JP2985825B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2985825B2
JP2985825B2 JP9064589A JP6458997A JP2985825B2 JP 2985825 B2 JP2985825 B2 JP 2985825B2 JP 9064589 A JP9064589 A JP 9064589A JP 6458997 A JP6458997 A JP 6458997A JP 2985825 B2 JP2985825 B2 JP 2985825B2
Authority
JP
Japan
Prior art keywords
nitride film
film
thickness
gate electrode
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9064589A
Other languages
Japanese (ja)
Other versions
JPH10261634A (en
Inventor
孝道 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9064589A priority Critical patent/JP2985825B2/en
Priority to US09/040,750 priority patent/US5994764A/en
Publication of JPH10261634A publication Critical patent/JPH10261634A/en
Application granted granted Critical
Publication of JP2985825B2 publication Critical patent/JP2985825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外部から水素の侵
入を防止する窒化膜を備えた半導体装置に関し、特にゲ
ート酸化膜の破壊寿命を向上させた半導体装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device provided with a nitride film for preventing intrusion of hydrogen from the outside, and more particularly to a semiconductor device having an improved gate oxide film having a longer life.

【0002】[0002]

【従来の技術】従来の技術について図を用いて説明す
る。図3はゲート電極3上に窒化膜8を備えた従来の半
導体装置を示す断面図である。図3において、Si基板
である半導体基板1には、ソース領域4とドレイン領域
5とが互いに離隔して形成されている。そして、このソ
ース領域4とドレイン領域5との間における半導体基板
1の主表面上には、酸化シリコン膜によってゲート絶縁
膜2が形成され、ゲート絶縁膜2上にはゲート電極3が
形成されている。
2. Description of the Related Art A conventional technique will be described with reference to the drawings. FIG. 3 is a cross-sectional view showing a conventional semiconductor device provided with a nitride film 8 on a gate electrode 3. In FIG. 3, a source region 4 and a drain region 5 are formed on a semiconductor substrate 1 which is a Si substrate so as to be separated from each other. On the main surface of the semiconductor substrate 1 between the source region 4 and the drain region 5, a gate insulating film 2 is formed by a silicon oxide film, and a gate electrode 3 is formed on the gate insulating film 2. I have.

【0003】また、ゲート電極3の両側には側壁膜6が
形成され、その結果半導体基板1における拡散層はLD
D構造となっている。さらに、ゲート電極3は薄い酸化
膜12によって覆われている。この酸化膜12およびゲ
ート電極3からはみ出た半導体基板1は、窒化膜8によ
って覆われている。窒化膜8の上には層間絶縁膜13が
形成され、層間絶縁膜13の上にはプラズマ窒化膜14
が形成されている。
A sidewall film 6 is formed on both sides of the gate electrode 3 so that the diffusion layer in the semiconductor substrate 1 is
It has a D structure. Further, the gate electrode 3 is covered with a thin oxide film 12. The semiconductor substrate 1 protruding from the oxide film 12 and the gate electrode 3 is covered with a nitride film 8. An interlayer insulating film 13 is formed on the nitride film 8, and a plasma nitride film 14 is formed on the interlayer insulating film 13.
Are formed.

【0004】このように従来は、ゲート電極3の直上に
窒化膜8を形成することによって外部から水素の侵入を
防止し、ホットキャリア耐性の低下を抑制していた。
As described above, conventionally, the formation of the nitride film 8 immediately above the gate electrode 3 prevents the intrusion of hydrogen from the outside and suppresses the decrease in hot carrier resistance.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うにゲート電極3の直上に窒化膜8を形成すると、種々
の問題点が生じる。すなわち、窒化膜8の上層に形成す
る層間絶縁膜やプラズマ窒化膜等を形成するプロセス時
の熱履歴によって窒化膜の応力が激しく変化し、その結
果この応力がゲート酸化膜に作用してゲート酸化膜の信
頼性寿命が低下するという問題点がある。本発明は、こ
のような課題を解決するためのものであり、熱履歴等に
よって窒化膜に応力が発生しても、ゲート酸化膜の破壊
を防止することができる半導体装置を提供することを目
的とする。
However, when the nitride film 8 is formed directly on the gate electrode 3 as described above, various problems occur. That is, the stress of the nitride film changes drastically due to the thermal history during the process of forming an interlayer insulating film, a plasma nitride film, and the like formed on the nitride film 8, and as a result, this stress acts on the gate oxide film to cause gate oxide film formation. There is a problem that the reliability life of the film is reduced. An object of the present invention is to solve such a problem, and an object of the present invention is to provide a semiconductor device capable of preventing a gate oxide film from being broken even when a stress is generated in a nitride film due to thermal history or the like. And

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明に係る半導体装置は、下地絶縁膜上に
所定の厚さの窒化膜を形成し、上記下地絶縁膜の厚さは
上記窒化膜の厚さの20倍以上にしたものである。この
ように構成することにより、本発明は拡散中の熱履歴に
よって生じた応力がゲート酸化膜に作用しないため、ゲ
ート酸化膜の寿命が低下することがない。
In order to achieve the above object, a semiconductor device according to the present invention comprises forming a nitride film having a predetermined thickness on a base insulating film, and forming a nitride film having a predetermined thickness on the base insulating film. Is 20 times or more the thickness of the nitride film. With this configuration, in the present invention, since the stress generated by the thermal history during diffusion does not act on the gate oxide film, the life of the gate oxide film does not decrease.

【0007】[0007]

【発明の実施の形態】次に、本発明の一つの実施の形態
の製造工程について詳細に説明する。図1は本発明の一
つの実施の形態およびその製造工程を示す説明図であ
る。
Next, a manufacturing process according to one embodiment of the present invention will be described in detail. FIG. 1 is an explanatory view showing one embodiment of the present invention and a manufacturing process thereof.

【0008】まず、図1(a)において、Si基板であ
る半導体基板1上に熱酸化によってゲート酸化膜2(膜
厚は3〜15nm程度)を形成する。そして、このゲー
ト酸化膜2上にゲート電極3の材料となる伝導物(例え
ばポリシリコン等)を基板全面に亘ってスパッタまたは
CVDよって成膜し、リソグラフィー技術およびドライ
エッチング技術等を用いてゲート電極3を形成する。
First, in FIG. 1A, a gate oxide film 2 (having a thickness of about 3 to 15 nm) is formed on a semiconductor substrate 1, which is an Si substrate, by thermal oxidation. Then, a conductive material (for example, polysilicon or the like) as a material of the gate electrode 3 is formed on the gate oxide film 2 by sputtering or CVD over the entire surface of the substrate, and the gate electrode is formed by using a lithography technique and a dry etching technique. Form 3

【0009】さらに、LDD構造のMOSTrを作成す
るため、拡散領域となるソース領域4およびドレイン領
域5に対してNMOSであればN型のリン等を低加速電
圧でイオン注入して浅い拡散層を形成する。同様にPM
OSであればP型のボロン等を低加速電圧でイオン注入
して浅い拡散層を形成する。
Further, in order to form a MOSTr having an LDD structure, if a NMOS is used, N-type phosphorus or the like is ion-implanted at a low accelerating voltage into the source region 4 and the drain region 5 serving as diffusion regions to form a shallow diffusion layer. Form. Similarly PM
In the case of OS, P-type boron or the like is ion-implanted at a low acceleration voltage to form a shallow diffusion layer.

【0010】その後、半導体基板1の全面に亘って酸化
膜をCVD法によって形成し、全面をエッチバックして
側壁膜6(膜厚は100nm程度)を形成する。そし
て、ソース領域4およびドレイン領域5に対してNMO
SであればN型のヒ素等をイオン注入し、低抵抗の深い
拡散層を形成する。同様にPMOSであればP型のBF
2 等をイオン注入し、低抵抗の深い拡散層を形成する。
さらに、ゲート電極3等を含む半導体基板1の全面に亘
って第1の下地絶縁膜7(膜厚は500nm程度)をC
VD法によって形成する。
Thereafter, an oxide film is formed over the entire surface of the semiconductor substrate 1 by a CVD method, and the entire surface is etched back to form a sidewall film 6 (having a thickness of about 100 nm). NMO is applied to the source region 4 and the drain region 5.
In the case of S, N-type arsenic or the like is ion-implanted to form a low resistance deep diffusion layer. Similarly, for a PMOS, a P-type BF
2 etc. are ion-implanted to form a low resistance deep diffusion layer.
Further, the first base insulating film 7 (having a thickness of about 500 nm) is formed over the entire surface of the semiconductor substrate 1 including the gate electrode 3 and the like.
It is formed by the VD method.

【0011】図1(b)において、下地絶縁膜7上には
LP−CVD法によって窒化膜8(膜厚は20nm程
度)を形成する。窒化膜8上にはCVD法によって第2
の下地絶縁膜9(膜厚は500nm程度)を形成する。
その後、SOG(Spin Of Glass)を用い
たエッチバック法またはCMPを施して第2の下地絶縁
膜7の表面を平坦化する。そして、基板の全面に亘って
レジスト10を塗布し、コンタクト開口のためのパター
ニングを施す。なお、窒化膜8の膜厚は下地絶縁膜9か
らの水分侵入を防止するため5nm以上に保つことが望
ましい。
In FIG. 1B, a nitride film 8 (having a thickness of about 20 nm) is formed on the base insulating film 7 by LP-CVD. A second layer is formed on the nitride film 8 by CVD.
Of the base insulating film 9 (having a thickness of about 500 nm).
After that, the surface of the second base insulating film 7 is planarized by performing an etch-back method using SOG (Spin Of Glass) or CMP. Then, a resist 10 is applied over the entire surface of the substrate, and patterning for contact opening is performed. Note that the thickness of the nitride film 8 is desirably kept at 5 nm or more in order to prevent moisture penetration from the underlying insulating film 9.

【0012】図1(c)において、下地絶縁膜9等に半
導体基板1に達するコンタクトホールを開口した後、配
線層11の材料を基板全面に亘ってスパッタする。そし
て、リソグラフィー技術およびドライエッチング技術等
によって所望の配線パターンを形成する。以上の結果、
本発明に係る半導体装置の一つの実施の形態が作成され
た。
In FIG. 1C, after a contact hole reaching the semiconductor substrate 1 is opened in the base insulating film 9 and the like, the material of the wiring layer 11 is sputtered over the entire surface of the substrate. Then, a desired wiring pattern is formed by a lithography technique, a dry etching technique, or the like. As a result,
One embodiment of the semiconductor device according to the present invention has been created.

【0013】次に、図1に係る半導体装置のゲート酸化
膜の寿命について、実験結果に基づいて説明する。図2
は図1に係るゲート酸化膜2の破壊寿命を示すグラフで
ある。図2において、横軸はゲート電極3−窒化膜8間
の距離(nm)を示し、縦軸は1cm2 当たりのゲート
酸化膜2に注入された総注入電荷量を示す。すなわち、
この総注入電荷量はゲート酸化膜2が破壊されるまで注
入された電荷の総量を示し、ゲート酸化膜2の破壊寿命
に相当するものである。
Next, the life of the gate oxide film of the semiconductor device shown in FIG. 1 will be described based on experimental results. FIG.
3 is a graph showing a breakdown life of the gate oxide film 2 according to FIG. In FIG. 2, the horizontal axis indicates the distance (nm) between the gate electrode 3 and the nitride film 8, and the vertical axis indicates the total amount of injected charges injected into the gate oxide film 2 per 1 cm 2 . That is,
This total injected charge amount indicates the total amount of charges injected until the gate oxide film 2 is destroyed, and corresponds to the destruction life of the gate oxide film 2.

【0014】図2から明らかなように、窒化膜8の膜厚
が5nmの場合は、ゲート電極3の位置と窒化膜8の位
置とを約100nm以上離すことによって窒化膜8が無
いときと同等の破壊寿命となっている。また、ゲート電
極3と窒化膜8との離隔距離を大きくするにつれてさら
に総注入電荷量を大きくできることが図2よりわかる。
すなわち、ゲート電極3と窒化膜8とは100nm/5
nm=20(倍)以上離す必要がある。
As is apparent from FIG. 2, when the thickness of the nitride film 8 is 5 nm, the position of the gate electrode 3 and the position of the nitride film 8 are separated from each other by about 100 nm or more, which is equivalent to the case where the nitride film 8 is not provided. Has a destructive life. FIG. 2 shows that the total injected charge amount can be further increased as the separation distance between the gate electrode 3 and the nitride film 8 is increased.
That is, the gate electrode 3 and the nitride film 8 are 100 nm / 5
It is necessary to separate them by at least nm = 20 (times).

【0015】ところが、ゲート電極3と窒化膜8の離隔
距離を約100nm以下にすると窒化膜8の応力がゲー
ト酸化膜2に対して及ぼす影響が大きくなり、総注入電
荷量は低下している。すなわち、ゲート電極3と窒化膜
8とを近づけすぎるとゲート酸化膜2の寿命は低下す
る。同様の理由で、窒化膜厚が20nmの場合は、ゲー
ト電極3と窒化膜8との離隔距離を約500nm以上に
保つ必要があり、窒化膜8とゲート電極3とは500n
m/20nm=25(倍)以上離す必要がある。
However, when the distance between the gate electrode 3 and the nitride film 8 is set to about 100 nm or less, the influence of the stress of the nitride film 8 on the gate oxide film 2 increases, and the total injected charge decreases. That is, if the gate electrode 3 is too close to the nitride film 8, the life of the gate oxide film 2 is reduced. For the same reason, when the nitride film thickness is 20 nm, the distance between the gate electrode 3 and the nitride film 8 needs to be maintained at about 500 nm or more.
m / 20 nm = 25 (times) or more.

【0016】ところで、水素の侵入を防ぐため、窒化膜
8の膜厚はただ厚くすればよいと言うわけではない。窒
化膜8の膜厚はMOSトランジスタの特性や信頼性に対
して大きく影響するものである。すなわち、窒化膜8の
膜厚が20nmを越えると窒化膜8は水素の拡散に対す
るバリアとなる一方、ゲート酸化膜2−半導体基板1の
界面に存在する界面準位密度が高くなってトランジスタ
の特性が不安定になる。例えば、図示してはいないがゲ
ート電極3と窒化膜8との離隔距離を150nm、窒化
膜8の膜厚が50nmとなるとトランジスタ特性のう
ち、特にしきい値電圧Vtのばらつきが窒化膜8が無い
場合と比較して約2倍になることが実験によってわかっ
ている。
By the way, in order to prevent intrusion of hydrogen, it is not always necessary to simply increase the thickness of the nitride film 8. The thickness of the nitride film 8 greatly affects the characteristics and reliability of the MOS transistor. That is, when the thickness of the nitride film 8 exceeds 20 nm, the nitride film 8 functions as a barrier against diffusion of hydrogen, while the interface state density existing at the interface between the gate oxide film 2 and the semiconductor substrate 1 increases, thereby increasing the characteristics of the transistor. Becomes unstable. For example, although not shown, when the separation distance between the gate electrode 3 and the nitride film 8 becomes 150 nm and the film thickness of the nitride film 8 becomes 50 nm, among the transistor characteristics, in particular, the variation in the threshold voltage Vt is reduced. Experiments have shown that the value is about twice as large as the case without.

【0017】一方、窒化膜8の膜厚が5nm未満になる
と窒化膜8の水分に対するバリア性が低下し、多層配線
化すると配線層間膜から水分がゲート酸化膜まで拡散し
てスロートラップ(BT時の特性変動)やホットキャリ
ア等のトランジスタの特性が変動してしまう。したがっ
て、窒化膜8の膜厚は5nm以上かつ20nm以下にす
ることが望ましいといえる。さらに、ゲート電極3と窒
化膜8との離隔距離を窒化膜8の膜厚の20倍以上にす
ることが望ましいといえる。
On the other hand, when the thickness of the nitride film 8 is less than 5 nm, the barrier property of the nitride film 8 against moisture is reduced. Of the transistor) and the characteristics of the transistor, such as hot carriers, fluctuate. Therefore, it can be said that the thickness of the nitride film 8 is desirably 5 nm or more and 20 nm or less. Furthermore, it can be said that it is desirable that the separation distance between the gate electrode 3 and the nitride film 8 be at least 20 times the thickness of the nitride film 8.

【0018】[0018]

【発明の効果】このように本発明は、ゲート電極と窒化
膜との間に形成した下地絶縁膜の膜厚を窒化膜の膜厚の
20倍以上にしている。そのため、熱履歴等によって窒
化膜に応力が発生しても、下地絶縁膜によってゲート酸
化膜に作用する応力は緩和され、その結果ゲート酸化膜
の破壊寿命の向上を図ることができる。
As described above, according to the present invention, the thickness of the underlying insulating film formed between the gate electrode and the nitride film is set to be at least 20 times the thickness of the nitride film. Therefore, even if stress occurs in the nitride film due to thermal history or the like, the stress acting on the gate oxide film is alleviated by the base insulating film, and as a result, the breakdown life of the gate oxide film can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一つの実施の形態を示す断面図であ
る。
FIG. 1 is a sectional view showing one embodiment of the present invention.

【図2】 図1に係る半導体装置のゲート電極−窒化膜
間の距離とゲート酸化膜の破壊電荷量との関係を示すグ
ラフである。
2 is a graph showing a relationship between a distance between a gate electrode and a nitride film of the semiconductor device shown in FIG. 1 and a breakdown charge amount of a gate oxide film.

【図3】 従来例を示す断面図である。FIG. 3 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1…半導体基板、2…ゲート酸化膜、3…ゲート電極、
4…ソース側拡散層領域(ソース領域)、5…ドレイン
側拡散層領域(ドレイン領域)、6…側壁膜、7,9…
下地絶縁膜、8…窒化膜、10…レジスト、11…配線
層。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Gate oxide film, 3 ... Gate electrode,
4 ... source side diffusion layer region (source region), 5 ... drain side diffusion layer region (drain region), 6 ... side wall film, 7, 9 ...
Underlying insulating film, 8: nitride film, 10: resist, 11: wiring layer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板と、この半導体基板の主表面
に互いに離隔して形成されたソースおよびドレインと、
前記ソースおよびドレインの間における前記半導体基板
に形成されたゲートと、このゲートおよびゲートからは
み出ている半導体基板を覆うように形成された下地絶縁
膜とを備えた半導体装置において、 前記下地絶縁膜上に所定の厚さの窒化膜を形成し、前記
下地絶縁膜の厚さは前記窒化膜の厚さの20倍以上にす
ることを特徴とする半導体装置。
A semiconductor substrate; a source and a drain formed on a main surface of the semiconductor substrate so as to be separated from each other;
A semiconductor device comprising: a gate formed on the semiconductor substrate between the source and the drain; and a base insulating film formed so as to cover the semiconductor substrate protruding from the gate and the gate; A nitride film having a predetermined thickness, and the thickness of the base insulating film is set to be at least 20 times the thickness of the nitride film.
【請求項2】 請求項1において、 前記窒化膜の厚さを5nm以上かつ20nm以下にする
ことを特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein the thickness of the nitride film is 5 nm or more and 20 nm or less.
JP9064589A 1997-03-18 1997-03-18 Semiconductor device Expired - Fee Related JP2985825B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9064589A JP2985825B2 (en) 1997-03-18 1997-03-18 Semiconductor device
US09/040,750 US5994764A (en) 1997-03-18 1998-03-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9064589A JP2985825B2 (en) 1997-03-18 1997-03-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH10261634A JPH10261634A (en) 1998-09-29
JP2985825B2 true JP2985825B2 (en) 1999-12-06

Family

ID=13262601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9064589A Expired - Fee Related JP2985825B2 (en) 1997-03-18 1997-03-18 Semiconductor device

Country Status (2)

Country Link
US (1) US5994764A (en)
JP (1) JP2985825B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100688023B1 (en) 2005-12-28 2007-02-27 동부일렉트로닉스 주식회사 Method of fabricating semiconductor device
US20150206794A1 (en) * 2014-01-17 2015-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Method for Removing Micro Scratches In Chemical Mechanical Polishing Processes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920001716A (en) * 1990-06-05 1992-01-30 김광호 Structure and manufacturing method of stacked capacitor of DRAM cell
JPH04186675A (en) * 1990-11-16 1992-07-03 Matsushita Electron Corp Semiconductor device
JP3172321B2 (en) * 1993-04-26 2001-06-04 三洋電機株式会社 Method for manufacturing semiconductor memory device
JPH08316430A (en) * 1995-05-15 1996-11-29 Mitsubishi Electric Corp Semiconductor storage device, its manufacture, and stacked capacitor

Also Published As

Publication number Publication date
US5994764A (en) 1999-11-30
JPH10261634A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US6022781A (en) Method for fabricating a MOSFET with raised STI isolation self-aligned to the gate stack
US6072221A (en) Semiconductor device having self-aligned contact plug and metallized gate electrode
US6351013B1 (en) Low-K sub spacer pocket formation for gate capacitance reduction
JP3468294B2 (en) Method of forming silicon-on-insulator body contact and body contact structure
KR100319356B1 (en) Semiconductor device and method for manufacturing the same
JP3472655B2 (en) Semiconductor device
US20020111025A1 (en) Modified gate processing for optimized difinition of array and logic devices on same chip
US20030203546A1 (en) SOI transistor element having an improved backside contact and method of forming the same
JP2007005575A (en) Semiconductor device and its manufacturing method
KR19990023828A (en) Integrated circuit manufacturing method
KR100305308B1 (en) Semiconductor device and method of manufacturing the same
JPWO2003069675A1 (en) Manufacturing method of semiconductor device
US6355531B1 (en) Method for fabricating semiconductor devices with different properties using maskless process
JP3394022B2 (en) Semiconductor device and manufacturing method thereof
JP2985825B2 (en) Semiconductor device
US6255218B1 (en) Semiconductor device and fabrication method thereof
JP3125929B2 (en) Method for manufacturing semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
US5949111A (en) Semiconductor device and fabrication process therefor
JPH0888362A (en) Semiconductor device and its manufacture
JP3588566B2 (en) Method for manufacturing semiconductor device
JP3632565B2 (en) Manufacturing method of semiconductor device
KR100311177B1 (en) A method of fabricating semiconductor device
JP4031777B2 (en) Semiconductor device
JPH06151842A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees