JP2984428B2 - Waste liquid nuclide separation method - Google Patents

Waste liquid nuclide separation method

Info

Publication number
JP2984428B2
JP2984428B2 JP21719791A JP21719791A JP2984428B2 JP 2984428 B2 JP2984428 B2 JP 2984428B2 JP 21719791 A JP21719791 A JP 21719791A JP 21719791 A JP21719791 A JP 21719791A JP 2984428 B2 JP2984428 B2 JP 2984428B2
Authority
JP
Japan
Prior art keywords
tank
iodine
technetium
radioactive
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21719791A
Other languages
Japanese (ja)
Other versions
JPH0552995A (en
Inventor
真也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21719791A priority Critical patent/JP2984428B2/en
Publication of JPH0552995A publication Critical patent/JPH0552995A/en
Application granted granted Critical
Publication of JP2984428B2 publication Critical patent/JP2984428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、放射性同位元素使用施
設及び原子力関連施設から発生する放射性液体に含まれ
るテクネチウム及び放射性ヨウ素をその他の放射性核種
から分離・回収するための方法及びそれに使用する装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and recovering technetium and radioactive iodine contained in a radioactive liquid generated from a facility using radioisotopes and nuclear facilities, from other radionuclides, and an apparatus used therefor. It is about.

【0002】[0002]

【従来の技術】放射性同位元素を使用する原子力施設で
は、発生した液体試料中に混在する放射性核種濃度を明
らかにする必要がある。このため、混在している核種の
放射性計測を行っているが、β線のみ放出する核種とγ
線を放出する核種が混在している場合は、β線放出核種
を化学的に分離してから、β線計測上、γ線の影響がな
いことを確認した後、それぞれを計測に供している。ま
た、廃液には試験に使用した有機物が含まれることもあ
り、放射性核種が隠蔽され、化学的に元素分離しようと
する放射性核種が所定の化学的挙動を示さないことがあ
る。こういった場合は有機物の分解処理を行った後、人
間により化学的元素分離操作(例えば沈澱分離法、溶媒
抽出法、イオン交換法等)を行っているのが現状であ
る。更に、テクネチウム及び放射性ヨウ素の化学的分離
は、高度な分析技術を有した作業者が実施しても、他の
放射性核種を完全に除去するためには、多くの操作過程
と作業時間を費やしている。
2. Description of the Related Art In nuclear facilities using radioisotopes, it is necessary to clarify the concentration of radionuclides mixed in a generated liquid sample. For this reason, radioactivity of mixed nuclides is measured, but nuclides that emit only β rays and γ
When nuclides that emit rays are mixed, β-ray emitting nuclides are chemically separated, and after confirming that there is no influence of γ-rays on β-ray measurement, each is used for measurement. . Further, the waste liquid may contain the organic substance used in the test, and the radionuclide may be concealed, and the radionuclide to be chemically separated may not exhibit a predetermined chemical behavior. In such a case, at present, after the decomposition treatment of the organic substance, a chemical element separation operation (for example, a precipitation separation method, a solvent extraction method, an ion exchange method, etc.) is performed by a human. Furthermore, the chemical separation of technetium and radioactive iodine, even if performed by workers with advanced analytical techniques, requires a great deal of operation and time to completely remove other radionuclides. I have.

【0003】[0003]

【発明が解決しようとする課題】放射化学的な元素分離
技術は、特殊な技術を有した作業員のみが実施している
ため、試料中の放射性核種濃度を知るためには、限られ
た人員と膨大な作業時間が必要である。
Since the radiochemical element separation technique is carried out only by workers with special skills, a limited number of personnel are required to know the radionuclide concentration in the sample. And a huge amount of work time is required.

【0004】従って、本発明の目的は、テクネチウムや
放射性ヨウ素を特別な化学的前処理を必要とせず、他の
混在核種と高い分離係数を有する元素分離処理が行えれ
ば、核種分離に要する時間を低減し、かつ特殊な化学分
離技術を有さない人にも分析作業が可能となるシステム
を提供するものである。
Accordingly, an object of the present invention is to provide a method for separating technetium and radioactive iodine which does not require a special chemical pretreatment and which can perform element separation processing having a high separation coefficient with other mixed nuclides. It is intended to provide a system capable of performing analysis work even for a person who does not have a special chemical separation technique.

【0005】[0005]

【課題を解決するための手段】本発明は、放射性同位元
素を使用する施設並びに原子力関連施設から発生する液
体試料に対し、テクネチウム及び放射性ヨウ素を酸化性
高温状態で化学的に湿式酸化して揮散させ、他の非揮散
性核種から分離する機能を備えたシステムを提供するも
のである。
SUMMARY OF THE INVENTION According to the present invention, technetium and radioactive iodine are volatilized by chemical wet oxidation of technetium and radioactive iodine in an oxidizing high temperature state with respect to a liquid sample generated from a facility using a radioisotope and a nuclear facility. To provide a system having a function of separating from other non-volatile radioactive nuclides.

【0006】即ち、本発明は、原子力関連施設から発生
する液体試料中のテクネチウム及び放射性ヨウ素の放射
能濃度を明らかにする場合において、放射性ヨウ素を硝
酸酸性環境で揮散させ、また、テクネチウムを熱濃硫酸
環境下で揮散させ、これを回収することによって、従来
分析員が多大の時間と労力を省力化するものである。以
上の処理を行うためには、次の機能が必要である: a.加熱機能 b.温度制御機能 c.酸化剤注入機能 d.捕集機能 e.上記の機能を作動させる制御機能
That is, the present invention provides a method for elucidating the radioactive concentration of technetium and radioactive iodine in a liquid sample generated from a nuclear-related facility. By volatilizing and recovering in a sulfuric acid environment, the conventional analyst saves a great deal of time and labor. In order to perform the above processing, the following functions are required: a. Heating function b. Temperature control function c. Oxidant injection function d. Collection function e. Control functions that activate the above functions

【0007】従って、本発明はコバルト60を含む放射
性液体からの放射性ヨウ素及びテクネチウムの分離方法
において、該放射性液体を硝酸酸性環境下で加熱するこ
とにより放射性ヨウ素を揮散・分離する放射性ヨウ素の
分離工程、及び放射性ヨウ素を除去した後の放射性液体
を乾固し、次に、硫酸に溶解した硫酸酸性環境下で加熱
・沸騰させることによりテクネチウムを揮散・分離する
テクネチウムの分離工程よりなることを特徴とするコバ
ルト60を含む放射性液体からの放射性ヨウ素及びテク
ネチウムの分離方法に係る。
Accordingly, the present invention provides a method for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60, wherein the radioactive liquid is heated in a nitric acid environment to volatilize and separate the radioactive iodine. , And the radioactive liquid after removing the radioactive iodine to dryness, and then heating and boiling under a sulfuric acid acidic environment dissolved in sulfuric acid, technetium is volatilized and separated by a technetium separation step characterized by comprising The present invention relates to a method for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60.

【0008】更に、本発明は上部に薬品注入槽及び揮散
成分を取り出すための揮発口を備え、かつ所定の温度に
温度を制御するための加熱手段及び反応槽温度制御器を
備えてなる反応槽と、前記取り出し口から取り出される
揮散成分を凝縮するための冷却器と、冷却器で凝縮され
た放射性ヨウ素とテクネチウムを回収するための冷却水
槽内に設置されたヨウ素回収槽と水分回収槽を備えてな
ることを特徴とするコバルト60を含む放射性液体から
の放射性ヨウ素及びテクネチウムの分離装置に係る。
Further, the present invention provides a reaction tank provided with a chemical injection tank and a volatilization port for taking out volatile components, heating means for controlling the temperature to a predetermined temperature, and a reaction tank temperature controller. A cooler for condensing volatile components taken out from the outlet, and an iodine recovery tank and a water recovery tank installed in a cooling water tank for collecting radioactive iodine and technetium condensed by the cooler. The present invention relates to an apparatus for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60.

【0009】[0009]

【作用】本発明の分離装置は、試料中に混在する放射性
核種の中からテクネチウム及び放射性ヨウ素が揮発し易
い化学的環境を形成することにより揮発させ、他の放射
性核種から効率良く分離し回収するものである。
The separation apparatus of the present invention volatilizes by forming a chemical environment in which technetium and radioactive iodine are easily volatilized from radionuclides mixed in the sample, and efficiently separates and recovers from other radionuclides. Things.

【0010】[0010]

【実施例】図1に本発明の分離装置の1実施態様を示
す。図中、反応槽(1)は、外部に電気ヒータを設置して
加熱手段をもった反応槽温度制御器(2)を付属したガラ
ス製容器である。上部には揮発した気体の揮発口及び放
射性核種の一部を揮発性にするための薬品を注入する薬
品注入槽(3)が付属しており、反応槽(1)と薬品注入槽
(3)はテフロン製のバルブ(2)で分離されている。
FIG. 1 shows an embodiment of the separation apparatus of the present invention. In the figure, a reaction vessel (1) is a glass vessel provided with a reaction vessel temperature controller (2) having an external heater and a heating means. The upper part is equipped with a volatilization port for volatilized gas and a chemical injection tank (3) for injecting a chemical for volatilizing a part of the radionuclide, a reaction tank (1) and a chemical injection tank.
(3) is separated by a Teflon valve (2).

【0011】反応槽(1)上部の揮発口は、冷却器(4)に接
続されており、揮発成分はここで凝縮される。更に、冷
却器出口は三方コック(5)に接続されており、三方コッ
ク(5)の出口2方は、ヨウ素回収槽(6)と水分回収槽(7)
に接続されている。また、ヨウ素回収槽(6)と水分回収
槽(7)は、揮発成分の回収効率を上げるために氷と純水
を入れた冷却水槽(8)に浸漬されている。
The volatilization port at the top of the reaction tank (1) is connected to a cooler (4), where volatile components are condensed. Further, the cooler outlet is connected to a three-way cock (5), and two outlets of the three-way cock (5) are connected to an iodine recovery tank (6) and a water recovery tank (7).
It is connected to the. The iodine recovery tank (6) and the water recovery tank (7) are immersed in a cooling water tank (8) containing ice and pure water in order to increase the recovery efficiency of volatile components.

【0012】反応槽(1)の出口と冷却器(4)のラインに
は、冷却器(4)内を洗浄するための洗浄水槽(10)がテフ
ロン製バルブ4(14)を介して接続されている。薬品注入
槽(3)及び洗浄水槽(10)からの薬品の注入には、冷却器
(4)内を洗浄するための洗浄水槽がテフロン製バルブ4
(14)を介して接続されている。薬品注入槽(3)及び洗浄
水槽(10)からの薬品の注入には、空気ガスボンベ(15)か
ら空気供給ライン(9)を通った空気ガス圧力を利用す
る。薬品注入槽(3)への薬品の注入は、人間の操作によ
り、薬品注入槽上部の摺合せジョイント(12)を外して注
入する。
A washing water tank (10) for washing the inside of the cooler (4) is connected to an outlet of the reaction tank (1) and a line of the cooler (4) through a Teflon valve 4 (14). ing. A cooler is used to inject chemicals from the chemical injection tank (3) and the washing water tank (10).
(4) The cleaning tank for cleaning the inside is a Teflon valve 4
It is connected via (14). The injection of chemicals from the chemical injection tank (3) and the washing water tank (10) uses the air gas pressure that has passed through the air supply line (9) from the air gas cylinder (15). The medicine is injected into the chemical injection tank (3) by removing the sliding joint (12) at the top of the chemical injection tank by human operation.

【0013】(起動前準備)分析対象試料を計量し、元素
分離に必要な担体溶液を加えた後、摺合せジョイント(1
2)を外し、バルブ2(13)を開として試料を反応槽(1)に
注入する。バルブ2(13)を閉とし、摺合せジョイント(1
2)から酸化剤溶液を薬品注入槽(3)に入れる。摺合せジ
ョイント(12)を薬品注入槽(3)上部に接続し、空気供給
ライン(9)を接続する。冷却水槽(8)を準備し、ヨウ素回
収槽(6)(ヨウ素回収槽には予めアルカリ溶液を入れる)
及び水分回収槽(7)を冷却水槽(8)に浸漬した状態で三方
コック出口(5)にそれぞれ接続する。この時のバルブの
開閉状態は以下の通りである。 バルブ1:開 バルブ2:閉 バルブ3:閉 バルブ4:閉
(Preparation before starting) A sample to be analyzed is weighed, and a carrier solution necessary for elemental separation is added.
2) is removed, the valve 2 (13) is opened, and the sample is injected into the reaction tank (1). Close valve 2 (13) and slide joint (1
The oxidizing agent solution is put into the chemical injection tank (3) from 2). The sliding joint (12) is connected to the upper part of the chemical injection tank (3), and the air supply line (9) is connected. Prepare a cooling water tank (8), iodine recovery tank (6) (put an alkaline solution in the iodine recovery tank in advance)
And the water recovery tank (7) is connected to the three-way cock outlet (5) in a state of being immersed in the cooling water tank (8). The open / closed state of the valve at this time is as follows. Valve 1: Open Valve 2: Close Valve 3: Close Valve 4: Close

【0014】(装置の起動)バルブ1(11)を開、バルブ2
(13)を微開とし、酸化剤溶液を反応槽(1)に添加する。
更に、バルブ2(13)を全開とし、空気供給ライン(9)か
ら送られてくる空気によって、酸化剤を全量反応槽に添
加し、反応槽(1)内を連続通気する。この状態で反応槽
(1)の加熱を開始する。反応槽温度は、温度制御点(17)
の温度を反応槽温度制御器(2)によって所定の液温に制
御される。試料中の放射性ヨウ素は、酸化剤の添加及び
温度効果によって揮発を開始し、揮発した放射性ヨウ素
は、供給される空気によって反応槽(1)の上部から冷却
器(4)を経てヨウ素回収槽(6)に送られ、ヨウ素回収槽
(6)内のアルカリ溶液に吸収(溶解)される。所定時間経
過後、三方コック(5)を、冷却器出口(4)と水分回収槽
(7)を結ぶ方向にセットする。反応槽(1)は容器内水分が
蒸発するまで加熱され、水分及び揮発成分は冷却器(4)
で凝縮されて水分回収槽(9)に捕集される。反応槽(1)内
の液が乾固したら反応槽(1)の加熱を停止し、冷却させ
る(冷却は自然冷却が好ましい)。反応槽(1)の冷却完了
後、バルブ1(11)及びバルブ2(13)を閉とし、摺合せジ
ョイント(12)を一旦外し、酸化剤を含んだ硫酸を摺合せ
ジョイント(12)から薬品注入槽(2)に入れる。摺合せジ
ョイント(12)を接続し、バルブ1(11)を開、バルブ2(1
3)を微開とし、酸化剤を含んだ硫酸を反応槽中に供給す
る。バルブ2(13)を全開とし、反応槽(1)内と通気す
る。反応槽(1)を、再び加熱し150℃以上の液温を維
持することによってテクネチウム及びレニウムを蒸発さ
せ、水分回収槽(7)に捕集する。所定時間経過後、反応
槽(1)の加熱を停止し、冷却する。バルブ1(11)及びバ
ルブ2(13)を閉とし、バルブ3(16)を開、バルブ4(14)
を微開とし、予め洗浄水槽(10)に添加してあった洗浄溶
液を冷却器(4)側に注入する。注入完了後、バルブ3(1
6)を開、バルブ4(14)を閉とする。ヨウ素回収槽(6)及
び水分回収槽(7)を冷却水槽(8)から外す。
(Starting of the device) Valve 1 (11) is opened and valve 2 is opened.
(13) is slightly opened, and the oxidizing agent solution is added to the reaction tank (1).
Further, the valve 2 (13) is fully opened, and the entire amount of the oxidizing agent is added to the reaction tank by the air sent from the air supply line (9), and the inside of the reaction tank (1) is continuously ventilated. In this state the reaction tank
Start heating in (1). The reaction tank temperature is the temperature control point (17)
Is controlled to a predetermined liquid temperature by a reaction tank temperature controller (2). Radioactive iodine in the sample starts volatilization due to the addition of an oxidizing agent and a temperature effect, and the volatilized radioactive iodine is supplied from the upper part of the reaction tank (1) by a supplied cooler (4) through an iodine recovery tank ( 6) sent to the iodine recovery tank
Absorbed (dissolved) in the alkaline solution in (6). After a lapse of a predetermined time, connect the three-way cock (5) to the cooler outlet (4) and the water collecting tank.
Set in the direction connecting (7). The reaction tank (1) is heated until the water in the container evaporates, and the water and volatile components are cooled by the cooler (4).
And collected in the water recovery tank (9). When the liquid in the reaction tank (1) dries, the heating of the reaction tank (1) is stopped and the reaction tank (1) is cooled (preferably cooling is natural cooling). After the cooling of the reaction tank (1) is completed, the valve 1 (11) and the valve 2 (13) are closed, the sliding joint (12) is once removed, and sulfuric acid containing an oxidizing agent is removed from the sliding joint (12). Put in injection tank (2). Connect the sliding joint (12), open valve 1 (11), and open valve 2 (1
3) is slightly opened, and sulfuric acid containing an oxidizing agent is supplied into the reaction tank. The valve 2 (13) is fully opened to ventilate the inside of the reaction tank (1). The reaction tank (1) is heated again to maintain a liquid temperature of 150 ° C. or higher, thereby evaporating technetium and rhenium and collecting the technetium and rhenium in the water recovery tank (7). After a lapse of a predetermined time, the heating of the reaction tank (1) is stopped, and the reaction tank (1) is cooled. Valve 1 (11) and valve 2 (13) are closed, valve 3 (16) is open, valve 4 (14)
Is slightly opened, and the washing solution previously added to the washing water tank (10) is poured into the cooler (4). After the injection is completed, valve 3 (1
6) is opened and the valve 4 (14) is closed. Remove the iodine recovery tank (6) and the water recovery tank (7) from the cooling water tank (8).

【0015】以下、具体的な実験操作について詳述す
る。B(ボロン)10000ppmを含む硼酸ナトリウム
溶液100mlに、放射性ヨウ素(129I)、99Tc及び
60Coをそれぞれ370Bq加え、担体溶液として
-、ReO4 +及びCo2+をそれぞれ10mg含むよう
に添加した。これを分析対象試料として、摺合せジョイ
ント(12)を外し、バルブ2(13)を開として反応槽(1)に
注入した。
Hereinafter, specific experimental operations will be described in detail. In 100 ml of a sodium borate solution containing 10,000 ppm of B (boron), radioactive iodine ( 129 I), 99 Tc and
370 Bq was added to each of 60 Co, and I , ReO 4 + and Co 2+ were each added as a carrier solution so as to contain 10 mg. Using this as a sample to be analyzed, the sliding joint (12) was removed, and the valve 2 (13) was opened and injected into the reaction tank (1).

【0016】バルブ2(13)を閉とし、摺合せジョイント
(12)から酸化剤溶液として硝酸溶液(分析用JIS特級
グレードの硝酸1容と純水9容)20mlを薬品注入槽
に手動で注入する。摺合せジョイント(12)を薬品注入槽
(3)上部に接続し、空気供給ラインを接続する。また、
冷却水槽(8)を準備し、ヨウ素回収槽(6)(回収槽には予
め4規定水酸化ナトリウム溶液100mlを入れる)及
び冷却水槽に浸漬した状態で三方コック(5)の出口にそ
れぞれ接続する。この時のバルブの開閉状態は下記の通
りとする:バルブ1=開、バルブ2=閉、バルブ3=
閉、バルブ4=閉。
[0016] Close the valve 2 (13) and slide the joint
From (12), 20 ml of nitric acid solution (1 volume of JIS special grade nitric acid and 9 volumes of pure water) as an oxidizing agent solution is manually injected into the chemical injection tank. Slide joint (12) into chemical injection tank
(3) Connect to the top and connect the air supply line. Also,
Prepare a cooling water tank (8), and connect it to the outlet of a three-way cock (5) while immersed in the iodine recovery tank (6) (100 ml of 4N sodium hydroxide solution in advance in the recovery tank) and the cooling water tank . The open / closed state of the valve at this time is as follows: valve 1 = open, valve 2 = closed, valve 3 =
Closed, valve 4 = closed.

【0017】次に、バルブ1(11)を開、バルブ2(13)を
微開とし、前記硝酸溶液を反応槽(1)に添加する。更
に、バルブ2(13)を全開とし、空気供給ライン(9)から
送られてくる空気(50ml/分)によって、硝酸溶液を
全量反応槽に添加し、反応槽(1)内を連続通気する。
Next, the valve 1 (11) is opened, the valve 2 (13) is slightly opened, and the nitric acid solution is added to the reaction tank (1). Further, the valve 2 (13) is fully opened, the nitric acid solution is entirely added to the reaction tank by the air (50 ml / min) sent from the air supply line (9), and the inside of the reaction tank (1) is continuously ventilated. .

【0018】この状態で反応槽(1)の加熱を開始する。
反応槽温度は、温度制御点(17)の温度を反応槽温度制御
器(2)によって80±10℃の液温に制御される。試料
中の放射性ヨウ素は、酸化剤の添加及び温度効果によっ
て揮発を開始し、揮発した放射性ヨウ素は、供給される
空気によって反応槽(1)の上部から冷却器(4)を経てヨウ
素回収槽に送られ、ヨウ素回収槽内のアルカリ溶液に吸
収(溶解)される。
In this state, heating of the reaction tank (1) is started.
The reaction tank temperature is controlled at a temperature of the temperature control point (17) to a liquid temperature of 80 ± 10 ° C. by the reaction tank temperature controller (2). The radioactive iodine in the sample starts volatilization due to the addition of the oxidizing agent and the temperature effect, and the volatilized radioactive iodine is supplied from the upper part of the reaction tank (1) to the iodine recovery tank via the cooler (4) by the supplied air. It is sent and absorbed (dissolved) in the alkaline solution in the iodine recovery tank.

【0019】約30〜60分間経過後、三方コック(5)
を冷却器出口(4)と水分回収槽(7)を結ぶようにセットし
た。反応槽(1)は容器内水分が蒸発するまで加熱され、
水分及び揮発成分は冷却器(4)で凝縮して水分回収槽(9)
に捕集される。
After a lapse of about 30 to 60 minutes, the three-way cock (5)
Was set to connect the cooler outlet (4) and the water recovery tank (7). The reaction tank (1) is heated until the water in the container evaporates,
Water and volatile components are condensed in the cooler (4) and the water recovery tank (9)
Collected in.

【0020】反応槽(1)内の液が乾固したら反応槽(1)の
加熱を停止し、自然冷却により冷却する。反応槽(1)の
冷却完了後、バルブ1(11)及びバルブ2(13)を閉とし、
摺合せジョイントを一旦外し、濃硝酸1mlを加えた濃
硫酸30mlを摺合せジョイント(12)から薬品注入槽に
入れる。摺合せジョイントを接続し、バルブ1(11)を
開、バルブ2(13)を微開とし、酸化剤を含んだ硫酸を空
気圧で反応槽中に供給する。バルブ2(13)を全開とし、
反応槽(1)内を50ml/分で通気する。
When the liquid in the reaction tank (1) dries, the heating of the reaction tank (1) is stopped, and the reaction tank (1) is cooled by natural cooling. After the cooling of the reaction tank (1) is completed, the valve 1 (11) and the valve 2 (13) are closed,
The sliding joint is once removed, and 30 ml of concentrated sulfuric acid to which 1 ml of concentrated nitric acid is added is put into the chemical injection tank from the sliding joint (12). A sliding joint is connected, valve 1 (11) is opened, valve 2 (13) is slightly opened, and sulfuric acid containing an oxidizing agent is supplied into the reaction tank by air pressure. Fully open valve 2 (13),
The inside of the reaction tank (1) is aerated at 50 ml / min.

【0021】次に、反応槽(1)を、再び加熱して溶液を
沸騰させる。テクネチウム及びレニウムは揮散して水分
回収槽(7)に捕集される。約60分経過後、反応槽(1)の
加熱を停止し、放冷する。バルブ1(11)及びバルブ2(1
3)を閉とし、バルブ3(16)を開、バルブ4(14)を微開と
し、予め洗浄水槽(10)に添加してあった洗浄溶液を冷却
器(4)側に注入する。注入完了後、バルブ3(16)を開、
バルブ4(14)を閉とし、ヨウ素回収槽(6)及び水分回収
槽(7)を冷却水槽(8)から外す。
Next, the reaction tank (1) is heated again to boil the solution. Technetium and rhenium are volatilized and collected in the water recovery tank (7). After about 60 minutes, the heating of the reaction tank (1) is stopped and the reaction vessel (1) is allowed to cool. Valve 1 (11) and Valve 2 (1
3) is closed, the valve 3 (16) is opened, the valve 4 (14) is slightly opened, and the cleaning solution previously added to the cleaning water tank (10) is injected into the cooler (4). After the injection is completed, open valve 3 (16),
The valve 4 (14) is closed, and the iodine recovery tank (6) and the water recovery tank (7) are removed from the cooling water tank (8).

【0022】このようにして行った実験操作の結果を表
1に示す。ヨウ素回収槽(6)へのヨウ素回収率は99.9
%で、ほぼ100%が揮散回収できた。また、試料溶液
に加えたコバルト60は、その1/1000程度がヨウ
素回収槽に混入しただけで良好な分離能力があることを
確認した。水分回収槽(7)へのテクネチウム回収率は7
3%で、テクネチウムの担体として添加したレニウムの
回収率も73%であった。また、試料溶液に加えたコバ
ルト60はその1/250000程度が水分回収槽に混
入しただけで良好な分離能力があることを確認した。
Table 1 shows the results of the experimental operation thus performed. The iodine recovery rate in the iodine recovery tank (6) is 99.9
%, Almost 100% could be volatilized and recovered. In addition, it was confirmed that the cobalt 60 added to the sample solution had good separation ability only by mixing about 1/1000 of the cobalt 60 into the iodine recovery tank. Technetium recovery rate in water recovery tank (7) is 7
At 3%, the recovery of rhenium added as a technetium carrier was 73%. Also, it was confirmed that the cobalt 60 added to the sample solution had a good separation ability only by mixing about 1/2500000 into the water recovery tank.

【0023】[0023]

【表1】 テクネチウム、ヨウ素の回収結果回収液 回収率 60Co除染係数 ヨウ素回収液 99.9% >10000 テクネチウム回収液 Tc=73%、Re=73% 250000[Table 1] Technetium and iodine recovery results Recovered liquid recovery rate 60 Co decontamination coefficient Iodine recovered liquid 99.9%> 10000 Technetium recovered liquid Tc = 73%, Re = 73% 250,000

【0024】[0024]

【発明の効果】原子力施設から発生する廃液中に存在す
るテクネチウム99及びヨウ素129を放射化学的に分
離する際の前処理操作を簡素化することができ、大幅な
分析時間の短縮及び化学的な分離技術を要さない人にも
元素分離が容易に行えることが可能となる。これによ
り、RI施設並びに原子力施設から発生する液体中のテ
クネチウム、ヨウ素の分離が簡単に実施でき、微量β線
放出核種であるテクネチウム99、ヨウ素129等の放
射化学分離が容易にでき、液体試料中の放射能濃度が求
め易くなる。
As described above, the pretreatment operation for radiochemically separating technetium-99 and iodine-129 present in the waste liquid generated from a nuclear facility can be simplified, and the analysis time can be significantly reduced and the chemical time can be greatly reduced. Element separation can be easily performed even by a person who does not need the separation technique. This makes it possible to easily separate technetium and iodine in liquids generated from RI facilities and nuclear facilities, and to easily perform radiochemical separation of technetium 99 and iodine 129, etc., which are trace β-ray emitting nuclides. Radioactivity concentration can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の分離装置の1実施態様を示す概略図で
ある。
FIG. 1 is a schematic view showing one embodiment of a separation device of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 反応槽温度制御器 4 冷却器 3 薬品注入槽 5 三方コック 6 ヨウ素回収槽 7 水分回収槽 8 冷却水槽 9 空気供給ライン 10 洗浄水槽 11 バルブ1 12 摺合せジョイント 13 バルブ2 14 バルブ4 15 空気ボンベ 16 バルブ3 17 温度制御点 DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Reaction tank temperature controller 4 Cooler 3 Chemical injection tank 5 Three-way cock 6 Iodine recovery tank 7 Water recovery tank 8 Cooling water tank 9 Air supply line 10 Cleaning water tank 11 Valve 1 12 Sliding joint 13 Valve 2 14 Valve 4 15 Air cylinder 16 Valve 3 17 Temperature control point

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コバルト60を含む放射性液体からの放
射性ヨウ素及びテクネチウムの分離方法において、該放
射性液体を硝酸酸性環境下で加熱することにより放射性
ヨウ素を揮散・分離する放射性ヨウ素の分離工程、及び
放射性ヨウ素を除去した後の放射性液体を乾固し、次
に、硫酸に溶解した硫酸酸性環境下で加熱・沸騰させる
ことによりテクネチウムを揮散・分離するテクネチウム
の分離工程よりなることを特徴とするコバルト60を含
む放射性液体からの放射性ヨウ素及びテクネチウムの分
離方法。
1. A method for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60, wherein the radioactive liquid is heated in a nitric acid environment to volatilize and separate radioactive iodine, and a radioactive iodine separation step. Cobalt 60 characterized by comprising a technetium separation step of evaporating and separating technetium by heating and boiling in a sulfuric acid environment dissolved in sulfuric acid, after drying the radioactive liquid after removing iodine. A method for separating radioactive iodine and technetium from a radioactive liquid containing:
【請求項2】 上部に薬品注入槽及び揮散成分を取り出
すための揮発口を備え、かつ所定の温度に温度を制御す
るための加熱手段及び反応槽温度制御器を備えてなる反
応槽と、前記取り出し口から取り出される揮散成分を凝
縮するための冷却器と、冷却器で凝縮された放射性ヨウ
素とテクネチウムを回収するための冷却水槽内に設置さ
れたヨウ素回収槽と水分回収槽を備えてなることを特徴
とするコバルト60を含む放射性液体からの放射性ヨウ
素及びテクネチウムの分離装置。
2. A reaction tank comprising a chemical injection tank and a volatilization port for taking out volatile components at an upper part, and a heating means for controlling the temperature to a predetermined temperature and a reaction tank temperature controller; A cooler for condensing the volatile components taken out from the outlet, and an iodine recovery tank and a water recovery tank installed in a cooling water tank for collecting radioactive iodine and technetium condensed by the cooler An apparatus for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60, characterized in that:
JP21719791A 1991-08-28 1991-08-28 Waste liquid nuclide separation method Expired - Fee Related JP2984428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21719791A JP2984428B2 (en) 1991-08-28 1991-08-28 Waste liquid nuclide separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21719791A JP2984428B2 (en) 1991-08-28 1991-08-28 Waste liquid nuclide separation method

Publications (2)

Publication Number Publication Date
JPH0552995A JPH0552995A (en) 1993-03-02
JP2984428B2 true JP2984428B2 (en) 1999-11-29

Family

ID=16700386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21719791A Expired - Fee Related JP2984428B2 (en) 1991-08-28 1991-08-28 Waste liquid nuclide separation method

Country Status (1)

Country Link
JP (1) JP2984428B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415173B1 (en) * 2012-11-30 2014-07-04 한국원자력연구원 Separation and recovery device for wet waste including radionuclide, and the separation and recovery method using the same
GB201318450D0 (en) * 2013-10-18 2013-12-04 Ge Healthcare Ltd Closed evaporation system
CN106601322B (en) * 2017-02-15 2018-09-18 中国工程物理研究院材料研究所 A kind of VPCE static properties test system
CN106841447B (en) * 2017-02-15 2019-06-21 中国工程物理研究院材料研究所 A kind of VPCE static properties test method
CN112850810A (en) * 2020-12-25 2021-05-28 中国原子能科学研究院 Transformation system of technetium-containing product feed liquid

Also Published As

Publication number Publication date
JPH0552995A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
Boyd Technetium-99m generators—the available options
Swain et al. Separation and recovery of ruthenium: a review
Lan et al. Two-step coprecipitation method for differentiating chromium species in water followed by determination of chromium by neutron activation analysis
US3833469A (en) Process for the production of technetium-99m from neutron irradiated molybdenum trioxide
JP2984428B2 (en) Waste liquid nuclide separation method
JP5294180B2 (en) Method and apparatus for separating and purifying technetium from molybdenum containing technetium, and method and apparatus for recovering molybdenum
CA2764086A1 (en) A system for automatically separating 99mtc-radionuclide from low-medium specific activity 99mo and a process for the same
Krey et al. Determination of acid leachable and total plutonium in large soil samples
Ramanujam et al. Separation of carrier-free 90 Y from high level waste by supported liquid membrane using KSM-17
Tomioka et al. Cleaning of materials contaminated with metal oxides through supercritical fluid extraction with CO2 containing TBP
Kiba et al. Rapid separation of radioactive strontium by solvent extraction with TTA-Hexone
Clark Separation and determination of radiostrontium in calcium carbonate matrices of biological origin
Sekine et al. Liquid—liquid extraction separation and sequential determination of plutonium and americium in environmental samples by alpha-spectrometry
JPH02201199A (en) Treatment of high-radioactive waste
KR100272977B1 (en) Automatic apparatus for ri production by solvent extraction using phase sensor and a method of ri extraction thereby
Howells et al. The chemical processing of irradiated fuels from thermal reactors
Samsahl Automated neutron-activation analysis of biological material with high radiation levels
Lumetta et al. Separation of strontium-90 from Hanford high-level radioactive waste
JP2971803B2 (en) Method for simultaneous separation of radioactive carbon and radioactive iodine
JPH0416446B2 (en)
Acena et al. Determination of isotopes of uranium and thorium in low-level environmental samples
Farrar et al. Chromatographic-solvent extraction isolation of berkelium-249 from highly radioactive solutions and its determination by. beta.-counting
JP3145889B2 (en) Sequential separation of uranium and rare earth elements using supercritical fluid as extraction medium
Rotsch et al. Chemical Processing of mini-SHINE Target Solutions for Recovery and Purification of Mo-99
Kabai et al. Simultaneous determination of radioactive halogen isotopes and 99Tc

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831

LAPS Cancellation because of no payment of annual fees