JP2986809B2 - Method for manufacturing hard steel wire rod with good wire drawing workability - Google Patents

Method for manufacturing hard steel wire rod with good wire drawing workability

Info

Publication number
JP2986809B2
JP2986809B2 JP1180594A JP18059489A JP2986809B2 JP 2986809 B2 JP2986809 B2 JP 2986809B2 JP 1180594 A JP1180594 A JP 1180594A JP 18059489 A JP18059489 A JP 18059489A JP 2986809 B2 JP2986809 B2 JP 2986809B2
Authority
JP
Japan
Prior art keywords
inclusions
wire
sio
hard steel
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1180594A
Other languages
Japanese (ja)
Other versions
JPH0347917A (en
Inventor
利夫 藤田
綽久 田畑
昭三郎 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16085994&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2986809(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1180594A priority Critical patent/JP2986809B2/en
Publication of JPH0347917A publication Critical patent/JPH0347917A/en
Application granted granted Critical
Publication of JP2986809B2 publication Critical patent/JP2986809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高速伸線加工および極細伸線加工などの
過酷な加工条件下でも優れた伸線加工性を有する硬鋼線
材の有利な製造方法に関し、とくにタイヤコード、ホー
スワイヤなど極細線として利用される高炭素鋼線材の製
造に適用して好適なものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is advantageous for the production of a hard steel wire having excellent drawability even under severe processing conditions such as high-speed wire drawing and ultrafine wire drawing. The method is particularly suitable for application to the production of high carbon steel wires used as ultrafine wires such as tire cords and hose wires.

(従来の技術) 従来、ゴム補強用線材として用いられるスチールコー
ドなどは、冷間伸線加工とパテンティング処理とを繰り
返し、おおよそ95%以上の加工度を付与して0.4mmφ以
下の極細線に加工し、とくに最終パテンティングにおい
てミクロ組織と強度とを調整して、所望の強度や延靭性
を確保したのち、これらを何本か撚り合わせて製造され
るのが一般的であった。
(Conventional technology) Conventionally, steel cords and the like used as rubber reinforcing wires are repeatedly subjected to cold drawing and patenting processes to give a workability of approximately 95% or more to form ultra-fine wires of 0.4 mmφ or less. In general, it is generally manufactured by processing and adjusting the microstructure and strength in final patenting to secure desired strength and ductility, and then twisting several of them.

ところで最近では、種々の分野において素材に対する
品質要求がますます厳しくなっていて、自動車タイヤの
分野においてもその軽量化の観点から素線の一層の高強
度化が指向されている。とくに伸線加工や撚り加工中に
おける断線回数が少ないことが強く要求されている。
By the way, recently, quality requirements for materials have become increasingly strict in various fields, and in the field of automobile tires, further strengthening of strands has been aimed at from the viewpoint of weight reduction. In particular, it is strongly required that the number of disconnections during wire drawing and twisting be small.

これら極細線の加工中に発生する断線の主原因として
は、鋼中における非金属介在物の存在が挙げられる。と
くにAl2O3,SiO2,ZrO2,TiO2,MgOなどのような硬くて可塑
性に乏しい単体の酸化物系介在物の存在は、切欠き感受
性を高め、断線の原因となることが知られている。
The main cause of disconnection occurring during the processing of these ultrafine wires is the presence of nonmetallic inclusions in the steel. In particular, it is known that the presence of hard, poorly plastic, simple oxide inclusions such as Al 2 O 3 , SiO 2 , ZrO 2 , TiO 2 , and MgO increases notch sensitivity and causes disconnection. Have been.

従って伸線加工性の優れた線材を製造するためには、
介在物の減少を図ると共に、不可避的に残留する介在物
の低融点化による軟質化が重要とされる。
Therefore, in order to produce a wire with excellent drawability,
It is important to reduce the number of inclusions and to soften the inclusions unavoidably remaining by lowering the melting point.

上記の事情に鑑み、清浄性を上げて介在物の軟質化を
図る方法として、特公昭57−22969号公報において、Al2
O3−SiO2−MnOの3元系の酸化物系介在物の組成制御法
が提案された。
In view of the above circumstances, as a method to reduce the softening inclusions by increasing the detergency, in JP-B-57-22969, Al 2
A method for controlling the composition of ternary oxide inclusions of O 3 —SiO 2 —MnO has been proposed.

しかしながら上記の3元系の場合に、その組成制御を
安定して行うことは極めて難しく、また組成制御だけで
は介在物の形態制御はできないため、必ずしも伸線加工
性の向上は期待できなかった。
However, in the case of the above-mentioned ternary system, it is extremely difficult to stably control the composition, and it is not possible to control the form of inclusions only by controlling the composition.

(発明が解決しようとする課題) この発明は、上記の問題を有利に解決するもので、非
金属介在物の形態を制御して、該介在物の軟質化を図る
と共に、圧延工程に工夫を加えることによって、伸線加
工性の一層の向上を可能ならしめた硬鋼線材の有利な製
造方法を提案することを目的とする。
(Problems to be Solved by the Invention) The present invention advantageously solves the above-mentioned problems, and controls the form of non-metallic inclusions so as to soften the inclusions and to devise a rolling process. It is an object of the present invention to propose an advantageous method of manufacturing a hard steel wire rod that can further improve the wire drawing workability.

(課題を解決するための手段) さて発明者らは、上記の課題に対する長年にわたる研
究の末に、酸化物系介在物の組成を特定の範囲に制御す
ることによって、その低融点化、軟質化を図ることがで
き、さらに適切な圧延条件と組み合わせることによって
伸線加工性の一層の向上を図り得ることを見出した。
(Means for Solving the Problems) The inventors of the present invention, after many years of research on the above-mentioned problems, controlled the composition of the oxide-based inclusions to a specific range to lower the melting point and soften the inclusions. It has been found that wire drawing workability can be further improved by combining with appropriate rolling conditions.

以下、その解明経緯について説明する。 Hereinafter, the details of the clarification will be described.

まず、スチールコード製造時に断線を引き起こす原因
について調査したところ、その原因はほとんどが10μm
以上の介在物で、しかも組成はAl2O3単体であることが
判明した。
First, when investigating the causes of disconnection during steel cord production, the causes were mostly 10 μm
It was found that the inclusions described above were composed of Al 2 O 3 alone.

表1に、SWRH 72A相当の硬鋼線材を0.175mmφまで加
工したときに断線した破面に認められる介在物の大きさ
を調査し、分類して示したが、同表に示したとおり、破
断原因となる有害介在物の大きさはほとんどが10μm以
上である。
Table 1 shows the size of inclusions on the broken surface when a hard steel wire equivalent to SWRH 72A was machined to 0.175 mmφ, and classified and shown. The size of the harmful inclusions that cause them is almost 10 μm or more.

そこで熱間圧延素材において、介在物の大きさを10μ
m以下に制御する方法について検討した。
Therefore, the size of inclusions in hot-rolled
The method of controlling the value to m or less was studied.

まず低融点化による軟質化に好適な介在物組成につい
て検討したところ、SiO2−Al2O3−MnO−CaO4元系が有利
であることが判った。
First, the inclusion composition suitable for softening by lowering the melting point was examined, and it was found that the SiO 2 —Al 2 O 3 —MnO—CaO 4 system was advantageous.

次に、このSiO2−Al2O3−MnO−CaO系介在物に着目
し、圧延温度を種々に変化させ、鋳片圧延を想定した同
一圧下量でその厚さ変化について調べた。
Next, paying attention to the SiO 2 —Al 2 O 3 —MnO—CaO-based inclusions, the rolling temperature was variously changed, and the thickness change was examined at the same rolling reduction assuming slab rolling.

その結果を、第1図に示す。 The results are shown in FIG.

同図より明らかなように、同一組成であっても高温圧
延ほどその厚さを低減でき、とくに1100℃以上において
は10μm以下まで低減できることが判明した。
As is clear from the figure, it has been found that even with the same composition, the thickness can be reduced as the temperature becomes higher, and particularly at 1100 ° C. or more, the thickness can be reduced to 10 μm or less.

勿論、Al2O3やSiO2の含有量が多くなると、厚さ減少
が少なくなることも同時に確認した。
Of course, it was also confirmed at the same time that as the content of Al 2 O 3 or SiO 2 increased, the decrease in thickness decreased.

従って低融点で軟質化した介在物であっても、その後
の圧延における処理温度を制御することが、延伸性の向
上を図る上で一層重要であることが判明したのである。
Therefore, it has been found that controlling the processing temperature in the subsequent rolling is even more important for improving the stretchability, even with the inclusions softened at a low melting point.

この発明は上記の知見に立脚するものである。 The present invention is based on the above findings.

すなわち、この発明は、 C:0.5〜0.9wt%(以下%で示す) を含有する硬鋼線用溶鋼の溶製に際し、CaO−SiO2系合
成フラックスの添加によって、鋼中の非金属介在物を SiO2:30〜50%、 MnO:10〜30%、 Al2O3:5〜30%および CaO:5〜20% の組成になる複合系の酸化物に調整したのち、鋳造し、
ついで得られた鋳片を1100℃以上の仕上げ温度で熱間圧
延することにより、上記複合系酸化物の厚みを10μm以
下まで低減し、引き続き線材圧延後、急冷して800℃以
上の温度で巻取ったのち、5〜30℃/sの速度で冷却し
て、線材全長にわたって均一微細なパーライト組織とす
ることを特徴とする伸線加工性の良好な硬鋼線材の製造
方法である。
That is, the present invention provides a method for producing a molten steel for hard steel wire containing C: 0.5 to 0.9 wt% (hereinafter referred to as “%”) by adding a CaO—SiO 2 synthetic flux to non-metallic inclusions in the steel. Is adjusted to a composite oxide having a composition of SiO 2 : 30-50%, MnO: 10-30%, Al 2 O 3 : 5-30% and CaO: 5-20%, then cast,
Then, the obtained slab is hot-rolled at a finishing temperature of 1100 ° C. or more to reduce the thickness of the composite oxide to 10 μm or less, and then continuously rolled, rapidly cooled, and wound at a temperature of 800 ° C. or more. After taking, it is cooled at a rate of 5 to 30 ° C./s to form a hard and fine pearlite structure having a uniform fineness over the entire length of the wire.

(作 用) この発明において、硬鋼線材の成分中とくにCの含有
量を上記の範囲に限定した理由は次のとおりである。
(Operation) In the present invention, the reason why the content of C in the components of the hard steel wire, particularly C is limited to the above range, is as follows.

すなわちCは、硬鋼線材としての強度を得るのに必要
不可欠な成分であって、ワイヤーロープやスチールコー
ドとして使用するには少なくとも0.5%を必要とする。
しかしながらあまりに多量に添加すると、偏析部に生成
する初析セメンタイトによって伸線加工性が著しく阻害
されるので、上限を0.9%に定めた。
That is, C is an indispensable component for obtaining the strength as a hard steel wire, and at least 0.5% is required for use as a wire rope or a steel cord.
However, if it is added in an excessively large amount, the drawability is significantly impaired by the pro-eutectoid cementite generated in the segregated portion, so the upper limit was set to 0.9%.

なお、上記したCの他、用途や必要強度に応じて、0.
8%以下のMn、0.4%以下のCr、0.15%以下のV、0.50%
以下のNiなどの合金元素を添加すること、さらには清浄
度を上げるためにPやS含有量の低減を図ることは、何
ら差し支えないのは言うまでもない。
In addition, in addition to the above-mentioned C, depending on the application and the required strength, 0.
8% or less Mn, 0.4% or less Cr, 0.15% or less V, 0.50%
It goes without saying that the addition of the following alloy elements such as Ni and the reduction of the P and S contents in order to increase the cleanliness can be performed without any problem.

次に、SiO2−Al2O3−MnO−CaO系介在物の組成限定理
由について説明する。
Next, the reason for limiting the composition of the SiO 2 —Al 2 O 3 —MnO—CaO-based inclusion will be described.

SiO2:30〜50% SiO2が50%を超えると、介在物は硬くなって延伸性が
劣化し、一方30%未満では可塑性をそなえる複合系介在
物組成が得られないので、30〜50%の範囲に限定した。
SiO 2 : 30 to 50% When the content of SiO 2 exceeds 50%, the inclusions become hard and the stretchability deteriorates. On the other hand, when the content is less than 30%, a composite inclusion composition having plasticity cannot be obtained. %.

MnO:10〜35% MnOは、10%未満でも、35%超でも介在物が硬質化す
るので、10〜35%の範囲に限定した。
MnO: 10 to 35% MnO is limited to the range of 10 to 35% because inclusions are hardened at less than 10% or more than 35%.

Al2O3:5〜30% Al2O3は、複合系介在物としての組成バランスを維持
するために少なくとも5%を必要とし、一方30%を超え
ると1100℃以上の高温圧延でも延伸しない硬質介在物と
なるので、5〜30%の範囲に限定した。
Al 2 O 3 : 5 to 30% Al 2 O 3 needs at least 5% in order to maintain the composition balance as a composite inclusion, while if it exceeds 30%, it does not stretch even at a high temperature rolling of 1100 ° C. or more Since it becomes a hard inclusion, it was limited to the range of 5 to 30%.

CaO:5〜20% CaOは、含有量が多くなると一般的に球状の介在物と
なって変形しずらくなるが、複合系でしかも5〜20%の
範囲では低融点組成となり延伸し易くなるので、上記の
範囲に制限した。
CaO: 5 to 20% CaO generally becomes a spherical inclusion and hardly deforms when its content is large, but it is a composite system and in the range of 5 to 20%, it has a low melting point composition and becomes easy to stretch. Therefore, it was limited to the above range.

なお非金属介在物組成の調整は、CaO−SiO2系合成フ
ラックスの添加(たとえば特開昭60−56011号公報)に
よって行うことができる。
The composition of the nonmetallic inclusions can be adjusted by adding a CaO—SiO 2 -based synthetic flux (for example, JP-A-60-56011).

さて上記のように低融点、軟質化組成に制御した複合
系介在物について、さらに圧延温度を制御することによ
って延伸度をより大きくし、一層の無害化を図ること
が、この発明の特長であり、上記の組成範囲で介在物断
面減少効果の大きい1100℃以上を鋳片圧延仕上げ温度と
する。ここに上限はとくに設ける必要はないが、あまり
に高くすると脱炭が著しくなるので1200℃以下が好まし
い。
Now, as described above, for the composite inclusions controlled to have a low melting point and a softening composition, it is a feature of the present invention to further increase the degree of elongation by controlling the rolling temperature, thereby achieving further detoxification. The slab rolling finish temperature is set to 1100 ° C. or higher where the effect of reducing the inclusion cross section is large in the above composition range. There is no particular need to set an upper limit here, but if it is too high, decarburization will be remarkable.

引き続き線材圧延を行い、仕上げ圧延後、水冷して巻
取り温度を調整する。この時、微細パーライトを均一に
生じさせると共に、適正厚の2次スケールを得るには、
巻取り温度は800℃以上とすることが重要である。とく
に両者を考慮すると800〜950℃の範囲が好適である。
Subsequently, wire rod rolling is performed, and after finishing rolling, water cooling is performed to adjust the winding temperature. At this time, in order to uniformly generate fine pearlite and obtain a secondary scale having an appropriate thickness,
It is important that the winding temperature be at least 800 ° C. The range of 800 to 950 ° C. is particularly preferable in consideration of both.

さらにその後の冷却過程において、伸線加工性の良好
な微細パーライトを全長に付与するためには、5〜30℃
/sの速度で冷却することが肝要である。というのは、冷
却速度が5℃/sに満たないとパーライト組織が粗くなっ
て加工性を害し、一方30℃/sを超える速度ではミクロマ
ルテンサイトの生成により、やはり加工性の劣化を招く
からである。
Furthermore, in the subsequent cooling process, in order to impart fine pearlite having good wire drawing workability to the entire length, 5 to 30 ° C.
It is important to cool at a rate of / s. This is because if the cooling rate is less than 5 ° C / s, the pearlite structure becomes coarse and impairs the workability, whereas if the cooling rate exceeds 30 ° C / s, the workability also deteriorates due to the formation of micro-martensite. It is.

(実施例) 300kg高周波溶製炉を用い、Ar雰囲気下において、SWR
H 72A相当の化学成分に成分調整を行ったのち、種々の
組成のCaO−SiO2系合成フラックスを添加して介在物組
成を調整した。ついで鋳造してから、150mm角に鍛造
後、常法に従って5.5mmφ線材に圧延した。
(Example) Using a 300 kg high frequency melting furnace, under an Ar atmosphere, SWR
After performing component adjustment to H 72A corresponding chemical components was adjusted composition of inclusions by the addition of CaO-SiO 2 based synthetic flux of various compositions. Then, after casting, it was forged into a 150 mm square, and then rolled into a 5.5 mmφ wire in a conventional manner.

かくして得られた線材両端部の介在物について調べた
結果を、表2に併記する。
Table 2 also shows the results obtained by examining the inclusions at both ends of the wire thus obtained.

同表より明らかなように、介在物組成がこの発明を満
足するものは、比較例に比べてペナルティポイントが低
く、その加工性に優れていることが判る。
As is clear from the table, those having an inclusion composition satisfying the present invention have a lower penalty point than those of the comparative examples and have excellent workability.

ただし、上記の実験は、通常の加熱、圧延温度で処理
しているため、それらの影響については不明である。
However, in the above experiment, since the treatment was performed at normal heating and rolling temperatures, their effects are unknown.

そこで次に、表3に示すSWRH 72A相当材を、転炉で溶
製し、出鋼時にCaO−SiO2系合成スラグを添加し、介在
物組成をこの発明範囲を満足する範囲に調整した連続鋳
造鋳片を用い、仕上げ圧延温度を1160℃および1020℃の
2水準で150mm角に圧延した。
Then, SWRH 72A equivalent material shown in Table 3 was melted in a converter, and CaO-SiO 2 synthetic slag was added at the time of tapping, and the inclusion composition was adjusted to a range satisfying the present invention. The cast slab was rolled into a 150 mm square at two levels of finish rolling temperature of 1160 ° C. and 1020 ° C.

かくして得られた角ビレットについて、表層部、1/4
部および中心部の各部位から、縦断面観察サンプル(25
mm角)を長手方向の両端部と中央部の計9ヵ所から採取
して、大きさが10μm以上のものについて観察した。
About the square billet thus obtained, the surface layer, 1/4
From each part of the part and the central part, a longitudinal section observation sample (25
mm square) were collected from a total of nine locations at both ends and the center in the longitudinal direction, and those having a size of 10 μm or more were observed.

その結果を表4に示す。 Table 4 shows the results.

同表に示したとおり、1160℃仕上げ圧延材では10μm
以上の介在物は皆無であったが、比較例である1020℃仕
上げ圧延材では、10μm以上の介在物が存在していた。
As shown in the table, 10μm for 1160 ° C finished rolled material
Although there were no such inclusions, the 1020 ° C. finish rolled material as a comparative example had inclusions of 10 μm or more.

ついでこれらの鋼片を、通常の加熱、圧延条件で圧延
して5.5mmφの線材としたのち、急冷し、いずれも850℃
で巻き取ったのち、3℃/s,15℃/sおよび35℃/sの3水
準で冷却した。
Then, these slabs were rolled under normal heating and rolling conditions to obtain a 5.5 mmφ wire, and then rapidly cooled, and both were cooled to 850 ° C.
And cooled at three levels of 3 ° C./s, 15 ° C./s and 35 ° C./s.

かくして得られた5.5mmφ線材の機械的性質および複
合系介在物の最大厚さ(275mm2当たり)についての調査
結果を表5に示す。
Table 5 shows the results of an investigation on the mechanical properties of the 5.5 mmφ wire thus obtained and the maximum thickness of the composite inclusion (per 275 mm 2 ).

まず鋼片圧延仕上げ温度の最大介在物厚さへの影響は
明らかに認められ、この発明法によれば、介在物厚さを
従来法の約1/2以下まで低減することができた。また冷
却速度の影響は機械的性質に認められ、この発明を満足
する15℃/sで冷却した場合は強度、伸びおよび絞りとも
良好な値が得られたのに対し、3℃/sの場合は強度およ
び絞りが極端に低下し、一方35℃/sの場合は強度は向上
しているものの、断面中心部にミクロマルテンサイトが
生成したため、伸びおよび絞りが大幅に低下した。
First, the effect of the billet rolling finishing temperature on the maximum inclusion thickness was clearly recognized. According to the method of the present invention, the thickness of the inclusions could be reduced to about 1/2 or less of the conventional method. The effect of the cooling rate was observed in the mechanical properties, and when cooled at 15 ° C / s which satisfied the present invention, good values were obtained for both strength, elongation and drawing, whereas when cooled at 3 ° C / s In the case of, the strength and drawing were extremely reduced, while at 35 ° C./s, although the strength was improved, the elongation and drawing were significantly reduced due to the formation of micro-martensite at the center of the cross section.

上記の差異は、パーライト組織の相違に起因するもの
であり、比較法により得られたE2,E3,E5およびE6の伸線
加工性はいずれも低下していることが予想される。
The above difference is attributable to the difference in the pearlite structure, and it is expected that the drawability of E2, E3, E5 and E6 obtained by the comparative method is all reduced.

そこで次に、この発明法のE1および比較法のE4につい
て、極細線に加工したときの伸線加工性について調べ
た。
Then, next, with respect to E1 of the present invention method and E4 of the comparative method, the wire drawing workability when processing into an ultrafine wire was examined.

すなわち5.5mmφから伸線加工とパテンティング処理
とを繰り返し、最終パテンティング時の線径を揃え、か
つ鉛パテンティング条件も同一にして処理した。なおパ
テンティング時の線径は1.25mmφで、加熱温度は950
℃、鉛浴温度は570℃とした。なお伸線加工性は、加工
中の断線発生頻度で評価した。
That is, the wire drawing and the patenting process were repeated from 5.5 mmφ, the wire diameter at the time of final patenting was made uniform, and the lead patenting conditions were the same. The wire diameter during patenting was 1.25 mmφ, and the heating temperature was 950 mm.
° C and the lead bath temperature were 570 ° C. The wire drawing workability was evaluated by the frequency of occurrence of disconnection during processing.

得られた結果を表6に示す。 Table 6 shows the obtained results.

同表より明らかなように、この発明法によれば、0.14
5mmφの極細線に伸線しても断線の発生は皆無であった
のに対し、比較法では、0.20mmφまでは断線は認められ
なかったものの、0.180mmφ以降の極細線においては断
線がしばしば認められた。
As is clear from the table, according to the present invention method, 0.14
Although no break occurred even when the wire was drawn to a fine wire of 5 mmφ, the disconnection was not recognized up to 0.20 mmφ by the comparative method, but the break was often recognized in the ultrafine wire of 0.180 mmφ or later. Was done.

さらに撚り加工を行った場合にも、この発明法に従い
得られたものの方が優れていることが確認された。
Further, it was confirmed that, even when twisting was performed, the one obtained according to the method of the present invention was superior.

(発明の効果) かくしてこの発明によれば、硬鋼線材の伸線加工性を
大幅に改善することができ、また高強度化による断線感
受性の低減にも有効に寄与するので、たとえばゴム補強
用のスチールコード等の耐久性の向上に大きく貢献す
る。
(Effects of the Invention) Thus, according to the present invention, the wire drawing workability of a hard steel wire can be greatly improved, and it also contributes effectively to the reduction of disconnection susceptibility due to high strength. It greatly contributes to improving the durability of steel cords and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、複合系介在物の圧延後の最大厚さに及ぼす圧
延温度の影響を示したグラフである。
FIG. 1 is a graph showing the effect of the rolling temperature on the maximum thickness of the composite inclusion after rolling.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−142725(JP,A) 特開 昭63−192846(JP,A) 特開 昭52−70925(JP,A) 特開 昭61−143511(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 8/06 C21D 9/52 C21C 7/076 B22D 11/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-142725 (JP, A) JP-A-63-192846 (JP, A) JP-A-52-70925 (JP, A) JP-A 61-142846 143511 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21D 8/06 C21D 9/52 C21C 7/076 B22D 11/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.5〜0.9wt% を含有する硬鋼線用溶鋼の溶製に際し、CaO−SiO2系合
成フラックスの添加によって、鋼中の非金属介在物を SiO2:30〜50wt%、 MnO:10〜35wt%、 Al2O3:5〜30wt%および CaO:5〜20wt% の組成になる複合系の酸化物に調整したのち、鋳造し、
ついで得られた鋳片を1100℃以上の仕上げ温度で熱間圧
延することにより、上記複合系酸化物の厚みを10μm以
下まで低減し、引き続き線材圧延後、急冷して800℃以
上の温度で巻取ったのち、5〜30℃/sの速度で冷却し
て、線材全長にわたって均一微細なパーライト組織とす
ることを特徴とする伸線加工性の良好な硬鋼線材の製造
方法。
1. A C: Upon melting of the hard steel wire molten steel containing 0.5~0.9wt%, the addition of CaO-SiO 2 based synthetic flux, SiO 2 nonmetallic inclusions in steel: 30 to 50 wt %, MnO: 10~35wt%, Al 2 O 3: 5~30wt% and CaO: After adjusting the oxide of the composite system to be 5 to 20 wt% of the composition, and cast,
Then, the obtained slab is hot-rolled at a finishing temperature of 1100 ° C. or more to reduce the thickness of the composite oxide to 10 μm or less, and then continuously rolled, rapidly cooled, and wound at a temperature of 800 ° C. or more. A method for producing a hard steel wire having good drawability, characterized in that after taking, it is cooled at a rate of 5 to 30 ° C./s to have a uniform fine pearlite structure over the entire length of the wire.
JP1180594A 1989-07-14 1989-07-14 Method for manufacturing hard steel wire rod with good wire drawing workability Expired - Lifetime JP2986809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1180594A JP2986809B2 (en) 1989-07-14 1989-07-14 Method for manufacturing hard steel wire rod with good wire drawing workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180594A JP2986809B2 (en) 1989-07-14 1989-07-14 Method for manufacturing hard steel wire rod with good wire drawing workability

Publications (2)

Publication Number Publication Date
JPH0347917A JPH0347917A (en) 1991-02-28
JP2986809B2 true JP2986809B2 (en) 1999-12-06

Family

ID=16085994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180594A Expired - Lifetime JP2986809B2 (en) 1989-07-14 1989-07-14 Method for manufacturing hard steel wire rod with good wire drawing workability

Country Status (1)

Country Link
JP (1) JP2986809B2 (en)

Also Published As

Publication number Publication date
JPH0347917A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
KR100194431B1 (en) Excellent high strength steel wire and high strength steel wire with fatigue characteristics
EP1018565A1 (en) Steel wire rod and method of manufacturing steel for the same
KR20170028427A (en) Steel wire for wire drawing
JP3601388B2 (en) Method of manufacturing steel wire and steel for steel wire
JP2001181789A (en) Small-diameter hot rolled high carbon steel wire rod excellent in wire drawability
KR20170002541A (en) Steel wire
JP3681712B2 (en) High carbon steel wire rod excellent in drawability and manufacturing method thereof
JP2007297674A (en) High-carbon steel wire rod superior in cuppy break resistance
JPH04371549A (en) Wire rod extra fine steel wire with high strength and high toughness, extra fine steel wire with high strength and high toughness, stranded product using the extra fine steel wire, and production of the extra fine steel wire
JP2000119805A (en) Steel wire rod excellent in wire drawability
JPH0649592A (en) High carbon steel wire rod for steel wire having high strength and high ductility
JP2888726B2 (en) Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same
JP3950682B2 (en) Manufacturing method of hot rolled wire rod for bearing
JP2986809B2 (en) Method for manufacturing hard steel wire rod with good wire drawing workability
JP2641081B2 (en) Steel cord manufacturing method
JP2000178685A (en) Steel wire rod excellent in fatigue characteristic and wire drawability and its production
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JP3388012B2 (en) Method of manufacturing steel wire for steel cord with reduced delamination
JPH06340950A (en) High strength steel wire rod and high strength steel wire excellent in fatigue property
JP3428502B2 (en) Steel wire, extra fine steel wire and twisted steel wire
WO2017170515A1 (en) Steel wire
JP3546551B2 (en) High carbon steel wire with excellent drawability
JP2927823B2 (en) Method of manufacturing hot-rolled material for high carbon steel wire rod with high workability
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability