JP2985491B2 - Method of measuring position and direction of film-shaped detection coil of SQUID sensor - Google Patents

Method of measuring position and direction of film-shaped detection coil of SQUID sensor

Info

Publication number
JP2985491B2
JP2985491B2 JP4079145A JP7914592A JP2985491B2 JP 2985491 B2 JP2985491 B2 JP 2985491B2 JP 4079145 A JP4079145 A JP 4079145A JP 7914592 A JP7914592 A JP 7914592A JP 2985491 B2 JP2985491 B2 JP 2985491B2
Authority
JP
Japan
Prior art keywords
dewar
film
ray
coil
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4079145A
Other languages
Japanese (ja)
Other versions
JPH05237065A (en
Inventor
健治 芝田
茂樹 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP4079145A priority Critical patent/JP2985491B2/en
Publication of JPH05237065A publication Critical patent/JPH05237065A/en
Application granted granted Critical
Publication of JP2985491B2 publication Critical patent/JP2985491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、生体活動電流源によ
って形成されるような微小な磁界を計測するSQUID
センサのフィルム状検出コイルの位置および方向を計測
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SQUID for measuring a minute magnetic field such as that formed by a biological activity current source.
The present invention relates to a method for measuring a position and a direction of a film detection coil of a sensor.

【0002】[0002]

【従来の技術】生体に対して光や音のような外界の刺激
を与えると、感覚神経に信号(活動電流)が発生する。
この生体活動電流によって形成される磁界を、SQUI
D(Superconducting Quantum Interference Dvice:超
電導量子干渉計)を用いたセンサで計測し、その計測デ
ータから生体活動電流源の位置,大きさ,方向を推定す
る。推定された生体活動電流源(以下、単に電流源と略
す)は、X線CT装置やMRI装置などで撮像された体
内断層像上に表示され、患部等の物理的位置の特定など
に使用される。
2. Description of the Related Art When an external stimulus such as light or sound is applied to a living body, a signal (active current) is generated in a sensory nerve.
The magnetic field formed by this biological activity current is referred to as SQUI
The measurement is performed by a sensor using D (Superconducting Quantum Interference Dvice), and the position, size, and direction of the biological activity current source are estimated from the measurement data. The estimated life activity current source (hereinafter simply abbreviated as a current source) is displayed on a tomographic image of the body taken by an X-ray CT apparatus, an MRI apparatus, or the like, and is used to specify a physical position of an affected part or the like. You.

【0003】したがって、SQUIDセンサの計測点と
生体との位置関係を正確に求めることが極めて重要な要
素となる。SQUIDセンサは、デュワーと呼ばれる容
器内にSQUIDと検出コイルおよび補償コイルとを収
納して構成されており、SQUIDの超電導状態を維持
するため、デュワーの内部は液体ヘリウムで満たされて
いる。
Therefore, it is extremely important to accurately determine the positional relationship between the measurement point of the SQUID sensor and the living body. The SQUID sensor is configured by housing a SQUID, a detection coil and a compensation coil in a container called a dewar, and the inside of the dewar is filled with liquid helium to maintain the superconducting state of the SQUID.

【0004】SQUIDセンサの計測点となる検出コイ
ルの位置および方向と、生体との位置関係を求めるに
は、まず、デュワーを基準とした3次元座標系に対する
検出コイルの位置,方向を設計図を参照して把握してお
く。次に、デュワーに投光器を取り付けて光ビームを生
体に照射したり、また、生体の複数箇所に小コイルを取
り付け、小コイルから発生した磁界をSQUIDセンサ
で検出するなどの方法で、デュワーの座標系に対する生
体の位置関係を把握する。これらの情報、すなわち、デ
ュワーと検出コイルの位置,方向との関係、およびデュ
ワーと生体との位置関係から、検出コイルの位置,方向
と生体との位置関係を求めている。
In order to determine the positional relationship between the position and direction of the detection coil, which is the measurement point of the SQUID sensor, and the living body, first, the position and direction of the detection coil with respect to a three-dimensional coordinate system based on Dewar should be designed. Refer to and understand. Next, a light projector is attached to the dewar to irradiate the living body with a light beam, or a small coil is attached to a plurality of locations of the living body, and a magnetic field generated from the small coil is detected by a SQUID sensor, and the coordinates of the dewar are used. Understand the position of the living body with respect to the system. The positional relationship between the position and direction of the detection coil and the living body is obtained from these pieces of information, that is, the relationship between the position and direction of the dewar and the detecting coil and the positional relationship between the dewar and the living body.

【0005】ところが、検出コイルがデュワーに注入さ
れた液体ヘリウム中に浸漬されて極低温状態下にあるた
め、検出コイルが収縮してしまい、実用上において設計
図通りの位置,方向が保たれておらず、デュワーと検出
コイルの位置,方向との関係を正確に把握できない。検
出コイルの製作誤差やデュワーへの取り付け誤差等によ
っても同様の問題が起こる。
However, since the detection coil is immersed in the liquid helium injected into the Dewar and is in a very low temperature state, the detection coil contracts, and the position and direction as practically designed are maintained. Therefore, the relationship between the dewar and the position and direction of the detection coil cannot be accurately grasped. A similar problem occurs due to a manufacturing error of the detection coil, an error in attaching the detection coil to the dewar, or the like.

【0006】本出願人は、このような実情を鑑みて、特
願平3−280797号の「SQUIDセンサの検出コイルの
位置および方向測定方法」を提案した。デュワーに収納
されている検出コイルを複数方向からX線撮影し、検出
コイルのX線像から検出コイルの位置,方向を測定する
方法である。デュワーに収納した状態での検出コイルの
位置,向きを求めることで上記の問題を解消している。
In view of such circumstances, the present applicant has proposed a method for measuring the position and direction of a detection coil of a SQUID sensor in Japanese Patent Application No. 3-280797. This is a method of taking X-ray images of a detection coil housed in a dewar from a plurality of directions, and measuring the position and direction of the detection coil from an X-ray image of the detection coil. The above problem is solved by obtaining the position and the direction of the detection coil in the state where the detection coil is housed in the dewar.

【0007】[0007]

【発明が解決しようとする課題】従来の検出コイルは、
直径0.1mm 程度のNb(ニオブ)超電導線を円筒形のボ
ビンに巻きつけて製作される。このような検出コイルは
上記のようにX線撮像が可能である。ところが、このタ
イプの検出コイルはボビンへの巻き付け位置の精度が出
なかったり、検出コイルと補償コイルとの平行度を完全
に一致させるのが難しいなどの欠点を有する。大量生産
向きでもない。
The conventional detection coil is:
It is manufactured by winding an Nb (niobium) superconducting wire having a diameter of about 0.1 mm around a cylindrical bobbin. Such a detection coil can perform X-ray imaging as described above. However, this type of detection coil has drawbacks such as inaccuracy in the winding position around the bobbin and difficulty in making the parallelism between the detection coil and the compensation coil completely identical. Not for mass production.

【0008】そこで、近年、フィルム状の検出コイルが
使用されつつある。ポリイミドフィルム等の極低温性,
可撓性のフィルムに、Nb超電導薄膜をパターン形成
し、それを円筒ボビンに巻き付けて製作される。フィル
ムの平面上にコイルのパターンを形成するのでコイル位
置の精度は高く、大量生産にも適している。しかし、コ
イルパターンは、厚みが約10-1μm以下、幅が数mm程
度の薄膜であるため、X線撮影がほとんど不可能であ
り、上記で紹介したようなデュワーに収納した状態での
位置計測法を適用できない。
Therefore, in recent years, a film-shaped detection coil has been used. Extremely low temperature properties such as polyimide film,
It is manufactured by patterning a Nb superconducting thin film on a flexible film and winding it around a cylindrical bobbin. Since the coil pattern is formed on the plane of the film, the accuracy of the coil position is high and suitable for mass production. However, since the coil pattern is a thin film having a thickness of about 10 -1 μm or less and a width of about several mm, it is almost impossible to perform X-ray photography. Measurement method cannot be applied.

【0009】この発明は、このような事情に鑑みてなさ
れたものであって、フィルム状の検出コイルの位置,向
きをデュワーに収納した状態で計測することができるS
QUIDセンサのフィルム状検出コイルの位置および方
向を計測する方法を提供することを目的としている。
The present invention has been made in view of such circumstances, and it is possible to measure the position and orientation of a film-shaped detection coil in a state where the detection coil is housed in a dewar.
It is an object of the present invention to provide a method for measuring the position and direction of a film detection coil of a QUID sensor.

【0010】[0010]

【課題を解決するための手段】この発明は、上記目的を
達成するために次のような方法をとる。すなわち、この
発明の計測方法は、フィルム状検出コイルが巻き付けら
れたプローブの3次元座標上でのフィルム状検出コイル
の位置および方向を予め計測しておき、前記プローブに
その3次元座標を表す非磁性の指標点を取り付けてデュ
ワーに収納し、前記デュワーを複数方向からX線撮像し
て前記指標点のX線像を収集し、前記デュワーの3次元
座標系に対するX線撮像面の3次元座標系の位置関係を
求め、前記複数方向からX線撮像された指標点像と各X
線撮像時のX線焦点とを結ぶ直線の交点の位置をX線撮
像面の3次元座標上で求め、これらの情報からデュワー
の3次元座標上での前記交点の位置を求めてデュワーの
3次元座標系とプローブの3次元座標系との位置関係を
求め、これと前記計測しておいたプローブの3次元座標
上でのフィルム状検出コイルの位置および方向から、デ
ュワーの3次元座標上でのフィルム状検出コイルの位置
および方向を求める。
The present invention employs the following method to achieve the above object. That is, in the measuring method of the present invention, the position and direction of the film-shaped detection coil on the three-dimensional coordinates of the probe around which the film-shaped detection coil is wound are measured in advance, and the three-dimensional coordinates representing the three-dimensional coordinates are displayed on the probe. A magnetic index point is attached and housed in a dewar, the dewar is X-ray imaged from a plurality of directions, an X-ray image of the index point is collected, and three-dimensional coordinates of the X-ray imaging surface with respect to the three-dimensional coordinate system of the dewar The positional relationship of the system is obtained, and the index point images X-ray imaged from the plurality of directions and each X
The position of the intersection of the straight line connecting the X-ray focal point at the time of X-ray imaging is determined on the three-dimensional coordinates of the X-ray imaging surface, and from this information, the position of the intersection on the three-dimensional coordinates of the Dewar is determined. The positional relationship between the three-dimensional coordinate system and the three-dimensional coordinate system of the probe is obtained, and the position and direction of the film-shaped detection coil on the three-dimensional coordinate of the probe, which has been measured, are used to determine the three-dimensional coordinate of the Dewar. The position and direction of the film-shaped detection coil are determined.

【0011】[0011]

【作用】この発明の構成による作用は、次のとおりであ
る。デュワーに収納されているプローブの指標点を複数
の方向からX線撮像して得られた指標点像と各X線撮像
時のX線焦点とを直線で結ぶと、これら複数の直線の交
点の位置から、X線撮像面の3次元座標上での指標点の
位置が求まる。この情報と、デュワーの3次元座標系−
X線撮像面の3次元座標系との位置関係からデュワーの
3次元座標上での指標点の位置が求められる。指標点の
位置情報はプローブの3次元座標を表すものであり、し
たがって、デュワーの3次元座標系とプローブの3次元
座標系との位置関係が判る。
The operation of the present invention is as follows. When an index point image obtained by X-ray imaging of the index point of the probe stored in the Dewar from a plurality of directions and the X-ray focal point at the time of each X-ray imaging are connected by a straight line, the intersection of the plurality of straight lines is obtained. From the position, the position of the index point on the three-dimensional coordinates of the X-ray imaging plane is determined. This information and Dewar's three-dimensional coordinate system
From the positional relationship between the X-ray imaging surface and the three-dimensional coordinate system, the position of the index point on the three-dimensional Dewar coordinates is obtained. The position information of the index point indicates the three-dimensional coordinates of the probe, and therefore, the positional relationship between the three-dimensional coordinate system of the Dewar and the three-dimensional coordinate system of the probe can be determined.

【0012】プローブの3次元座標上でのフィルム状検
出コイルの位置および方向を計測しておけば、上記の位
置関係からデュワーの3次元座標上でのフィルム状検出
コイルの位置と方向とが求まる。このように、フィルム
状検出コイルがX線撮影不可能ならば、フィルム状コイ
ルを巻き付け支持するプローブに指標点を取り付けてX
線撮影を行い、指標点像を用いてデュワーの座標系にお
けるフィルム状検出コイルの位置と方向とを求めるの
で、フィルム状検出コイルをデュワーに収納した状態で
の位置,方向計測が可能である。また、指標点は非磁性
であるため、フィルム状検出コイルがピックアップする
微小磁界を乱すことはなく、検出精度に影響はない。
If the position and direction of the film-shaped detection coil on the three-dimensional coordinates of the probe are measured, the position and direction of the film-shaped detection coil on the three-dimensional Dewar coordinates can be determined from the above positional relationship. . As described above, if the film-shaped detection coil cannot perform X-ray imaging, an index point is attached to the probe that winds and supports the film-shaped coil, and
Since the line imaging is performed and the position and direction of the film detection coil in the Dewar coordinate system are obtained using the index point image, the position and direction can be measured with the film detection coil stored in the dewar. Since the index point is non-magnetic, it does not disturb the minute magnetic field picked up by the film-shaped detection coil, and does not affect the detection accuracy.

【0013】[0013]

【実施例】以下、この発明の一実施例を図面に基づいて
説明する。図1(A)は本実施例に係るSQUIDセン
サの検出プローブの正面図、(B)は検出コイルの平面
図である。検出プローブ1は、プラスチック等の非磁性
材料で形成された円筒ボビン3の外周にフィルム状の検
出コイル2(以下、フィルムコイル2)を貼り付けて構
成されている。フィルムコイル2は耐低温性の可撓性材
料、例えばポリイミドフィルム等にNb(ニオブ)超電
導体薄膜2aをパターン形成したものである。符号2b
はSQUIDとフィルムコイル2とを接続するための信
号取り出し用パッドである。このような、検出プローブ
1はSQUIDとともに、液体ヘリウムに浸漬されてデ
ュワーに取り付けられる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1A is a front view of a detection probe of the SQUID sensor according to the present embodiment, and FIG. 1B is a plan view of a detection coil. The detection probe 1 is configured by attaching a film-shaped detection coil 2 (hereinafter, a film coil 2) to an outer periphery of a cylindrical bobbin 3 formed of a nonmagnetic material such as plastic. The film coil 2 is formed by patterning a Nb (niobium) superconductor thin film 2a on a low-temperature resistant flexible material such as a polyimide film. Code 2b
Is a signal extraction pad for connecting the SQUID and the film coil 2. Such a detection probe 1 is immersed in liquid helium together with the SQUID and attached to the dewar.

【0014】デュワーの3次元座標系におけるフィルム
コイル2の位置,向きを計測するには、まず、検出プロ
ーブ1の3次元座標系におけるフィルムコイル2の位
置,向きを計測しておき、次に、検出プローブ1の3次
元座標系とデュワーの3次元座標系との位置関係を把握
し、これらのデータからデュワーの3次元座標系におけ
るフィルムコイル2の位置,向きを求める。
In order to measure the position and orientation of the film coil 2 in the Dewar three-dimensional coordinate system, first, the position and orientation of the film coil 2 in the three-dimensional coordinate system of the detection probe 1 are measured. The positional relationship between the three-dimensional coordinate system of the detection probe 1 and the Dewar three-dimensional coordinate system is grasped, and the position and orientation of the film coil 2 in the Dewar three-dimensional coordinate system are obtained from these data.

【0015】〔1〕検出プローブ1をデュワーに取り付
ける前に、検出プローブ1の円筒ボビン3の端面に発信
器4を取り付ける(図2参照)。発信器4は、直交3軸
方向に磁場を形成する。この発信器4からの各磁場の大
きさをそれぞれに受信するコイルを内蔵したスタイラス
型受信器5の先端で、フィルムコイル2に形成されてい
るコイルパターン上の複数点を指定する。
[1] Before attaching the detection probe 1 to the dewar, the transmitter 4 is attached to the end face of the cylindrical bobbin 3 of the detection probe 1 (see FIG. 2). The transmitter 4 forms a magnetic field in three orthogonal axes. A plurality of points on the coil pattern formed on the film coil 2 are designated by the tip of a stylus-type receiver 5 having a built-in coil for receiving the magnitude of each magnetic field from the transmitter 4.

【0016】スタイラス型受信器5は、その中心部に直
交3軸方向に向くコイルを有し、上記発信器4から発せ
られた各磁場の大きさに対応した受信信号を得て、その
受信信号の大きさから発信器4とコイルとの3次元的な
距離、つまり発信器4の3次元座標系での位置を知り、
その値を先端の指定点の位置に変換する。これにより、
発信器4の3次元座標系(=検出プローブ1の3次元座
標系XP−YP −ZP )でのフィルムコイル2の位置と
向きが求まる。
The stylus-type receiver 5 has a coil oriented in three orthogonal directions at the center thereof, obtains reception signals corresponding to the magnitudes of the respective magnetic fields emitted from the transmitter 4, and receives the reception signals. The three-dimensional distance between the transmitter 4 and the coil, that is, the position of the transmitter 4 in the three-dimensional coordinate system, from the size of
The value is converted to the position of the specified point at the tip. This allows
3-dimensional coordinate system position and orientation of the film coil 2 in (= 3-dimensional coordinate system X P -Y P -Z P of detecting probe 1) of the transmitter 4 is obtained.

【0017】〔2〕検出プローブ1の端面から発信器4
を取り外し、図3に示すように、フィルムコイル2のコ
イルパターンの上に複数個のX線撮像可能な小球6を取
り付ける。小球6は、例えば鉛のようにX線を遮蔽する
材料で形成されている。このような検出プローブ1を図
示省略している液体ヘリウム容器に収納する。液体ヘリ
ウム容器に液体ヘリウムを注入する前に、図面の矢印の
方向からX線を曝射してX線フィルム7に小球6の像
(以下、球像6’とする)を写す。
[2] From the end face of the detection probe 1 to the transmitter 4
Then, as shown in FIG. 3, a plurality of X-ray-capable small balls 6 are mounted on the coil pattern of the film coil 2. The small ball 6 is formed of a material that blocks X-rays, for example, lead. Such a detection probe 1 is housed in a liquid helium container (not shown). Before injecting the liquid helium into the liquid helium container, X-rays are irradiated from the direction of the arrow in the drawing, and an image of the small sphere 6 (hereinafter, referred to as a spherical image 6 ′) is transferred to the X-ray film 7.

【0018】X線撮影後、液体ヘリウム容器に液体ヘリ
ウムを注入する。容器内の検出プローブ1が液体ヘリウ
ムと同温になった頃を見計らって再びX線撮影を行う。
液体ヘリウム注入前後に撮影した2枚のX線フィルム7
を重ね合わせて、球像6’の変位量を計測する。例え
ば、液体ヘリウム注入後に撮影した球像6’が、図3の
ハッチングで示すような位置になったとすれば、液体ヘ
リウム注入前に撮影した球像6’の位置との変位量Δ
x,Δzを計る。
After X-ray photography, liquid helium is injected into the liquid helium container. When the temperature of the detection probe 1 in the container reaches the same temperature as the liquid helium, X-ray imaging is performed again.
Two X-ray films taken before and after liquid helium injection 7
Are superimposed, and the displacement of the spherical image 6 ′ is measured. For example, if the spherical image 6 ′ photographed after the injection of liquid helium is at the position shown by hatching in FIG. 3, the displacement Δ from the position of the spherical image 6 ′ photographed before the injection of liquid helium
Measure x and Δz.

【0019】Δxは円筒型検出プローブ1の径方向の変
位量を示し、Δzは筒軸方向の変位量を示す。円筒ボビ
ン3の材質、すなわち、温度による収縮率が一様なら
ば、径方向であるYP 方向にもΔxと同じだけ変位する
(Δy=Δx)。上記の〔1〕で求めておいた検出プロ
ーブ1の3次元座標系XP −YP −ZPでのフィルムコ
イル2の位置から、計測した3軸方向の変位量Δx,Δ
y,Δzを差分し、差分して得られた位置でフィルムコ
イル2の位置を更新する。
Δx indicates the amount of displacement of the cylindrical detection probe 1 in the radial direction, and Δz indicates the amount of displacement in the direction of the cylinder axis. The material of the cylindrical bobbin 3, i.e., if the uniform shrinkage with temperature, also as many displaced [Delta] x in the Y P direction is a radial (Δy = Δx). From the position of the film coil 2 in a three-dimensional coordinate system X P -Y P -Z P of the detection probe 1 which had been obtained in the above (1), the displacement amount Δx in the three axial directions of measurement, delta
y and Δz are differentiated, and the position of the film coil 2 is updated with the position obtained by the difference.

【0020】更新した位置は、液体ヘリウム中における
検出プローブ1の3次元座標系XP−YP −ZP での位
置であるから、すなわち、デュワーに収納された状態で
の検出プローブ1の3次元座標系XP −YP −ZP にお
けるフィルムコイル2の位置と等価である。
The updated position is the position of the detection probe 1 in the three-dimensional coordinate system X P -Y P -Z P in the liquid helium, that is, the position of the detection probe 1 in the state of being stored in the dewar. it is equivalent to the position of the film coil 2 in the dimension coordinate system X P -Y P -Z P.

【0021】液体ヘリウム中での収縮作用で、円筒ボビ
ン3がしなるように変形する場合には、フィルムコイル
2の向きの変化も考慮する。例えば液体ヘリウム注入前
に得られた球像6’を互いに線で結んだZP 方向の線分
Lz,XP 方向の線分Lxと、液体ヘリウム注入後に得
られた球像6’を線で結んだZP 方向の線分Lz’,X
P 方向の線分Lx’(ともに図示せず)との傾き変位量
を求め、上記と同様にしてフィルムコイル2の向きを補
正する。
When the cylindrical bobbin 3 is deformed by the contraction in liquid helium, the change in the direction of the film coil 2 is also taken into consideration. For example, the line segment Lz in the Z P direction and the line segment Lx in the X P direction connecting the spherical images 6 ′ obtained before the injection of liquid helium by lines, and the spherical image 6 ′ obtained after the injection of liquid helium by lines. line segment of connecting it Z P direction Lz ', X
The amount of tilt displacement with respect to the line segment Lx ′ (not shown) in the P direction is obtained, and the direction of the film coil 2 is corrected in the same manner as described above.

【0022】液体ヘリウム注入前後のフィルムコイル2
の位置および向きの変位量は、円筒ボビン3やフィルム
コイル2の材質に固有のものであり、したがって、同じ
材質のものについての変位量の計測を2度,3度と行う
必要はない。〔1〕で計測する検出プローブ1の3次元
座標系XP −YP −ZP でのフィルムコイル2の位置お
よび向きはSQUIDセンサの設計に応じて異なるた
め、仕様が変わる毎に計測する必要がある。ただし、マ
ルチチャンネルSQUIDセンサのように同じ検出プロ
ーブ1を多数装備するものについては〔1〕の計測も1
度だけでよい。
Film coil 2 before and after liquid helium injection
Is unique to the material of the cylindrical bobbin 3 and the film coil 2, and therefore, it is not necessary to measure the displacement of the same material twice or three times. Position and orientation of the film coil 2 in a three-dimensional coordinate system X P -Y P -Z P of the detection probe 1 to be measured in [1] for different depending on the design of the SQUID sensor, should be measured every specification is changed There is. However, for a device equipped with a large number of the same detection probes 1 such as a multi-channel SQUID sensor, the measurement in [1] is also performed by one.
Only the degree is necessary.

【0023】また、上記の各計測は次のようにして行う
こともできる。 (a)上記〔1〕では磁場を用いて検出プローブ1の3
次元座標系XP −YP−ZP でのフィルムコイル2の位
置と向きとを計測したが、光ビームを用いた3次元位置
計測装置を使用してもよい。すなわち、光ビームを検出
プローブ1の任意の3点に照射し、その反射光を検出し
て検出プローブ1の3次元座標を入力する。次に、光ビ
ームでフィルムコイル2のコイルパターン上の複数の点
を指定してその位置を入力し、先に入力した検出プロー
ブ1の3次元座標上でのフィルムコイル2の位置と向き
とを求める。検出プローブ1はデュワーに収納されてい
ない状態なので、これ以外にも種々の計測方法が適用で
きる。
Each of the above measurements can also be performed as follows. (A) In [1] above, the detection probe 1
While the dimension coordinate system X P -Y P -Z film position and orientation of the coil 2 at P measured, it may be used a three-dimensional position measuring apparatus using an optical beam. That is, a light beam is applied to any three points of the detection probe 1, the reflected light is detected, and the three-dimensional coordinates of the detection probe 1 are input. Next, a plurality of points on the coil pattern of the film coil 2 are designated by a light beam and their positions are input, and the position and orientation of the film coil 2 on the three-dimensional coordinates of the detection probe 1 previously input are determined. Ask. Since the detection probe 1 is not housed in the dewar, various other measurement methods can be applied.

【0024】(b)上記〔2〕ではX線撮影像を用いて
液体ヘリウム注入前後でのフィルムコイル2の各変位量
を計測したが、検出プローブ1の円筒ボビン3の端面に
発信器4を取り付けたままの状態で液体ヘリウム容器内
に収納し、発信器4からの磁場を容器外に設置した受信
器で検出する方法も考えられる。すなわち、液体ヘリウ
ム注入前に発信器4からの3軸方向の磁場強度を検出し
て発信器4の3次元位置を求めておく。液体ヘリウム注
入後も同じようにして、発信器4の3次元位置を検出
し、液体ヘリウム注入前後における発信器4の3次元位
置の変位量を算出する。
(B) In the above [2], the amount of displacement of the film coil 2 before and after liquid helium injection was measured using an X-ray image, but the transmitter 4 was attached to the end face of the cylindrical bobbin 3 of the detection probe 1. A method in which the magnetic field from the transmitter 4 is stored in a liquid helium container while being attached, and the magnetic field from the transmitter 4 is detected by a receiver installed outside the container may be considered. That is, before injecting the liquid helium, the three-dimensional magnetic field strength from the transmitter 4 is detected to determine the three-dimensional position of the transmitter 4. Similarly, after the injection of liquid helium, the three-dimensional position of the transmitter 4 is detected, and the displacement of the three-dimensional position of the transmitter 4 before and after the injection of liquid helium is calculated.

【0025】発信器4の変位量は、検出プローブ1の円
筒ボビン3の変位量を示す。フィルムコイル2が円筒ボ
ビン3に強固に貼り付けられて、円筒ボビン3と一体的
に収縮するとすれば、発信器4の変位量がフィルムコイ
ル2の変位量となる。
The displacement of the transmitter 4 indicates the displacement of the cylindrical bobbin 3 of the detection probe 1. Assuming that the film coil 2 is firmly attached to the cylindrical bobbin 3 and contracts integrally with the cylindrical bobbin 3, the displacement of the transmitter 4 is the displacement of the film coil 2.

【0026】〔3〕次に、検出プローブ1をデュワーに
取り付けた状態での、検出プローブ1の3次元座標系X
P −YP −ZP とデュワーの3次元座標系との位置関係
を求める。まず、図4に示すように、検出プローブ1の
適当な3箇所にX線撮像可能な非磁性体の指標点A1,
A2,A3を取り付ける。指標点A1,A2,A3の位
置は、検出プローブ1の3次元座標XP ,YP ,ZP
表す。このような検出プローブ1を図5に示すデュワー
9に内装する。
[3] Next, with the detection probe 1 attached to the dewar, the three-dimensional coordinate system X of the detection probe 1
Obtaining a positional relationship between the 3-dimensional coordinate system P -Y P -Z P and dewar. First, as shown in FIG. 4, index points A1 and X1 of a non-magnetic material capable of X-ray imaging at appropriate three locations of the detection probe 1.
Attach A2 and A3. Position of index points A1, A2, A3 are three-dimensional coordinates X P of the detection probe 1, Y P, represents a Z P. Such a detection probe 1 is installed in a dewar 9 shown in FIG.

【0027】直交3軸の各方向に磁場を形成する発信器
4をデュワー9の外側面の適当な位置に取り付け、検出
プローブ1が内蔵されたデュワー9の先端部に例えば鉛
製の指標点D1,D2,D3,D4を取り付ける。デュ
ワー9の先端部の真下にX線フィルムを内蔵したX線マ
ガジン10を配置し、このX線マガジン10の適当な3カ所
にも同様の指標点F1,F2,F3を取り付ける。指標
点F1,F2,F3の位置はX線撮像面の3次元座標X
F ,YF ,ZF を表す。
A transmitter 4 for forming a magnetic field in each of the three orthogonal axes is mounted at an appropriate position on the outer surface of the dewar 9, and an index point D1 made of, for example, lead is provided at the tip of the dewar 9 in which the detection probe 1 is incorporated. , D2, D3, D4. An X-ray magazine 10 having a built-in X-ray film is arranged directly below the tip of the dewar 9, and similar index points F 1, F 2, and F 3 are attached to appropriate three places of the X-ray magazine 10. The positions of the index points F1, F2, and F3 are three-dimensional coordinates X on the X-ray imaging surface.
F , Y F and Z F are represented.

【0028】発信器4からの各磁場の大きさをそれぞれ
に受信するコイルを内蔵したスタイラス型受信器5の先
端で、X線マガジン6に取り付けられた指標点F1,F
2,F3を指定し、発信器4の3次元座標系(デュワー
9の3次元座標系XD −YD−ZD )におけるX線マガ
ジン10上の3つ点F1、F2,F3の位置、すなわち、
撮像面の3次元座標系XF −YF −ZF の位置関係を求
めておく。
Index points F1, F attached to the X-ray magazine 6 at the tip of a stylus-type receiver 5 containing a coil for receiving the magnitude of each magnetic field from the transmitter 4 respectively.
2, specify the F3, three-dimensional coordinate system of three points on the X-ray magazine 10 in (three-dimensional coordinate system X D -Y D -Z D Dewar 9) F1, F2, the position of the F3 of the transmitter 4, That is,
Previously obtained positional relationship of the three-dimensional coordinate system X F -Y F -Z F of the imaging surface.

【0029】以下、検出プローブ1の3次元座標系XP
−YP −ZP を「プローブ座標XP−YP −ZP 」に置
き換え、デュワー9の3次元座標系XD −YD −ZD
「デュワー座標XD −YD −ZD 」に置き換え、撮像面
の3次元座標系XF −YF −ZF を「撮像面座標XF
F −ZF 」に置き換えて記載する。
Hereinafter, the three-dimensional coordinate system X P of the detection probe 1 will be described.
Replace -Y P -Z P to "probe coordinates X P -Y P -Z P", a 3-dimensional coordinate system X D -Y D -Z D Dewar 9 "dewar coordinates X D -Y D -Z D" the replacement, the three-dimensional coordinate system of the imaging plane X F -Y F -Z F the "imaging plane coordinate X F -
Described by replacing the Y F -Z F ".

【0030】先と同様にして、デュワー9の先端部に取
り付けられた指標点D1,D2,D3,D4をスタイラ
ス型受信器3で指定し、デュワー座標XD −YD −ZD
における各指標点D1,D2,D3,D4の位置を求め
る。そして、先に求めておいたデュワー座標XD −YD
−ZD と撮像面座標XF −YF −ZF との位置関係か
ら、撮像面座標XF −YF −ZF におけるデュワー9上
の指標点D1,D2,D3,D4の位置を求める。
Similarly, the index points D1, D2, D3, and D4 attached to the tip of the dewar 9 are designated by the stylus-type receiver 3, and the dewar coordinates X D -Y D -Z D
, The positions of the index points D1, D2, D3, D4 are obtained. And, Dewar coordinates X D -Y D, which had been obtained previously
The positional relationship between the -Z D and the imaging surface coordinates X F -Y F -Z F, determine the position of the imaging surface coordinates X F -Y F -Z indicators on Dewar 9 points in F D1, D2, D3, D4 .

【0031】また、X線マガジン10の適当な位置に、発
信器4からの3軸方向の磁場の大きさを受信する標準受
信器11を取り付けて、デュワー9が移動あるいは回転し
たときのデュワー座標XD −YD −ZD に対する標準受
信器11の位置を把握できるようにしておく。こうするこ
とで、標準受信器11の3次元位置情報から、デュワー9
が移動あるいは回転したときの、デュワー座標XD −Y
D −ZD に対する撮像面座標XF −YF −ZF の移動,
回転が検出できる。
Further, a standard receiver 11 for receiving the magnitude of the magnetic field in three axial directions from the transmitter 4 is attached to an appropriate position of the X-ray magazine 10, and the Dewar 9 when the Dewar 9 moves or rotates. advance to be able to grasp the position of the standard receiver 11 for X D -Y D -Z D. By doing so, the dewar 9 can be obtained from the three-dimensional position information of the standard receiver 11.
Dewar coordinates X D -Y when moves or rotates
Movement of the D -Z imaging surface coordinates for D X F -Y F -Z F,
Rotation can be detected.

【0032】〔4〕デュワー9の先端部を挟むようにし
て、X線マガジン10と対向状態で配されているX線管
(図示せず)からX線を曝射し、図5に示した姿勢のデ
ュワー9のX線透視像をX線マガジン10に内蔵している
X線フィルムに撮像する。検出プローブ1に取り付けら
れた指標点A1,A2,A3および、デュワー9に取り
付けられた指標点D1,D2,D3,D4、X線マガジ
ン10に取り付けられた指標点F1,F2,F3は前述の
ように鉛で形成されているから、黒点としてX線フィル
ムに写し出される(図6参照)。
[4] X-rays are emitted from an X-ray tube (not shown) arranged opposite to the X-ray magazine 10 so as to sandwich the tip of the dewar 9 so that the posture shown in FIG. An X-ray fluoroscopic image of the Dewar 9 is captured on an X-ray film built in the X-ray magazine 10. The index points A1, A2, A3 attached to the detection probe 1, the index points D1, D2, D3, D4 attached to the dewar 9 and the index points F1, F2, F3 attached to the X-ray magazine 10 are as described above. Thus, since it is formed of lead, it is projected on an X-ray film as a black point (see FIG. 6).

【0033】このX線フィルム12とX線マガジン10との
位置関係は固定であり既知であるから、X線フィルム12
とX線マガジン10との距離を補正し、X線フィルム12上
に写し出された指標点の像D1' 、D2' 、D3' 、D
4’の撮像面座標XF −YF−ZF おける座標位置を求
める。そして、図7に示すように、これら各指標点の像
D1’、D2’、D3’、D4’と、前記で求めた撮像
面座標XF −YF −ZF におけるデュワー9上の指標点
D1,D2,D3,D4とを直線で結び、各直線の交点
の3次元位置座標を求める。この交点が撮像面の座標系
X−Y−ZにおけるX線焦点となる。
Since the positional relationship between the X-ray film 12 and the X-ray magazine 10 is fixed and known, the X-ray film 12
The distance between the target point and the X-ray magazine 10 is corrected, and the index point images D1 ', D2', D3 ', D projected on the X-ray film 12 are corrected.
A coordinate position at 4 ′ imaging plane coordinates X F −Y F −Z F is obtained. Then, as shown in FIG. 7, the images D1 ′, D2 ′, D3 ′, D4 ′ of these index points and the index points on the Dewar 9 at the imaging plane coordinates X F −Y F −Z F obtained above. D1, D2, D3, and D4 are connected by straight lines, and the three-dimensional position coordinates of the intersection of each straight line are obtained. This intersection is the X-ray focal point in the coordinate system XYZ of the imaging plane.

【0034】〔5〕図5に示したデュワー9を図中符号
Rの方向に沿って略90°回転させ、発信器4からの直交
3軸方向の各磁場の大きさを、X線マガジン10に取り付
けられている標準受信器11で受信する。前述のように、
この受信信号からデュワー座標XD −YD −ZD と、撮
像面座標XF −YF −ZF との位置関係が求まる。ここ
では、デュワー座標XD −YD−ZD を基準にして、撮
像面座標XF −YF −ZF が90°回転したと捉える。
[5] The dewar 9 shown in FIG. 5 is rotated by about 90 ° in the direction of the symbol R in the figure, and the magnitude of each magnetic field from the transmitter 4 in the three orthogonal directions is measured by the X-ray magazine 10. The signal is received by the standard receiver 11 attached to the. As aforementioned,
A Dewar coordinates X D -Y D -Z D from the received signal, is obtained positional relationship between the imaging surface coordinates X F -Y F -Z F. Here, based on the dewar coordinates X D -Y D -Z D, regarded as the imaging surface coordinates X F -Y F -Z F is rotated 90 °.

【0035】上記の〔4〕に記載したと同じ方法でデュ
ワー9の先端部のX線透視像を撮像し、90゜回転した撮
像面座標XF90 −YF90 −ZF90 におけるX線焦点S2
の3次元位置座標を求める(図8参照)。
An X-ray fluoroscopic image of the tip of the dewar 9 is taken in the same manner as described in the above [4], and the X-ray focus S2 at the imaging plane coordinates X F90 -Y F90 -Z F90 rotated by 90 °.
Are obtained (see FIG. 8).

【0036】〔6〕ここまでで得られた2枚のX線フィ
ルム12上の検出プローブ1の指標点像A1’、A2’、
A3' のそれぞれの撮像面座標XF −YF −ZF 、X
F90 −YF90 −ZF90 における位置を求める。前述のよ
うに、X線フィルム12とX線マガジン10との位置関係は
固定であり既知であるから、これらの距離を補正して、
X線フィルム12上に写し出された検出プローブ1の指標
点像の各点の撮像面の座標系における座標位置を求め
る。
[6] Index point images A1 ', A2' of the detection probe 1 on the two X-ray films 12 obtained so far,
Each of the imaging surface coordinates of A3 'X F -Y F -Z F , X
Find the position at F90- YF90- ZF90 . As described above, since the positional relationship between the X-ray film 12 and the X-ray magazine 10 is fixed and known, these distances are corrected,
The coordinate position of each point of the index point image of the detection probe 1 projected on the X-ray film 12 in the coordinate system of the imaging surface is obtained.

【0037】図9に示すように、これら2つの撮像面の
座標系XF −YF −ZF 、XF90 −YF90 −ZF90 を組
合せ、各座標系の検出プローブ1の指標点像と、先に求
めておいた各座標系におけるX線焦点S1,S2とを互
いに直線で結ぶ。これら対応する各直線の交点として検
出プローブ1の指標点A1,A2,A3の位置を求め
る。各交点の位置は、撮像面座標XF −YF −ZF にお
ける指標点A1,A2,A3の位置を示す。そして、指
標点A1,A2,A3の位置はプローブ座標XP
P ,ZP を示す。よって、撮像面座標XF −YF −Z
F とプローブ座標XP −YP −ZP との位置関係が求ま
る。
As shown in FIG. 9, the coordinate systems X F -Y F -Z F and X F90 -Y F90 -Z F90 of these two imaging planes are combined, and the index point image of the detection probe 1 of each coordinate system is used. The X-ray focal points S1 and S2 in each coordinate system obtained in advance are connected to each other by a straight line. The positions of the index points A1, A2, and A3 of the detection probe 1 are obtained as intersections of these corresponding straight lines. The position of each intersection indicates the position of the imaging surface coordinates X F -Y F -Z index points in F A1, A2, A3. The positions of the index points A1, A2, A3 are the probe coordinates XP ,
Y P and Z P are shown. Therefore, the imaging plane coordinates X F −Y F −Z
Positional relationship between the F and the probe coordinate X P -Y P -Z P is obtained.

【0038】また、撮像面座標XF −YF −ZF とデュ
ワー座標XD −YD −ZD との位置関係は、前述のよう
に、X線マガジン10に取り付けられた指標点F1,F
2,F3の位置から求められているので、これらから、
デュワー座標XD −YD −ZDとプローブ座標XP −Y
P −ZP との位置関係を求める。
As described above, the positional relationship between the imaging plane coordinates X F -Y F -Z F and the dewar coordinates X D -Y D -Z D is determined by the index points F 1, F 1 attached to the X-ray magazine 10. F
Since it is obtained from the position of 2, F3,
Dewar coordinates X D -Y D -Z D and probe coordinate X P -Y
Determine the positional relationship between the P -Z P.

【0039】〔7〕そして、上記の〔2〕で求めておい
たプローブ座標XP −YP −ZP でのフィルムコイル2
の位置と向きの情報と、デュワー座標XD −YD −ZD
とプローブ座標XP −YP −ZP との位置関係から、デ
ュワー座標XD −YD −ZDにおけるフィルムコイル2
の位置と向きとを求める。
[0039] [7] The probe coordinates X P -Y P -Z film coil 2 at P which has been determined in the above [2]
Position and orientation information and Dewar coordinates X D -Y D -Z D
A probe coordinate X P -Y P from the positional relationship between the -Z P, Dewar coordinates X D -Y D -Z film in D coil 2
The position and orientation of.

【0040】以上の実施例では、軸型の検出プローブ1
について説明したが、同じようにして平面型の検出プロ
ーブの位置,向きを計測することができるし、実施例の
ように1軸型の検出プローブではなく、図10に示すよう
に、互いに角度が相違している3対のコイル20a,20b,20
c を備えた3軸型の検出プローブについても同じように
して計測することができる。
In the above embodiment, the shaft type detection probe 1
In the same manner, the position and the orientation of the flat type detection probe can be measured. Instead of the uniaxial type detection probe as in the embodiment, the angle between them can be measured as shown in FIG. Three pairs of different coils 20a, 20b, 20
The same measurement can be performed for a three-axis type detection probe provided with c.

【0041】また、複数のSQUIDと検出プローブ1
とを装備したマルチチャンネルSQUIDセンサに本案
を適用する場合には、各検出プローブ1に取り付ける指
標点A1,A2,A3の位置が重ならないように筒軸方
向に沿ってずらしておく。こうすることで、実施例と同
じく2枚のX線像から各検出プローブ1の座標系とデュ
ワー座標XD −YD −ZD との位置関係を求めることが
できる。
Further, a plurality of SQUIDs and the detection probe 1
When the present invention is applied to a multi-channel SQUID sensor equipped with the above, the index points A1, A2, and A3 attached to the detection probes 1 are shifted along the cylinder axis direction so that the positions do not overlap. Thereby, it is possible to determine the positional relationship between the coordinate system and the dewar coordinates X D -Y D -Z D of each detection probe 1 from the same two X-ray images as examples.

【0042】[0042]

【発明の効果】以上の説明から明らかなように、この発
明の計測方法では、プローブの3次元座標上でのフィル
ム状検出コイルの位置および方向を計測し、プローブに
取り付けた非磁性の指標点をX線撮影してプローブの3
次元座標系とデュワーの3次元座標系との位置関係を求
め、これらの情報からデュワーの3次元座標上でのフィ
ルム状検出コイルの位置と方向とを求めるので、フィル
ム状検出コイルをデュワーに収納した状態での計測が可
能となり、液体ヘリウムの収縮作用によるフィルム状検
出コイルの変位やフィルム状検出コイルの取り付け誤差
等などに関係ない正確な計測となった。これにより、推
定された生体活動電流源の位置と生体との位置関係の把
握が正確を増し、診断の正確さ、治療,手術の安全を期
することができる。
As is apparent from the above description, in the measuring method of the present invention, the position and direction of the film-like detection coil on the three-dimensional coordinates of the probe are measured, and the nonmagnetic index point attached to the probe is measured. X-ray image of the probe 3
The positional relationship between the three-dimensional coordinate system and the Dewar three-dimensional coordinate system is determined, and the position and direction of the film-shaped detection coil on the three-dimensional Dewar coordinates are determined from these information. This allows accurate measurement regardless of the displacement of the film-shaped detection coil due to the contraction action of liquid helium, the mounting error of the film-shaped detection coil, and the like. As a result, the grasp of the estimated positional relationship between the biological activity current source and the living body increases, and the accuracy of diagnosis and the safety of treatment and surgery can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例に係るフィルムコイルを備
えた検出プローブの正面図およびフィルムコイルの平面
図である。
FIG. 1 is a front view of a detection probe including a film coil according to an embodiment of the present invention, and a plan view of the film coil.

【図2】検出プローブの3次元座標上でのフィルムコイ
ルの位置と方向との計測方法の一例を説明する図であ
る。
FIG. 2 is a diagram illustrating an example of a method of measuring a position and a direction of a film coil on three-dimensional coordinates of a detection probe.

【図3】同様に、検出プローブの3次元座標上でのフィ
ルムコイルの位置と方向との計測方法の一例を説明する
図である。
FIG. 3 is also a diagram illustrating an example of a method of measuring the position and direction of a film coil on three-dimensional coordinates of a detection probe.

【図4】非磁性の指標点を取り付けた検出プローブを示
す斜視図である。
FIG. 4 is a perspective view showing a detection probe to which a nonmagnetic index point is attached.

【図5】検出プローブの3次元座標系とデュワーの3次
元座標系との位置関係の測定例を説明する斜視図であ
る。
FIG. 5 is a perspective view illustrating a measurement example of a positional relationship between a three-dimensional coordinate system of a detection probe and a three-dimensional coordinate system of a Dewar.

【図6】デュワー先端部のX線透視像の一例を示す図で
ある。
FIG. 6 is a diagram showing an example of an X-ray fluoroscopic image of a dewar tip.

【図7】X線焦点の位置の求め方を説明する図である。FIG. 7 is a diagram illustrating a method of obtaining a position of an X-ray focal point.

【図8】別角度からX線撮影した場合のX線焦点の求め
方を説明する図である。
FIG. 8 is a diagram illustrating a method of obtaining an X-ray focal point when X-ray imaging is performed from another angle.

【図9】撮像面の座標系と検出プローブの座標系との位
置関係の求め方を説明する図である。
FIG. 9 is a diagram illustrating a method of obtaining a positional relationship between a coordinate system of an imaging surface and a coordinate system of a detection probe.

【図10】検出プローブのその他の例を示す正面図であ
る。
FIG. 10 is a front view showing another example of the detection probe.

【符号の説明】[Explanation of symbols]

1・・・検出プローブ 2・・・フィルムコイル 9・・・デュワー A1,A2,A3・・・指標点 XD −YD −ZD ・・・デュワーの3次元座標 XF −YF −ZF ・・・撮像面の3次元座標 XP −YP −ZP ・・・検出プローブの3次元座標1 ... detection probe 2 ... film coil 9 ... Dewar A1, A2, A3 ... index point X D -Y D -Z D ··· 3-dimensional coordinates of the dewar X F -Y F -Z F 3-dimensional coordinates of ... imaging plane X P -Y P -Z 3-dimensional coordinates of P ... detection probe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) A61B 5/05 G01R 33/035 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) A61B 5/05 G01R 33/035

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フィルム状検出コイルが巻き付けられた
プローブの3次元座標上でのフィルム状検出コイルの位
置および方向を予め計測しておき、前記プローブにその
3次元座標を表す非磁性の指標点を取り付けてデュワー
に収納し、前記デュワーを複数方向からX線撮像して前
記指標点のX線像を収集し、前記デュワーの3次元座標
系に対するX線撮像面の3次元座標系の位置関係を求
め、前記複数方向からX線撮像された指標点像と各X線
撮像時のX線焦点とを結ぶ直線の交点の位置をX線撮像
面の3次元座標上で求め、これらの情報からデュワーの
3次元座標上での前記交点の位置を求めてデュワーの3
次元座標系とプローブの3次元座標系との位置関係を求
め、これと前記計測しておいたプローブの3次元座標上
でのフィルム状検出コイルの位置および方向から、デュ
ワーの3次元座標上でのフィルム状検出コイルの位置お
よび方向を求めることを特徴とするSQUIDセンサの
フィルム状検出コイルの位置および方向を計測する方
法。
1. A non-magnetic index point representing the three-dimensional coordinates of the probe in which the position and direction of the film-shaped detection coil on the three-dimensional coordinates of the probe around which the film-shaped detection coil is wound are measured in advance. Is attached and stored in a dewar, the dewar is X-ray imaged from a plurality of directions, an X-ray image of the index point is collected, and the positional relationship of the three-dimensional coordinate system of the X-ray imaging surface with respect to the three-dimensional coordinate system of the dewar Is obtained on the three-dimensional coordinates of the X-ray imaging plane, and the position of the intersection of a straight line connecting the index point image obtained by X-ray imaging from the plurality of directions and the X-ray focal point at each X-ray imaging is obtained. The position of the intersection on the Dewar's three-dimensional coordinates is determined to find the Dewar's 3D position.
The positional relationship between the three-dimensional coordinate system and the three-dimensional coordinate system of the probe is obtained, and the position and direction of the film-shaped detection coil on the three-dimensional coordinate of the probe, which has been measured, are used to determine the three-dimensional coordinate of the Dewar. Measuring the position and direction of the film-shaped detection coil of the SQUID sensor, wherein the position and direction of the film-shaped detection coil are determined.
JP4079145A 1992-02-28 1992-02-28 Method of measuring position and direction of film-shaped detection coil of SQUID sensor Expired - Fee Related JP2985491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4079145A JP2985491B2 (en) 1992-02-28 1992-02-28 Method of measuring position and direction of film-shaped detection coil of SQUID sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4079145A JP2985491B2 (en) 1992-02-28 1992-02-28 Method of measuring position and direction of film-shaped detection coil of SQUID sensor

Publications (2)

Publication Number Publication Date
JPH05237065A JPH05237065A (en) 1993-09-17
JP2985491B2 true JP2985491B2 (en) 1999-11-29

Family

ID=13681797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4079145A Expired - Fee Related JP2985491B2 (en) 1992-02-28 1992-02-28 Method of measuring position and direction of film-shaped detection coil of SQUID sensor

Country Status (1)

Country Link
JP (1) JP2985491B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358866B2 (en) * 2019-06-27 2023-10-11 株式会社リコー Radiation source position estimation system, calibration system, and biomagnetic measurement system

Also Published As

Publication number Publication date
JPH05237065A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
US8232798B2 (en) Magnetic tracking system for an imaging system
US6374134B1 (en) Simultaneous display during surgical navigation
JP3793266B2 (en) Positron CT apparatus and image reconstruction method thereof
US7090639B2 (en) Ultrasound catheter calibration system
US8249689B2 (en) Coil arrangement for electromagnetic tracking method and system
US9398892B2 (en) Device and method for a trackable ultrasound
EP1061376A2 (en) Interactive mri scan control using an in-bore scan control device
EP2395913A1 (en) Method and system of tracking and mapping in a medical procedure
US20230031115A1 (en) Magnetic field probe for determining a disposition of an implantable magnetic marker
JP2985491B2 (en) Method of measuring position and direction of film-shaped detection coil of SQUID sensor
US20210327089A1 (en) Method for Measuring Positions
JP2990944B2 (en) Measurement device for position and direction of detection coil of SQUID sensor
US11896286B2 (en) Magnetic and optical catheter alignment
Yildirim et al. A Novel Active Device Fabrication Method for Interventional MRI Procedures
US11080816B2 (en) Image measuring and registering method
JPH04109929A (en) Method for measuring living body magnetism
JPWO2020145344A1 (en) Calibration method of magnetic field calibration device and magnetic measurement device using it
JPH05119136A (en) Measuring method for position and direction of detection coil of squid sensor
CN219289683U (en) Registration tracker and near-infrared optical positioning system
CN114732521B (en) Tracking and positioning precision evaluation system of magnetic positioning device
CN217561704U (en) Local coil and system comprising a local coil and a grid
JP3604469B2 (en) Positron CT apparatus and image reconstruction method thereof
JPH05154122A (en) Living body magnetic image device
JPH0295337A (en) Method for measuring position relation between multichannel squid sensor and subject
JPH03251226A (en) Organism magnetic measuring method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees