に透過量検出センサ13が設けられ、電磁波
の透過量を検出する。また、電磁波発振器7等から成る
電磁波加熱器15の上流側には通常の温度センサ17が
設けられている。これらのマイクロ波や温度の検出信号
はコントローラ19に伝えられ、このコントローラ19
は、電磁波発振器7の発振出力を可変に制御する。
Similarly, a transmission amount detection sensor 13 is provided on the opposite side of the electromagnetic wave guide 9 with the heating element 5 interposed therebetween, and detects the transmission amount of the electromagnetic wave. An ordinary temperature sensor 17 is provided upstream of the electromagnetic wave heater 15 including the electromagnetic wave oscillator 7 and the like. These microwave and temperature detection signals are transmitted to the controller 19, and the controller 19
Controls the oscillation output of the electromagnetic wave oscillator 7 variably.

【0018】図2に示すように、電磁波透過量は発熱体
5の温度に対し、所定の関係を有する。すなわち発熱体
5の温度が上昇するにつれて、電磁波透過量が減少す
る。このことは換言すれば、図3に示すように、電磁波
吸収量が大きくなれば、発熱体5の温度が上昇している
ことを表わす。すなわち電磁波吸収量をe、発熱体5に
対し照射される電磁波入力量をe1 、電磁波透過量をe
2 とすると、 e=e1 −e2 となる。また、電磁波入力量e1 と電磁波吸収量eとは
ほぼ比例関係にあり、ある一定の温度に対して電磁波入
力量e1 を変化させても、電磁波入力量e1 と電磁波吸
収量eとの比e/e1 は一定である。したがってこのe
/e1 を検出すれば発熱体5の温度を正確に推定するこ
とができ、温度を検出したことになる。
As shown in FIG. 2, the amount of transmitted electromagnetic waves has a predetermined relationship with the temperature of the heating element 5. That is, as the temperature of the heating element 5 increases, the amount of transmitted electromagnetic waves decreases. In other words, as shown in FIG. 3, the larger the electromagnetic wave absorption amount, the higher the temperature of the heating element 5 is. That is, the electromagnetic wave absorption amount is e, the electromagnetic wave input amount applied to the heating element 5 is e 1 , and the electromagnetic wave transmission amount is e.
When 2, the e = e 1 -e 2. Further, the electromagnetic wave input amount e 1 and the electromagnetic wave absorption amount e are substantially proportional to each other, and even if the electromagnetic wave input amount e 1 is changed with respect to a certain temperature, the electromagnetic wave input amount e 1 and the electromagnetic wave absorption amount e are different. The ratio e / e 1 is constant. Therefore this e
If / e 1 is detected, the temperature of the heating element 5 can be accurately estimated, and the temperature is detected.

【0019】そこで、図4に示すように、このe/e1
を所定の範囲すなわち、 E2 ≦e/e1 ≦E1 となるように電磁波加熱器15の制御をおこなえば、発
熱体5の温度Tを所定の範囲すなわち TL ≦T≦TU に制御することができる。
Then, as shown in FIG. 4, this e / e 1
Range of predetermined words, by performing the control of the electromagnetic wave heating device 15 such that E 2 ≦ e / e 1 ≦ E 1, controls the temperature T of the heating element 5 to a predetermined range i.e. T L ≦ T ≦ T U can do.

【0020】なお、上流側の排ガス温度t1 が十分に高
まれば、すなわち、TL よりも大きくなれば、発熱体5
による触媒の加熱は不要になるので、加熱を終了するこ
とができる。
If the exhaust gas temperature t 1 on the upstream side becomes sufficiently high, that is, if it exceeds T L , the heating element 5
Since the heating of the catalyst by the above becomes unnecessary, the heating can be terminated.

【0021】以上の図4に基づく電磁波加熱器15の制
御のフローを図5に示す。
FIG. 5 shows a control flow of the electromagnetic wave heater 15 based on FIG.

【0022】すなわち、エンジンを始動させるため例え
ばキーを鍵穴に差し込む(S1)と、電磁波加熱器15
の電磁波発振器7の発振出力がHiあるいは強(S2)
となり、電磁波が発熱体5に照射される。そして、検出
された電磁波入力量e1 と電磁波透過量e2 とから(吸
収量/入力量)=e/e1 が算出され、このe/e1
1 よりも大きければ(S3)、発熱体5の温度が十分
に大きくなったことを示すので(図2参照)、電磁波発
振器の発振出力をLowあるいは弱にする(S4)。そ
うでなければ電磁波の照射をHiに保つ(S5)。
That is, for example, when a key is inserted into a keyhole to start the engine (S1), the electromagnetic wave heater 15
The oscillation output of the electromagnetic wave oscillator 7 is Hi or strong (S2).
And the heating element 5 is irradiated with an electromagnetic wave. Then, (absorption amount / input amount) = e / e 1 is calculated from the detected electromagnetic wave input amount e 1 and electromagnetic wave transmission amount e 2, and if this e / e 1 is larger than E 1 (S 3), Since it indicates that the temperature of the heating element 5 has become sufficiently high (see FIG. 2), the oscillation output of the electromagnetic wave oscillator is set to Low or weak (S4). If not, the irradiation of the electromagnetic wave is kept Hi (S5).

【0023】電磁波発振器をLow(あるいは弱)にし
た後、前記e/e1 がE2 よりも小さければ(S6)、
再び発熱体5の温度が小さくなったことを表わすので
(図3参照)、再び電磁波発振器7をHiにする。そう
でなければ電磁波の照射をLowに保つ。この時、上流
側の排ガス温度t1 がTL より大きければ(S7)、排
ガス自体の温度が大きくなっているので、もはや電磁波
発振器7はONにする必要がなく、加熱は終了する。
After setting the electromagnetic wave oscillator to Low (or weak), if e / e 1 is smaller than E 2 (S6),
Since the temperature of the heating element 5 has decreased again (see FIG. 3), the electromagnetic wave oscillator 7 is set to Hi again. Otherwise, the irradiation of the electromagnetic wave is kept low. At this time, if the exhaust gas temperature t 1 on the upstream side is higher than TL (S7), the temperature of the exhaust gas itself has increased, so that it is no longer necessary to turn on the electromagnetic wave oscillator 7, and the heating ends.

【0024】以上の実施例によれば、電磁波入力量と電
磁波透過量とから(吸収量/入力量)=e/e1 を算出
し、これによりいわば発熱体5(電磁波発熱体)の温度
を推定して検出し、このe/e1 が所定範囲になるよう
に制御をおこなうことで温度が所定範囲内になるようコ
ントロールできる。従って、従来のように、高周波電界
の影響により、正しい温度検出ができない熱電対、ある
いは応答性が悪いサーミスタを用いずに発熱体5の温度
を検出し制御をおこなえることになる。
According to the above embodiment, (absorption amount / input amount) = e / e 1 is calculated from the electromagnetic wave input amount and the electromagnetic wave transmission amount, whereby the temperature of the heating element 5 (electromagnetic wave heating element) is calculated. Estimation and detection are performed, and control is performed such that e / e 1 falls within a predetermined range, so that the temperature can be controlled to fall within a predetermined range. Therefore, as in the related art, the temperature of the heating element 5 can be detected and controlled without using a thermocouple that cannot accurately detect the temperature due to the influence of the high-frequency electric field or a thermistor with poor response.

【0025】従って、より正しく検出された温度を基に
制御がおこなえ、過加熱を原因とする発熱体5のクラッ
クやメルディングなどを防止できる。
Therefore, the control can be performed based on the more correctly detected temperature, and cracking or melting of the heating element 5 due to overheating can be prevented.

【0026】なお、電磁波加熱器15の制御(図5参
照)に、電磁波入力量e1 と透過量e2 より算出した電
磁波吸収量eを用いることで、電磁波発振器7が経年劣
化により出力が低下した場合であっても、正確に発熱体
5の温度を検出できる。
By using the electromagnetic wave absorption amount e calculated from the electromagnetic wave input amount e 1 and the transmission amount e 2 for controlling the electromagnetic wave heater 15 (see FIG. 5), the output of the electromagnetic wave oscillator 7 decreases due to aging deterioration. Even in this case, the temperature of the heating element 5 can be accurately detected.

【0027】本実施例においては電磁波透過量によって
発熱体5の温度を検出するものであったが、図6に示す
ように、他の実施例においては電磁波反射量によって温
度を検出できる。これによっても、図2に示す電磁波透
過量と同様に、電磁波反射量が小さくなれば発熱体5の
温度が大きくなるという関係があるので、この電磁波反
射量を検出することで、発熱体5の温度を推定し検出で
きる。
In this embodiment, the temperature of the heating element 5 is detected based on the amount of transmitted electromagnetic waves. However, as shown in FIG. 6, in other embodiments, the temperature can be detected based on the amount of reflected electromagnetic waves. Also in this case, as in the case of the electromagnetic wave transmission amount shown in FIG. 2, there is a relationship that the temperature of the heating element 5 increases as the electromagnetic wave reflection amount decreases. Temperature can be estimated and detected.

【0028】すなわち、図6に示すように、発熱体5の
下流側に電磁波を反射する反射金鋼21を設置し、電磁
波導波管9の側あるいは電磁波導波管9内に反射量を検
出する反射量検出センサ23を設ける。また、電磁波導
波管9内には、電磁波入力量を検出する入力量検出セン
サ11も設ける。この電磁波入力量e1 と電磁波反射量
3 から発熱体5の温度を推定して検出すれば、上記実
施例と同様の効果を得ることができる。
That is, as shown in FIG. 6, a reflective metal steel 21 for reflecting electromagnetic waves is installed downstream of the heating element 5 and the amount of reflection is detected on the electromagnetic wave waveguide 9 side or in the electromagnetic wave waveguide 9. A reflection amount detection sensor 23 is provided. Further, in the electromagnetic wave waveguide 9, an input amount detection sensor 11 for detecting an electromagnetic wave input amount is also provided. By detecting and estimating the temperature of the heating element 5 from the electromagnetic wave input amount e 1 and an electromagnetic wave reflection amount e 3, it is possible to obtain the same effects as described above.

【0029】以上の実施例においては、自動車の始動後
運転中は通常制御をおこなうものとしたが(図5)、他
の実施例においては、自動車の始動時にのみ制御をおこ
なうものとしてもよい。すなわち発熱体5を加熱する必
要は冷間始動時の一定時間にのみ生じるものであるの
で、始動後一定時間経過した時は一律に加熱を終了する
ことも可能である。
In the above embodiment, the normal control is performed during the operation after the start of the vehicle (FIG. 5). However, in other embodiments, the control may be performed only at the start of the vehicle. That is, since the heating of the heating element 5 needs to be performed only during a certain period of time during the cold start, it is possible to end the heating uniformly after a certain period of time has elapsed after the start.

【0030】次に、本発明の第2の実施例を図7〜図9
において説明する。なお、図7において図1と同一の部
分については同一の番号を符す。
Next, a second embodiment of the present invention will be described with reference to FIGS.
Will be described. In FIG. 7, the same parts as those in FIG. 1 are denoted by the same reference numerals.

【0031】本実施例は発熱体5の温度を直接に検出す
るのではなく、排ガスの温度を検出することで発熱体5
の温度を推定し制御をおこなうものである。
In this embodiment, the temperature of the heating element 5 is not detected directly but by detecting the temperature of the exhaust gas.
The temperature is estimated and controlled.

【0032】すなわち、図7に示すように、電磁波加熱
器15の上流側と下流側に排ガス温度を検出するための
温度センサ25,27を設ける。これらの温度センサ2
5,27は、電磁波を照射されず高周波電界の影響を受
けないので、熱電対などの通常のものが採用できる。
That is, as shown in FIG. 7, temperature sensors 25 and 27 for detecting the exhaust gas temperature are provided upstream and downstream of the electromagnetic wave heater 15. These temperature sensors 2
5, 27 are not irradiated with an electromagnetic wave and are not affected by a high-frequency electric field, so that a normal thermocouple or the like can be used.

【0033】そして、下流側の排ガスの温度は電磁波を
吸収し発熱した発熱体5の温度とほぼ等しいと考えられ
るので、下流側の排ガスの温度t2 を一定範囲、すなわ
ちTL ≦t2 ≦TU とすることで、発熱体5の温度を直
接に検出しなくても、より正確な制御をおこなうことが
できると考えられる(図8)。また、上流側の排ガスの
温度t1 自体がTL よりも大きくなれば、排ガス自体の
温度が十分に大きくなったものとして加熱を終了する。
なお、この例においては、電磁波発振器7をON・OF
F制御する。
Since the temperature of the exhaust gas on the downstream side is considered to be substantially equal to the temperature of the heating element 5 which has absorbed electromagnetic waves and generated heat, the temperature t 2 of the exhaust gas on the downstream side is kept within a certain range, that is, T L ≦ t 2 ≦ By setting T U , it is considered that more accurate control can be performed without directly detecting the temperature of the heating element 5 (FIG. 8). If the temperature t 1 of the exhaust gas on the upstream side itself becomes higher than TL , the heating is terminated assuming that the temperature of the exhaust gas itself has become sufficiently high.
In this example, the electromagnetic wave oscillator 7 is turned ON / OF.
Perform F control.

【0034】この図8の制御を図9のフロー図に示す。The control of FIG. 8 is shown in the flowchart of FIG.

【0035】すなわちエンジン始動(S11)後に電磁
波発振器7をONとし(S12)、下流側の排ガス温度
2 がTU よりも大きく一定範囲を超えている場合には
(S13)、電磁波発振器7をOFFとする(S1
4)。そして、t2 が温度の一定範囲の下限TL よりも
小さくなり加熱が十分でなくなった場合には(S1
5)、S12に移行して再び電磁波発振器7をONにす
る。
That is, after the engine is started (S11), the electromagnetic wave oscillator 7 is turned on (S12). If the downstream exhaust gas temperature t 2 is larger than T U and exceeds a certain range (S13), the electromagnetic wave oscillator 7 is turned off. OFF (S1
4). In a case where t 2 is smaller heat than the lower limit T L a range of temperatures is no longer sufficient (S1
5) The process proceeds to S12, where the electromagnetic wave oscillator 7 is turned on again.

【0036】そして、下流側の排ガス温度t2 が温度の
一定範囲の上限TU よりも小さく(S13)、しかも下
限TL よりも小さい(S16)場合には加熱を続行す
る。また下限TL より大きいが(S16)、上流側の排
ガス温度T1 は下限TL より小さい場合(S17)に
は、まだエンジンが十分に暖まっていないと考えられ、
加熱の必要があるので、加熱を続行する。
If the downstream exhaust gas temperature t 2 is lower than the upper limit T U of the certain temperature range (S 13) and lower than the lower limit T L (S 16), the heating is continued. Also, when the exhaust gas temperature T 1 on the upstream side is smaller than the lower limit TL (S17), although it is larger than the lower limit TL (S16), it is considered that the engine is not sufficiently warmed up yet,
Since heating is required, heating is continued.

【0037】しかし上流側の温度t1 が下限TL よりも
大きくなれば(S17)、エンジンが暖まったと考えら
れるので電磁波発振器7をOFFにする。
However, if the temperature t 1 on the upstream side becomes larger than the lower limit T L (S17), it is considered that the engine has warmed up, and the electromagnetic wave oscillator 7 is turned off.

【0038】また、電磁波発振器7をOFFにした状態
で、下流側の排ガス温度t2 が下限TL よりも大きい場
合には(S15)、電磁波の発熱体5への照射はおこな
われていないものの、発熱体5の温度は十分に高い状態
を維持していると考えられるので(S18)、電磁波発
振器はOFFの状態を続ける。
If the downstream exhaust gas temperature t 2 is larger than the lower limit TL in a state where the electromagnetic wave oscillator 7 is turned off (S15), the electromagnetic wave is not irradiated to the heating element 5 although it is not performed. Since it is considered that the temperature of the heating element 5 is maintained at a sufficiently high state (S18), the electromagnetic wave oscillator continues to be in the OFF state.

【0039】以上の実施例によれば、排ガスの下流側及
び上流側の温度を温度センサ25,27(例えば熱電
対)を用いて検出することで、始動時における発熱体5
の温度を所定の範囲内に納めることができ、過加熱よる
発熱体5のクラックやメルディングなどを防止できる。
According to the above embodiment, the temperature of the exhaust gas on the downstream side and the upstream side of the exhaust gas is detected using the temperature sensors 25 and 27 (for example, thermocouples).
Can be kept within a predetermined range, and cracking or melting of the heating element 5 due to overheating can be prevented.

【0040】次に、本発明の第3実施例を図10〜図1
3において説明する。なお図10において図1、図7と
同一の部分については同一の番号を符す。
Next, a third embodiment of the present invention will be described with reference to FIGS.
3 will be described. In FIG. 10, the same parts as those in FIGS. 1 and 7 are denoted by the same reference numerals.

【0041】発熱体5の温度は、図11に示すように、
排ガス中の有害成分に対し一定の関係を有し、温度が高
ければ高いほど有害成分の浄化率が大きくなるという関
係を有している。従って、有害成分を検出すれば発熱体
5の温度を推定して検出することが可能である。
The temperature of the heating element 5 is set as shown in FIG.
It has a certain relationship with harmful components in exhaust gas, and has a relationship that the higher the temperature, the higher the purification rate of harmful components. Therefore, if a harmful component is detected, the temperature of the heating element 5 can be estimated and detected.

【0042】従って、図10に示すように、電磁波加熱
器15の下流側に有害成分を検出する有害成分検出セン
サ31を設ける。この有害成分検出センサ31は、CO
を検出するセンサ、NOx を検出するセンサ、あるいは
HCを検出するセンサのいずれか1つあるいは複数を組
み合わせたものとすることができる。電磁波加熱器15
の上流側には温度センサ25が設けられ、排ガスの温度
が十分に大きくなった場合には加熱を終了する。
Therefore, as shown in FIG. 10, a harmful component detection sensor 31 for detecting harmful components is provided downstream of the electromagnetic wave heater 15. This harmful component detection sensor 31 is CO
, A sensor for detecting NOx, or a sensor for detecting HC. Electromagnetic wave heater 15
A temperature sensor 25 is provided on the upstream side, and when the temperature of the exhaust gas becomes sufficiently high, the heating is terminated.

【0043】図12を参照して、自動車の始動後に発熱
体5の温度Tが上昇すると、触媒が働いて有害成分検出
センサ31の有害成分を検出する検出値Mが急速に小さ
くなる。このMが一定の値M1 を下回ると、発熱体の温
度Tが十分に大きくなったものと推定できるので、一
旦、電磁波発振器7をOFFにする。すると発熱体5の
温度Tは徐々に小さくなり、有害成分の検出値Mは再び
1 に達するので、電磁波発振器7をONにする。
Referring to FIG. 12, when the temperature T of the heating element 5 rises after the start of the vehicle, the catalyst operates to rapidly reduce the detection value M of the harmful component detection sensor 31 for detecting harmful components. When the M is below a certain value M 1, it can be estimated that that the temperature T of the heating element is sufficiently large, once the electromagnetic wave oscillator 7 to OFF. Then the temperature T of the heating element 5 is gradually reduced, the detection value M of the harmful components because again reaches M 1, the electromagnetic wave oscillator 7 to ON.

【0044】このONにしている時間tは所定の長さに
する。この所定の長さはあまり短いと温度Tはほとんど
変化がなく、あまり長過ぎると温度Tが大きくなり過ぎ
る。従って、時間tは温度Tを所定の大きさにできる長
さに定められる。
The ON time t is set to a predetermined length. If the predetermined length is too short, the temperature T hardly changes, and if it is too long, the temperature T becomes too high. Therefore, the time t is set to a length that can make the temperature T a predetermined value.

【0045】この時間tが過ぎると、再び電磁波はOF
Fになり温度Tは小さくなり検出値Mが大きくなり、再
び電磁波がONになる。このように電磁波のON・OF
Fが繰り返されて、温度Tが所定範囲内すなわち触媒活
性温度領域であってクラックやメルディングの生じない
範囲に維持される。この維持がおこなわれているうちに
自動車のエンジンが十分に暖まり電磁波加熱器15によ
る加熱の必要がなくなると、加熱を終了する。
After this time t has passed, the electromagnetic wave again becomes OF
At F, the temperature T decreases, the detected value M increases, and the electromagnetic wave is turned on again. Thus, electromagnetic wave ON / OF
F is repeated, and the temperature T is maintained within a predetermined range, that is, a catalyst activation temperature range, in which cracks and melting do not occur. If the engine of the automobile is sufficiently warmed up during this maintenance and the heating by the electromagnetic wave heater 15 becomes unnecessary, the heating is terminated.

【0046】以上の図12による制御を実際にフロー図
13に示す。
FIG. 13 is a flowchart showing the actual control according to FIG.

【0047】すなわち、エンジンが始動され(S2
1)、電磁波発振器7がONとなり(S22)、発熱体
5の温度Tが大きくなって触媒が働き、排ガス中の有害
成分の検出値Mが所定の値M1 よりも小さくなると(S
23)、温度Tが十分に大きくなったものと推定され電
磁波発振器7はOFFとなる(S24)。なおMがM1
よりも大きければ引き続き電磁波発振器7はONの状態
を維持する(S25)。
That is, the engine is started (S2
1), the electromagnetic wave oscillator 7 is turned ON (S22), the catalyst acts with the temperature T of the heating element 5 is increased, the detection value M of harmful components in the exhaust gas is smaller than a predetermined value M 1 (S
23), it is estimated that the temperature T has become sufficiently large, and the electromagnetic wave oscillator 7 is turned off (S24). Note that M is M 1
If it is larger, the electromagnetic wave oscillator 7 continues to be in the ON state (S25).

【0048】電磁波発振器7がOFFとなった後、検出
値MがM1 よりも大きいか否かが監視され(S26)、
大きくなった場合には温度Tが小さくなったものと推定
されるので、一定の時間tだけ再び電磁波発振器7がO
Nとなり、触媒の加熱がおこなわれる(S27)。Mが
1 よりも小さければ触媒5は十分に働いていると考え
られる。そして、上流側の排ガス温度t1 が、触媒活性
温度領域の下限T1 よりも大きければ(S28)、エン
ジンが暖まり排ガス自体の温度が十分に大きくなったも
のとして加熱を終了する(S29)。t1 がT1 よりも
小さければ(S28)、監視(S26)を続ける。
[0048] After the electromagnetic wave oscillator 7 is turned OFF, whether or not the detected value M is larger than M 1 is monitored (S26),
When the temperature increases, it is presumed that the temperature T has decreased.
N, and the catalyst is heated (S27). M is considered to be the catalyst 5 is sufficiently worked smaller than M 1. Then, if the exhaust gas temperature t 1 on the upstream side is higher than the lower limit T 1 of the catalyst activation temperature range (S28), the engine is warmed up and the heating is terminated assuming that the temperature of the exhaust gas itself has become sufficiently high (S29). If t 1 is smaller than T 1 (S28), monitoring (S26) is continued.

【0049】以上の実施例によれば、排ガス浄化装置3
の上流側に、通常の温度センサ25(例えば熱電対)を
設けると共に、下流側に、排ガス中の有害成分を検出す
る有害成分検出センサ31を設けたので、発熱体5の温
度を直接に検出せずに発熱体5の温度Tを触媒活性温度
領域に維持するよう加熱がおこなえる。
According to the above embodiment, the exhaust gas purifying apparatus 3
A normal temperature sensor 25 (for example, a thermocouple) is provided on the upstream side and a harmful component detection sensor 31 for detecting harmful components in exhaust gas is provided on the downstream side, so that the temperature of the heating element 5 is directly detected. Heating can be performed without maintaining the temperature T of the heating element 5 in the catalyst activation temperature range.

【0050】排ガス浄化装置3すなわち電磁波加熱器1
5の上流側に温度センサ25を設けることで、温度セン
サ25が高周波電界の影響を受けずにすむ。また、有害
成分検出センサ31の検出値Mが上限値M1 を超えない
ようにし、且つ、電磁波発振器7を一定時間tの間ON
にし、その後OFFにする断続運転により、発熱体5の
温度Tを所定の温度領域に納め、温度Tがあまり高くな
り過ぎて、発熱体5にクラックやメルディングなどが生
じるのを防止できる。
Exhaust gas purifying device 3, ie, electromagnetic wave heater 1
By providing the temperature sensor 25 on the upstream side of 5, the temperature sensor 25 does not need to be affected by the high-frequency electric field. Also, harmful components detected value M of the detecting sensor 31 does not exceed the upper limit value M 1, and, ON between the electromagnetic wave oscillator 7 fixed time t
Then, the temperature T of the heating element 5 is kept in a predetermined temperature range by the intermittent operation of turning OFF, and it is possible to prevent the temperature T from becoming too high and causing the heating element 5 to crack or melt.

【0051】[0051]

【発明の効果】以上説明したように、本発明の排ガス浄
化装置によれば、従来のような高周波電界の影響を受け
る熱電対や応答性が悪いサーミスタに頼らずに、電磁波
吸収発熱体の温度を検出できる。すなわち、電磁波吸収
発熱体からの電磁波の透過量または反射量によって、あ
るいは下流側の排ガス温度によって、さらには下流側の
排ガス中に含まれる有害成分によって電磁波吸収発熱体
の温度を検出できる。従って、より正確に温度を検出
し、温度が所定範囲になるよう電磁波加熱器を制御でき
るので、過加熱によるクラックやメルディングなどの劣
化を防止し、排ガス中の有害成分を有効に浄化できる。
As described above, according to the exhaust gas purifying apparatus of the present invention, the temperature of the electromagnetic wave absorbing heating element can be reduced without relying on a thermocouple affected by a high frequency electric field or a thermistor having poor response as in the prior art. Can be detected. That is, the temperature of the electromagnetic wave absorbing heating element can be detected by the amount of transmission or reflection of the electromagnetic wave from the electromagnetic wave absorbing heating element, the temperature of the exhaust gas on the downstream side, and the harmful component contained in the exhaust gas on the downstream side. Therefore, the temperature can be detected more accurately, and the electromagnetic wave heater can be controlled so that the temperature falls within a predetermined range. Therefore, deterioration such as cracks and melting due to overheating can be prevented, and harmful components in the exhaust gas can be effectively purified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る装置のブロック図であ
る。
FIG. 1 is a block diagram of an apparatus according to an embodiment of the present invention.

【図2】電磁波反射量に透過量と発熱体温度の関係を示
す図である。
FIG. 2 is a diagram showing a relationship between an electromagnetic wave reflection amount, a transmission amount, and a heating element temperature.

【図3】電磁波吸収量と発熱体温度との関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between an electromagnetic wave absorption amount and a heating element temperature.

【図4】図1の制御を説明するグラフを示した図であ
る。
FIG. 4 is a diagram illustrating a graph for explaining the control of FIG. 1;

【図5】図4の制御を具体的に示すフローチャートであ
る。
FIG. 5 is a flowchart specifically showing the control of FIG. 4;

【図6】他の実施例による図1相当図である。FIG. 6 is a diagram corresponding to FIG. 1 according to another embodiment.

【図7】本発明の第2実施例に係る装置のブロック図で
ある。
FIG. 7 is a block diagram of an apparatus according to a second embodiment of the present invention.

【図8】図7の制御を示すグラフを示した図である。FIG. 8 is a diagram showing a graph illustrating the control of FIG. 7;

【図9】図8の制御を具体的に示すフローチャートであ
る。
FIG. 9 is a flowchart specifically showing the control of FIG. 8;

【図10】本発明の第3実施例に係る装置のブロック図
である。
FIG. 10 is a block diagram of an apparatus according to a third embodiment of the present invention.

【図11】有害成分浄化率と温度との関係を示す図であ
る。
FIG. 11 is a diagram showing a relationship between a harmful component purification rate and temperature.

【図12】図10の制御を説明するグラフを示した図で
ある。
FIG. 12 is a diagram illustrating a graph for explaining the control of FIG. 10;

【図13】図12の制御を具体的に示すフローチャート
である。
FIG. 13 is a flowchart specifically showing the control of FIG.

【符号の説明】[Explanation of symbols]

1 自動車の排気管 3 排ガス浄化装置 15 電磁波加熱器 5 電磁波吸収発熱体 7 電磁波発振器(マグネトロン) 9 電磁波動波管 11 発振量検出センサ 13 透過量検出センサ 21 電磁波反射金網 23 反射量検出センサ 25,27 温度センサ 31 有害成分検出センサ DESCRIPTION OF SYMBOLS 1 Exhaust pipe of automobile 3 Exhaust gas purifier 15 Electromagnetic wave heater 5 Electromagnetic wave absorption heating element 7 Electromagnetic wave oscillator (magnetron) 9 Electromagnetic wave wave tube 11 Oscillation amount detection sensor 13 Transmission amount detection sensor 21 Electromagnetic wave reflection wire net 23 Reflection amount detection sensor 25, 27 Temperature sensor 31 Hazardous component detection sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠谷 昌史 埼玉県東松山市箭弓町3丁目13番26号 株式会社ゼクセル 東松山工場内 (56)参考文献 特開 平4−353208(JP,A) 特開 平5−49939(JP,A) 特開 平5−202737(JP,A) (58)調査した分野(Int.Cl.6,DB名) F01N 3/20 B01D 53/94 F01N 3/24 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masafumi Kasaya 3-13-26, Yayumicho, Higashimatsuyama-shi, Saitama Pref. Hei 5-49939 (JP, A) JP-A Hei 5-202737 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F01N 3/20 B01D 53/94 F01N 3/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電磁波発振器からの電磁波を吸収して発
熱し、触媒の浄化性能を発揮させる温度にまで触媒を加
熱する電磁波吸収発熱体を備える排ガス浄化装置におい
て、前記電磁波吸収発熱体の電磁波吸収量を検出するセ
ンサであって、前記電磁波発振器の発振量を検出する発
振量検出センサと、前記電磁波吸収発熱体を透過する透
過量を検出する透過量検出センサとからなるセンサを設
け、両センサの検出値の差分により前記電磁波吸収発熱
体の電磁波吸収量を求め、このセンサの検出値に応じ
て、前記電磁波発振器からの電磁波発振量を制御するこ
とを特徴とする排ガス浄化装置。
1. An exhaust gas purifying apparatus comprising an electromagnetic wave absorbing and heating element that generates heat by absorbing electromagnetic waves from an electromagnetic wave oscillator and heats the catalyst to a temperature at which the catalyst exhibits purification performance. A sensor for detecting an oscillation amount of the electromagnetic wave oscillator.
A vibration amount detection sensor and a light transmitting member that transmits the electromagnetic wave absorbing heating element.
A sensor comprising a transmission amount detecting sensor for detecting an excessive amount provided, the electromagnetic wave absorbing heat by the difference of the detection values of both sensors
An exhaust gas purifying apparatus comprising: obtaining an electromagnetic wave absorption amount of a body; and controlling an electromagnetic wave oscillation amount from the electromagnetic wave oscillator according to a detection value of the sensor.
【請求項2】 電磁波発振器からの電磁波を吸収して発
熱し、触媒の浄化性能を発揮させる温度にまで触媒を加
熱する電磁波吸収発熱体を備える排ガス浄化装置におい
て、前記電磁波吸収発熱体の電磁波吸収量を検出するセ
ンサであって、前記電磁波発振器の発振量を検出する発
振量検出センサと、前記電磁波吸収発熱体で反射する反
射量を検出する反射量検出センサとからなるセンサを設
け、両センサの検出値の差分により前記電磁波吸収発熱
体の電磁波吸収量を求め、このセンサの検出値に応じ
て、前記電磁波発振器からの電磁波発振量を制御するこ
とを特徴とする排ガス浄化装置。
2. An electromagnetic wave from an electromagnetic wave oscillator is absorbed and emitted.
The catalyst is heated to a temperature at which it
Exhaust gas purifier equipped with a heating element that absorbs electromagnetic waves
To detect the amount of electromagnetic wave absorption of the electromagnetic wave absorbing heating element.
A detector for detecting an oscillation amount of the electromagnetic wave oscillator.
A vibration amount detection sensor and a reflection member reflected by the electromagnetic wave absorbing heating element.
A sensor consisting of a reflection amount detection sensor that detects
The electromagnetic wave absorption heat is generated by the difference between the detection values of the two sensors.
Calculate the amount of electromagnetic waves absorbed by the body, and
Controlling the amount of electromagnetic wave oscillation from the electromagnetic wave oscillator.
An exhaust gas purifying device characterized by the above .
【請求項3】 電磁波発振器からの電磁波を吸収して発
熱し、触媒の浄化性能を発揮させる温度にまで触媒を加
熱する電磁波吸収発熱体を備える排ガス浄化装置におい
て、前記電磁波吸収発熱体の電磁波吸収量を検出するセ
ンサであって、前記電磁波吸収発熱体の下流側の排ガス
中に含まれる有害成分を検出する有害成分検出センサか
らなるセンサを設け、このセンサの検出値により前記電
磁波吸収発熱体の電磁波吸収量を求め、このセンサの検
出値に応じて、前記電磁波発振器からの電磁波発振量を
制御することを特徴とする排ガス浄化装置。
3. An electromagnetic wave from an electromagnetic wave oscillator is absorbed and emitted.
The catalyst is heated to a temperature at which it
Exhaust gas purifier equipped with a heating element that absorbs electromagnetic waves
To detect the amount of electromagnetic wave absorption of the electromagnetic wave absorbing heating element.
Exhaust gas on the downstream side of the electromagnetic wave absorption heating element
Harmful component detection sensor that detects harmful components contained in air
A sensor consisting of
Determine the amount of electromagnetic wave absorption by the magnetic wave absorption heating element, and
In accordance with the output value, the electromagnetic wave oscillation amount from the electromagnetic wave oscillator is
An exhaust gas purifying device characterized by controlling .
JP4191534A 1992-06-25 1992-06-25 Exhaust gas purification equipment Expired - Lifetime JP2987012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4191534A JP2987012B2 (en) 1992-06-25 1992-06-25 Exhaust gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4191534A JP2987012B2 (en) 1992-06-25 1992-06-25 Exhaust gas purification equipment

Publications (2)

Publication Number Publication Date
JPH0610654A JPH0610654A (en) 1994-01-18
JP2987012B2 true JP2987012B2 (en) 1999-12-06

Family

ID=16276269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4191534A Expired - Lifetime JP2987012B2 (en) 1992-06-25 1992-06-25 Exhaust gas purification equipment

Country Status (1)

Country Link
JP (1) JP2987012B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4341380A1 (en) * 1993-12-04 1995-06-14 Degussa Process to speed up heating of catalyst beyond activated threshold that reduces energy required
EP3563635B1 (en) * 2016-12-29 2022-09-28 Whirlpool Corporation Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device
JP6669116B2 (en) 2017-03-28 2020-03-18 トヨタ自動車株式会社 Exhaust purification catalyst heating device
WO2021171856A1 (en) * 2020-02-25 2021-09-02 富士電機株式会社 Dust collector

Also Published As

Publication number Publication date
JPH0610654A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
EP3423684B1 (en) System for axial zoning of heating power
JP2983429B2 (en) Exhaust gas purification device for internal combustion engine
US5423180A (en) Filter regenerating apparatus and method for an internal combustion engine
JP3316137B2 (en) Engine exhaust purification device
CN109404100B (en) Exhaust purification device, exhaust purification control method and control system thereof
EP0356040A2 (en) Apparatus and method for removing particulate matter from the exhaust gases of an internal combustion engine
KR100268754B1 (en) Process for controlling the heating of an electrical heatable catalytic converter
JP2987012B2 (en) Exhaust gas purification equipment
KR101197819B1 (en) Method and device for operating a motor vehicle comprising an exhaust gas heating device
JP3479368B2 (en) Method and apparatus for reducing engine emissions
EP3688290B1 (en) Method for operating a catalyst arrangement of an internal combustion engine and catalyst arrangement
JPH10212928A (en) Filter recovering device
JP2923134B2 (en) Catalyst heating control device
JP2781308B2 (en) Electricity control device for electric heating catalyst
JP2987013B2 (en) Exhaust gas purification equipment
JP4147649B2 (en) Diesel engine exhaust gas purification system
JPH07222912A (en) Exhaust gas purifying device for vehicle
US20210317765A1 (en) Exhaust heating system for motor vehicles powered by an internal combustion engine
JP2834981B2 (en) Secondary air introduction device for exhaust gas purification
JPH0642339A (en) Electric heating catalyst controller
JPH04136410A (en) Catalytic device for processing exhaust gas
JP2001317345A (en) Exhaust emission control device for engine
JP3262905B2 (en) Engine exhaust purification device
JPH11142218A (en) Detection method of presence or absence of water
KR101558760B1 (en) Apparatus and method for diagnosing deterioration rate of selective catalytic reduction in vehicle