JPH0552995A - Separation method for waste liquid nuclear species - Google Patents

Separation method for waste liquid nuclear species

Info

Publication number
JPH0552995A
JPH0552995A JP21719791A JP21719791A JPH0552995A JP H0552995 A JPH0552995 A JP H0552995A JP 21719791 A JP21719791 A JP 21719791A JP 21719791 A JP21719791 A JP 21719791A JP H0552995 A JPH0552995 A JP H0552995A
Authority
JP
Japan
Prior art keywords
tank
technetium
iodine
radioactive
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21719791A
Other languages
Japanese (ja)
Other versions
JP2984428B2 (en
Inventor
Shinya Shimizu
真也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP21719791A priority Critical patent/JP2984428B2/en
Publication of JPH0552995A publication Critical patent/JPH0552995A/en
Application granted granted Critical
Publication of JP2984428B2 publication Critical patent/JP2984428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To simplify the preliminary processing operation, shorten analyzing time and make the element separation easy by providing functions of oxidizing technetium and radioactive iodine chemically in wet in oxidizing high temperature state, evaporating and separating from other nonvolatile nuclear species. CONSTITUTION:After adding nitric acid solution in a reaction tank 1 by opening a valve 13, air is constantly supplied through an air supply line 9 into the tank 1. Then, by heating at determined state with a reaction tank temperature controller 2, the evaporated radioactive iodine is sent through a cooler 4, to an iodine recovery tank 6 and solved in alkalic solution. After a determined time, a three way valve 5 is switched and water and volatile components in the tank 1 are collected in a water collection tank 7. After drying up the liquid in the tank 1, heating is terminated to cool it and sulfuric acid including oxidation agent is added from a chemical injection tank 3 to the tank 1. By heating it again over 150 deg.C, technetium and rhenium are evaporated and collected in the tank 7. After elapsing a determined time, the heating is terminated, the washing solution in a washing tank 10 is injected through the cooler 4 and the tank 6 and tank 7 are taken out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射性同位元素使用施
設及び原子力関連施設から発生する放射性液体に含まれ
るテクネチウム及び放射性ヨウ素をその他の放射性核種
から分離・回収するための方法及びそれに使用する装置
に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for separating and recovering technetium and radioiodine contained in a radioactive liquid generated from a radioisotope-using facility and a nuclear-related facility from other radionuclides, and an apparatus used therefor. It is about.

【0002】[0002]

【従来の技術】放射性同位元素を使用する原子力施設で
は、発生した液体試料中に混在する放射性核種濃度を明
らかにする必要がある。このため、混在している核種の
放射性計測を行っているが、β線のみ放出する核種とγ
線を放出する核種が混在している場合は、β線放出核種
を化学的に分離してから、β線計測上、γ線の影響がな
いことを確認した後、それぞれを計測に供している。ま
た、廃液には試験に使用した有機物が含まれることもあ
り、放射性核種が隠蔽され、化学的に元素分離しようと
する放射性核種が所定の化学的挙動を示さないことがあ
る。こういった場合は有機物の分解処理を行った後、人
間により化学的元素分離操作(例えば沈澱分離法、溶媒
抽出法、イオン交換法等)を行っているのが現状であ
る。更に、テクネチウム及び放射性ヨウ素の化学的分離
は、高度な分析技術を有した作業者が実施しても、他の
放射性核種を完全に除去するためには、多くの操作過程
と作業時間を費やしている。
2. Description of the Related Art In a nuclear facility that uses radioisotopes, it is necessary to clarify the concentration of radionuclides mixed in the generated liquid sample. For this reason, radioactivity of mixed nuclides is measured.
When nuclides that emit rays are mixed, after separating β-ray emitting nuclides chemically, after confirming that there is no effect of γ rays on β ray measurement, each is used for measurement .. In addition, the waste liquid may contain the organic matter used in the test, the radionuclide may be hidden, and the radionuclide that is to be chemically separated into elements may not exhibit a predetermined chemical behavior. In such cases, it is the current situation that humans perform chemical element separation operations (eg, precipitation separation method, solvent extraction method, ion exchange method, etc.) after decomposing organic matter. Furthermore, the chemical separation of technetium and radioiodine, even if carried out by a worker with a high level of analytical technique, requires many operation steps and work time in order to completely remove other radionuclides. There is.

【0003】[0003]

【発明が解決しようとする課題】放射化学的な元素分離
技術は、特殊な技術を有した作業員のみが実施している
ため、試料中の放射性核種濃度を知るためには、限られ
た人員と膨大な作業時間が必要である。
Since the radiochemical element separation technique is carried out only by a worker having a special technique, a limited number of personnel are required to know the radionuclide concentration in the sample. And a huge amount of work time is required.

【0004】従って、本発明の目的は、テクネチウムや
放射性ヨウ素を特別な化学的前処理を必要とせず、他の
混在核種と高い分離係数を有する元素分離処理が行えれ
ば、核種分離に要する時間を低減し、かつ特殊な化学分
離技術を有さない人にも分析作業が可能となるシステム
を提供するものである。
Therefore, the object of the present invention is to reduce the time required for nuclide separation if technetium or radioactive iodine can be subjected to elemental separation treatment having a high separation coefficient with other mixed nuclides without requiring special chemical pretreatment. It is intended to provide a system capable of performing analysis work even for a person who does not have a special chemical separation technology while reducing the above.

【0005】[0005]

【課題を解決するための手段】本発明は、放射性同位元
素を使用する施設並びに原子力関連施設から発生する液
体試料に対し、テクネチウム及び放射性ヨウ素を酸化性
高温状態で化学的に湿式酸化して揮散させ、他の非揮散
性核種から分離する機能を備えたシステムを提供するも
のである。
The present invention is directed to the chemical vaporization of technetium and radioiodine by chemical wet oxidation in a high temperature oxidative state to a liquid sample generated from a facility that uses radioisotopes and nuclear facilities. And a system having a function of separating from other non-volatile nuclides.

【0006】即ち、本発明は、原子力関連施設から発生
する液体試料中のテクネチウム及び放射性ヨウ素の放射
能濃度を明らかにする場合において、放射性ヨウ素を硝
酸酸性環境で揮散させ、また、テクネチウムを熱濃硫酸
環境下で揮散させ、これを回収することによって、従来
分析員が多大の時間と労力を省力化するものである。以
上の処理を行うためには、次の機能が必要である: a.加熱機能 b.温度制御機能 c.酸化剤注入機能 d.捕集機能 e.上記の機能を作動させる制御機能
That is, in the present invention, when clarifying the radioactive concentrations of technetium and radioactive iodine in a liquid sample generated from a nuclear facility, radioactive iodine is volatilized in a nitric acid acidic environment, and technetium is heated to a high concentration. By volatilizing in a sulfuric acid environment and collecting this, the conventional analyst saves a great deal of time and labor. To perform the above processing, the following functions are required: a. Heating function b. Temperature control function c. Oxidizing agent injection function d. Collection function e. Control function that activates the above functions

【0007】従って、本発明はコバルト60を含む放射
性液体からの放射性ヨウ素及びテクネチウムの分離方法
において、該放射性液体を硝酸酸性環境下で加熱するこ
とにより放射性ヨウ素を揮散・分離する放射性ヨウ素の
分離工程、及び放射性ヨウ素を除去した後の放射性液体
を乾固し、次に、硫酸に溶解した硫酸酸性環境下で加熱
・沸騰させることによりテクネチウムを揮散・分離する
テクネチウムの分離工程よりなることを特徴とするコバ
ルト60を含む放射性液体からの放射性ヨウ素及びテク
ネチウムの分離方法に係る。
Therefore, the present invention provides a method for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60, wherein the radioactive liquid is heated in a nitric acid acidic environment to volatilize and separate the radioactive iodine. , And the radioactive liquid after removal of radioactive iodine are dried to dryness, and then a technetium separation step of volatilizing and separating technetium by heating and boiling in a sulfuric acid acidic environment dissolved in sulfuric acid. Method for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60.

【0008】更に、本発明は上部に薬品注入槽及び揮散
成分を取り出すための揮発口を備え、かつ所定の温度に
温度を制御するための加熱手段及び反応槽温度制御器を
備えてなる反応槽と、前記取り出し口から取り出される
揮散成分を凝縮するための冷却器と、冷却器で凝縮され
た放射性ヨウ素とテクネチウムを回収するための冷却水
槽内に設置されたヨウ素回収槽と水分回収槽を備えてな
ることを特徴とするコバルト60を含む放射性液体から
の放射性ヨウ素及びテクネチウムの分離装置に係る。
Further, the present invention is a reaction tank comprising a chemical injection tank and a volatilization port for taking out volatilized components on the upper part, and a heating means for controlling the temperature to a predetermined temperature and a reaction tank temperature controller. And a cooler for condensing the volatilized components taken out from the outlet, an iodine recovery tank and a water recovery tank installed in a cooling water tank for recovering radioactive iodine and technetium condensed by the cooler. The present invention relates to a device for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60, which is characterized in that

【0009】[0009]

【作用】本発明の分離装置は、試料中に混在する放射性
核種の中からテクネチウム及び放射性ヨウ素が揮発し易
い化学的環境を形成することにより揮発させ、他の放射
性核種から効率良く分離し回収するものである。
The separating apparatus of the present invention volatilizes technetium and radioactive iodine by forming a chemical environment in which radioactive nuclides mixed in a sample are easily volatilized, and efficiently separates and collects them from other radioactive nuclides. It is a thing.

【0010】[0010]

【実施例】図1に本発明の分離装置の1実施態様を示
す。図中、反応槽(1)は、外部に電気ヒータを設置して
加熱手段をもった反応槽温度制御器(2)を付属したガラ
ス製容器である。上部には揮発した気体の揮発口及び放
射性核種の一部を揮発性にするための薬品を注入する薬
品注入槽(3)が付属しており、反応槽(1)と薬品注入槽
(3)はテフロン製のバルブ(2)で分離されている。
EXAMPLE FIG. 1 shows one embodiment of the separation apparatus of the present invention. In the figure, the reaction vessel (1) is a glass container to which an electric heater is installed outside and a reaction vessel temperature controller (2) having a heating means is attached. The upper part is equipped with a volatilization port for volatilized gas and a chemical injection tank (3) for injecting a chemical to make part of the radionuclide volatile.The reaction tank (1) and the chemical injection tank are attached.
(3) is separated by a Teflon valve (2).

【0011】反応槽(1)上部の揮発口は、冷却器(4)に接
続されており、揮発成分はここで凝縮される。更に、冷
却器出口は三方コック(5)に接続されており、三方コッ
ク(5)の出口2方は、ヨウ素回収槽(6)と水分回収槽(7)
に接続されている。また、ヨウ素回収槽(6)と水分回収
槽(7)は、揮発成分の回収効率を上げるために氷と純水
を入れた冷却水槽(8)に浸漬されている。
The volatilization port at the top of the reaction tank (1) is connected to the cooler (4), and the volatile components are condensed here. Further, the cooler outlet is connected to a three-way cock (5), and two outlets of the three-way cock (5) have an iodine recovery tank (6) and a water recovery tank (7).
It is connected to the. Further, the iodine recovery tank (6) and the water recovery tank (7) are immersed in a cooling water tank (8) containing ice and pure water in order to improve the recovery efficiency of volatile components.

【0012】反応槽(1)の出口と冷却器(4)のラインに
は、冷却器(4)内を洗浄するための洗浄水槽(10)がテフ
ロン製バルブ4(14)を介して接続されている。薬品注入
槽(3)及び洗浄水槽(10)からの薬品の注入には、冷却器
(4)内を洗浄するための洗浄水槽がテフロン製バルブ4
(14)を介して接続されている。薬品注入槽(3)及び洗浄
水槽(10)からの薬品の注入には、空気ガスボンベ(15)か
ら空気供給ライン(9)を通った空気ガス圧力を利用す
る。薬品注入槽(3)への薬品の注入は、人間の操作によ
り、薬品注入槽上部の摺合せジョイント(12)を外して注
入する。
A washing water tank (10) for washing the inside of the cooler (4) is connected to the outlet of the reaction tank (1) and the line of the cooler (4) through a Teflon valve 4 (14). ing. Use a cooler to inject the chemicals from the chemical injection tank (3) and wash water tank (10).
(4) The Teflon valve 4 is the cleaning water tank for cleaning the inside.
Connected via (14). The air gas pressure from the air gas cylinder (15) through the air supply line (9) is used to inject the chemicals from the chemical injection tank (3) and the cleaning water tank (10). The medicine is injected into the medicine injection tank (3) by a human operation by removing the sliding joint (12) at the upper portion of the medicine injection tank.

【0013】(起動前準備)分析対象試料を計量し、元素
分離に必要な担体溶液を加えた後、摺合せジョイント(1
2)を外し、バルブ2(13)を開として試料を反応槽(1)に
注入する。バルブ2(13)を閉とし、摺合せジョイント(1
2)から酸化剤溶液を薬品注入槽(3)に入れる。摺合せジ
ョイント(12)を薬品注入槽(3)上部に接続し、空気供給
ライン(9)を接続する。冷却水槽(8)を準備し、ヨウ素回
収槽(6)(ヨウ素回収槽には予めアルカリ溶液を入れる)
及び水分回収槽(7)を冷却水槽(8)に浸漬した状態で三方
コック出口(5)にそれぞれ接続する。この時のバルブの
開閉状態は以下の通りである。 バルブ1:開 バルブ2:閉 バルブ3:閉 バルブ4:閉
(Preparation before startup) After weighing the sample to be analyzed and adding the carrier solution necessary for elemental separation, the sliding joint (1
2) is removed, the valve 2 (13) is opened, and the sample is injected into the reaction tank (1). Close valve 2 (13) and slide joint (1
Add the oxidant solution from 2) to the chemical injection tank (3). Connect the sliding joint (12) to the upper part of the chemical injection tank (3) and connect the air supply line (9). Prepare a cooling water tank (8), iodine recovery tank (6) (Iodine recovery tank is pre-filled with alkaline solution)
Also, the water recovery tank (7) is connected to the three-way cock outlet (5) while being immersed in the cooling water tank (8). The open / closed state of the valve at this time is as follows. Valve 1: Open Valve 2: Closed Valve 3: Closed Valve 4: Closed

【0014】(装置の起動)バルブ1(11)を開、バルブ2
(13)を微開とし、酸化剤溶液を反応槽(1)に添加する。
更に、バルブ2(13)を全開とし、空気供給ライン(9)か
ら送られてくる空気によって、酸化剤を全量反応槽に添
加し、反応槽(1)内を連続通気する。この状態で反応槽
(1)の加熱を開始する。反応槽温度は、温度制御点(17)
の温度を反応槽温度制御器(2)によって所定の液温に制
御される。試料中の放射性ヨウ素は、酸化剤の添加及び
温度効果によって揮発を開始し、揮発した放射性ヨウ素
は、供給される空気によって反応槽(1)の上部から冷却
器(4)を経てヨウ素回収槽(6)に送られ、ヨウ素回収槽
(6)内のアルカリ溶液に吸収(溶解)される。所定時間経
過後、三方コック(5)を、冷却器出口(4)と水分回収槽
(7)を結ぶ方向にセットする。反応槽(1)は容器内水分が
蒸発するまで加熱され、水分及び揮発成分は冷却器(4)
で凝縮されて水分回収槽(9)に捕集される。反応槽(1)内
の液が乾固したら反応槽(1)の加熱を停止し、冷却させ
る(冷却は自然冷却が好ましい)。反応槽(1)の冷却完了
後、バルブ1(11)及びバルブ2(13)を閉とし、摺合せジ
ョイント(12)を一旦外し、酸化剤を含んだ硫酸を摺合せ
ジョイント(12)から薬品注入槽(2)に入れる。摺合せジ
ョイント(12)を接続し、バルブ1(11)を開、バルブ2(1
3)を微開とし、酸化剤を含んだ硫酸を反応槽中に供給す
る。バルブ2(13)を全開とし、反応槽(1)内と通気す
る。反応槽(1)を、再び加熱し150℃以上の液温を維
持することによってテクネチウム及びレニウムを蒸発さ
せ、水分回収槽(7)に捕集する。所定時間経過後、反応
槽(1)の加熱を停止し、冷却する。バルブ1(11)及びバ
ルブ2(13)を閉とし、バルブ3(16)を開、バルブ4(14)
を微開とし、予め洗浄水槽(10)に添加してあった洗浄溶
液を冷却器(4)側に注入する。注入完了後、バルブ3(1
6)を開、バルブ4(14)を閉とする。ヨウ素回収槽(6)及
び水分回収槽(7)を冷却水槽(8)から外す。
(Start-up of device) Open valve 1 (11), and open valve 2
(13) is opened slightly, and the oxidant solution is added to the reaction tank (1).
Further, the valve 2 (13) is fully opened, and all the oxidizing agent is added to the reaction tank by the air sent from the air supply line (9) to continuously ventilate the inside of the reaction tank (1). Reaction tank in this state
Start heating in (1). The reaction tank temperature is the temperature control point (17)
The temperature of is controlled to a predetermined liquid temperature by the reaction tank temperature controller (2). The radioactive iodine in the sample starts to volatilize due to the addition of the oxidant and the temperature effect, and the volatilized radioactive iodine is supplied from the upper part of the reaction tank (1) through the cooler (4) to the iodine recovery tank ( 6) sent to the iodine recovery tank
It is absorbed (dissolved) in the alkaline solution in (6). After a predetermined time, insert the three-way cock (5) into the cooler outlet (4) and the water recovery tank.
Set in the direction that connects (7). The reaction tank (1) is heated until the water in the container evaporates, and the water and volatile components are cooled by the cooler (4).
Is condensed in and collected in the water recovery tank (9). When the liquid in the reaction tank (1) is dried to dryness, the heating of the reaction tank (1) is stopped and cooled (natural cooling is preferable for cooling). After the completion of cooling the reaction tank (1), the valves 1 (11) and 2 (13) were closed, the sliding joint (12) was once removed, and sulfuric acid containing an oxidant was added to the sliding joint (12) to remove chemicals. Put in the filling tank (2). Connect the sliding joint (12), open valve 1 (11), and open valve 2 (1
3) is opened slightly, and sulfuric acid containing an oxidant is fed into the reaction tank. The valve 2 (13) is fully opened to ventilate the inside of the reaction tank (1). The reaction tank (1) is heated again to maintain the liquid temperature of 150 ° C. or higher to evaporate technetium and rhenium and collect them in the water recovery tank (7). After a lapse of a predetermined time, the heating of the reaction tank (1) is stopped and the reaction tank (1) is cooled. Valve 1 (11) and valve 2 (13) are closed, valve 3 (16) is open, valve 4 (14)
Is opened slightly, and the cleaning solution previously added to the cleaning water tank (10) is injected into the cooler (4) side. After the injection is completed, valve 3 (1
Open 6) and close valve 4 (14). Remove the iodine recovery tank (6) and the water recovery tank (7) from the cooling water tank (8).

【0015】以下、具体的な実験操作について詳述す
る。B(ボロン)10000ppmを含む硼酸ナトリウム
溶液100mlに、放射性ヨウ素(129I)、99Tc及び
60Coをそれぞれ370Bq加え、担体溶液として
-、ReO4 +及びCo2+をそれぞれ10mg含むよう
に添加した。これを分析対象試料として、摺合せジョイ
ント(12)を外し、バルブ2(13)を開として反応槽(1)に
注入した。
The specific experimental operation will be described in detail below. In 100 ml of sodium borate solution containing 10000 ppm of B (boron), radioactive iodine ( 129 I), 99 Tc and
370 Bq of 60 Co was added to each, and 10 each of I , ReO 4 + and Co 2+ was added as a carrier solution. Using this as a sample to be analyzed, the sliding joint (12) was removed, the valve 2 (13) was opened, and the sample was injected into the reaction tank (1).

【0016】バルブ2(13)を閉とし、摺合せジョイント
(12)から酸化剤溶液として硝酸溶液(分析用JIS特級
グレードの硝酸1容と純水9容)20mlを薬品注入槽
に手動で注入する。摺合せジョイント(12)を薬品注入槽
(3)上部に接続し、空気供給ラインを接続する。また、
冷却水槽(8)を準備し、ヨウ素回収槽(6)(回収槽には予
め4規定水酸化ナトリウム溶液100mlを入れる)及
び冷却水槽に浸漬した状態で三方コック(5)の出口にそ
れぞれ接続する。この時のバルブの開閉状態は下記の通
りとする:バルブ1=開、バルブ2=閉、バルブ3=
閉、バルブ4=閉。
Close the valve 2 (13) and slide joint
From (12), 20 ml of a nitric acid solution (1 volume of nitric acid of JIS special grade for analysis and 9 volumes of pure water) as an oxidizing agent solution is manually injected into the chemical injection tank. Put the sliding joint (12) into the chemical injection tank.
(3) Connect to the upper part and connect the air supply line. Also,
Prepare a cooling water tank (8), and connect it to the outlet of the three-way cock (5) while immersed in the iodine recovery tank (6) (100 ml of 4N sodium hydroxide solution is previously stored in the recovery tank) and the cooling water tank. .. The open / closed states of the valve at this time are as follows: valve 1 = open, valve 2 = closed, valve 3 =
Closed, valve 4 = closed.

【0017】次に、バルブ1(11)を開、バルブ2(13)を
微開とし、前記硝酸溶液を反応槽(1)に添加する。更
に、バルブ2(13)を全開とし、空気供給ライン(9)から
送られてくる空気(50ml/分)によって、硝酸溶液を
全量反応槽に添加し、反応槽(1)内を連続通気する。
Next, the valve 1 (11) is opened and the valve 2 (13) is opened slightly, and the nitric acid solution is added to the reaction tank (1). Further, the valve 2 (13) is fully opened, and all the nitric acid solution is added to the reaction tank by the air (50 ml / min) sent from the air supply line (9), and the inside of the reaction tank (1) is continuously aerated. ..

【0018】この状態で反応槽(1)の加熱を開始する。
反応槽温度は、温度制御点(17)の温度を反応槽温度制御
器(2)によって80±10℃の液温に制御される。試料
中の放射性ヨウ素は、酸化剤の添加及び温度効果によっ
て揮発を開始し、揮発した放射性ヨウ素は、供給される
空気によって反応槽(1)の上部から冷却器(4)を経てヨウ
素回収槽に送られ、ヨウ素回収槽内のアルカリ溶液に吸
収(溶解)される。
In this state, heating of the reaction tank (1) is started.
Regarding the reaction tank temperature, the temperature at the temperature control point (17) is controlled to a liquid temperature of 80 ± 10 ° C. by the reaction tank temperature controller (2). The radioactive iodine in the sample starts to volatilize due to the addition of the oxidant and the temperature effect, and the volatilized radioactive iodine is supplied from the upper part of the reaction tank (1) to the iodine recovery tank through the cooler (4). It is sent and absorbed (dissolved) in the alkaline solution in the iodine recovery tank.

【0019】約30〜60分間経過後、三方コック(5)
を冷却器出口(4)と水分回収槽(7)を結ぶようにセットし
た。反応槽(1)は容器内水分が蒸発するまで加熱され、
水分及び揮発成分は冷却器(4)で凝縮して水分回収槽(9)
に捕集される。
After about 30 to 60 minutes, the three-way cock (5)
Was set so as to connect the cooler outlet (4) and the water recovery tank (7). The reaction tank (1) is heated until the water in the container evaporates,
Moisture and volatile components are condensed in the cooler (4) and condensed in the water recovery tank (9)
Captured by.

【0020】反応槽(1)内の液が乾固したら反応槽(1)の
加熱を停止し、自然冷却により冷却する。反応槽(1)の
冷却完了後、バルブ1(11)及びバルブ2(13)を閉とし、
摺合せジョイントを一旦外し、濃硝酸1mlを加えた濃
硫酸30mlを摺合せジョイント(12)から薬品注入槽に
入れる。摺合せジョイントを接続し、バルブ1(11)を
開、バルブ2(13)を微開とし、酸化剤を含んだ硫酸を空
気圧で反応槽中に供給する。バルブ2(13)を全開とし、
反応槽(1)内を50ml/分で通気する。
When the liquid in the reaction tank (1) is dried to dryness, the heating of the reaction tank (1) is stopped, and the reaction tank (1) is cooled by natural cooling. After the completion of cooling the reaction tank (1), close the valve 1 (11) and the valve 2 (13),
Remove the sliding joint once, and put 30 ml of concentrated sulfuric acid containing 1 ml of concentrated nitric acid into the chemical injection tank from the sliding joint (12). A sliding joint is connected, valve 1 (11) is opened, valve 2 (13) is opened slightly, and sulfuric acid containing an oxidant is pneumatically fed into the reaction tank. Fully open valve 2 (13),
The inside of the reaction tank (1) is ventilated at 50 ml / min.

【0021】次に、反応槽(1)を、再び加熱して溶液を
沸騰させる。テクネチウム及びレニウムは揮散して水分
回収槽(7)に捕集される。約60分経過後、反応槽(1)の
加熱を停止し、放冷する。バルブ1(11)及びバルブ2(1
3)を閉とし、バルブ3(16)を開、バルブ4(14)を微開と
し、予め洗浄水槽(10)に添加してあった洗浄溶液を冷却
器(4)側に注入する。注入完了後、バルブ3(16)を開、
バルブ4(14)を閉とし、ヨウ素回収槽(6)及び水分回収
槽(7)を冷却水槽(8)から外す。
Next, the reaction tank (1) is heated again to boil the solution. Technetium and rhenium are volatilized and collected in the water recovery tank (7). After about 60 minutes, the heating of the reaction tank (1) is stopped and allowed to cool. Valve 1 (11) and valve 2 (1
3) is closed, valve 3 (16) is opened, valve 4 (14) is slightly opened, and the cleaning solution previously added to the cleaning water tank (10) is injected into the cooler (4) side. After the injection is completed, open valve 3 (16),
The valve 4 (14) is closed and the iodine recovery tank (6) and the water recovery tank (7) are removed from the cooling water tank (8).

【0022】このようにして行った実験操作の結果を表
1に示す。ヨウ素回収槽(6)へのヨウ素回収率は99.9
%で、ほぼ100%が揮散回収できた。また、試料溶液
に加えたコバルト60は、その1/1000程度がヨウ
素回収槽に混入しただけで良好な分離能力があることを
確認した。水分回収槽(7)へのテクネチウム回収率は7
3%で、テクネチウムの担体として添加したレニウムの
回収率も73%であった。また、試料溶液に加えたコバ
ルト60はその1/250000程度が水分回収槽に混
入しただけで良好な分離能力があることを確認した。
Table 1 shows the results of the experimental operations carried out in this way. The iodine recovery rate to the iodine recovery tank (6) is 99.9.
%, Almost 100% could be recovered by volatilization. In addition, it was confirmed that about 1/1000 of cobalt 60 added to the sample solution had a good separation ability only when it was mixed in the iodine recovery tank. The technetium recovery rate to the water recovery tank (7) is 7
At 3%, the recovery of rhenium added as a technetium carrier was also 73%. Further, it was confirmed that about 1 / 250,000 of cobalt 60 added to the sample solution had a good separation ability only by mixing it in the water recovery tank.

【0023】[0023]

【表1】 テクネチウム、ヨウ素の回収結果回収液 回収率 60Co除染係数 ヨウ素回収液 99.9% >10000 テクネチウム回収液 Tc=73%、Re=73% 250000[Table 1] Recovery results of technetium and iodine Recovery rate of recovery solution 60 Co Decontamination factor Iodine recovery solution 99.9% > 10000 Technetium recovery solution Tc = 73%, Re = 73% 250000

【0024】[0024]

【発明の効果】原子力施設から発生する廃液中に存在す
るテクネチウム99及びヨウ素129を放射化学的に分
離する際の前処理操作を簡素化することができ、大幅な
分析時間の短縮及び化学的な分離技術を要さない人にも
元素分離が容易に行えることが可能となる。これによ
り、RI施設並びに原子力施設から発生する液体中のテ
クネチウム、ヨウ素の分離が簡単に実施でき、微量β線
放出核種であるテクネチウム99、ヨウ素129等の放
射化学分離が容易にでき、液体試料中の放射能濃度が求
め易くなる。
Industrial Applicability The pretreatment operation for radiochemically separating technetium 99 and iodine 129 present in the waste liquid generated from a nuclear facility can be simplified, and the analysis time can be greatly shortened and chemical It becomes possible to easily perform element separation even for a person who does not need a separation technique. As a result, the separation of technetium and iodine in the liquid generated from RI facilities and nuclear facilities can be easily carried out, and the radiochemical separation of technetium 99, iodine 129, etc., which is a small amount of β-ray emitting nuclide, can be easily carried out, and the liquid sample It becomes easy to obtain the radioactivity concentration of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分離装置の1実施態様を示す概略図で
ある。
FIG. 1 is a schematic view showing one embodiment of the separation device of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 反応槽温度制御器 4 冷却器 3 薬品注入槽 5 三方コック 6 ヨウ素回収槽 7 水分回収槽 8 冷却水槽 9 空気供給ライン 10 洗浄水槽 11 バルブ1 12 摺合せジョイント 13 バルブ2 14 バルブ4 15 空気ボンベ 16 バルブ3 17 温度制御点 1 Reaction Tank 2 Reaction Tank Temperature Controller 4 Cooler 3 Chemical Injection Tank 5 3-way Cock 6 Iodine Recovery Tank 7 Moisture Recovery Tank 8 Cooling Water Tank 9 Air Supply Line 10 Wash Water Tank 11 Valve 1 12 Sliding Joint 13 Valve 2 14 Valve 4 15 Air cylinder 16 Valve 3 17 Temperature control point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コバルト60を含む放射性液体からの放
射性ヨウ素及びテクネチウムの分離方法において、該放
射性液体を硝酸酸性環境下で加熱することにより放射性
ヨウ素を揮散・分離する放射性ヨウ素の分離工程、及び
放射性ヨウ素を除去した後の放射性液体を乾固し、次
に、硫酸に溶解した硫酸酸性環境下で加熱・沸騰させる
ことによりテクネチウムを揮散・分離するテクネチウム
の分離工程よりなることを特徴とするコバルト60を含
む放射性液体からの放射性ヨウ素及びテクネチウムの分
離方法。
1. A method for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60, wherein the radioactive liquid is heated in a nitric acid acidic environment to volatilize and separate the radioactive iodine, and the radioactive iodine is separated. Cobalt 60 which is characterized by a technetium separation step of volatilizing and separating technetium by drying the radioactive liquid after removing iodine and then heating and boiling in a sulfuric acid acidic environment dissolved in sulfuric acid. A method for separating radioactive iodine and technetium from a radioactive liquid containing.
【請求項2】 上部に薬品注入槽及び揮散成分を取り出
すための揮発口を備え、かつ所定の温度に温度を制御す
るための加熱手段及び反応槽温度制御器を備えてなる反
応槽と、前記取り出し口から取り出される揮散成分を凝
縮するための冷却器と、冷却器で凝縮された放射性ヨウ
素とテクネチウムを回収するための冷却水槽内に設置さ
れたヨウ素回収槽と水分回収槽を備えてなることを特徴
とするコバルト60を含む放射性液体からの放射性ヨウ
素及びテクネチウムの分離装置。
2. A reaction tank comprising a chemical injection tank and a volatilization port for taking out volatilized components on the upper part, and a heating means for controlling the temperature to a predetermined temperature and a reaction tank temperature controller, It shall be equipped with a cooler to condense the volatilized components taken out from the outlet, an iodine recovery tank and a water recovery tank installed in the cooling water tank to recover the radioactive iodine and technetium condensed by the cooler. An apparatus for separating radioactive iodine and technetium from a radioactive liquid containing cobalt 60.
JP21719791A 1991-08-28 1991-08-28 Waste liquid nuclide separation method Expired - Fee Related JP2984428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21719791A JP2984428B2 (en) 1991-08-28 1991-08-28 Waste liquid nuclide separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21719791A JP2984428B2 (en) 1991-08-28 1991-08-28 Waste liquid nuclide separation method

Publications (2)

Publication Number Publication Date
JPH0552995A true JPH0552995A (en) 1993-03-02
JP2984428B2 JP2984428B2 (en) 1999-11-29

Family

ID=16700386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21719791A Expired - Fee Related JP2984428B2 (en) 1991-08-28 1991-08-28 Waste liquid nuclide separation method

Country Status (1)

Country Link
JP (1) JP2984428B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109570A (en) * 2012-11-30 2014-06-12 Korea Atomic Energy Research Inst Separation and recovery device for liquid waste including radionuclide, and separation and recovery method using the same
WO2015055806A1 (en) * 2013-10-18 2015-04-23 Ge Healthcare Limited Closed evaporation system
CN106601322A (en) * 2017-02-15 2017-04-26 中国工程物理研究院材料研究所 VPCE static performance testing system
CN106841447A (en) * 2017-02-15 2017-06-13 中国工程物理研究院材料研究所 A kind of VPCE static properties method of testing
CN112850810A (en) * 2020-12-25 2021-05-28 中国原子能科学研究院 Transformation system of technetium-containing product feed liquid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109570A (en) * 2012-11-30 2014-06-12 Korea Atomic Energy Research Inst Separation and recovery device for liquid waste including radionuclide, and separation and recovery method using the same
WO2015055806A1 (en) * 2013-10-18 2015-04-23 Ge Healthcare Limited Closed evaporation system
CN105612583A (en) * 2013-10-18 2016-05-25 通用电气健康护理有限公司 Closed evaporation system
KR20160073967A (en) * 2013-10-18 2016-06-27 지이 헬쓰케어 리미티드 Closed evaporation system
RU2673797C2 (en) * 2013-10-18 2018-11-30 ДжиИ ХЕЛТКЕР ЛИМИТЕД Closed evaporation system
US11094424B2 (en) 2013-10-18 2021-08-17 Ge Healthcare Limited Closed evaporation system
CN106601322A (en) * 2017-02-15 2017-04-26 中国工程物理研究院材料研究所 VPCE static performance testing system
CN106841447A (en) * 2017-02-15 2017-06-13 中国工程物理研究院材料研究所 A kind of VPCE static properties method of testing
CN112850810A (en) * 2020-12-25 2021-05-28 中国原子能科学研究院 Transformation system of technetium-containing product feed liquid

Also Published As

Publication number Publication date
JP2984428B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
Boyd Technetium-99m generators—the available options
US5885465A (en) Method of separating short half-life radionuclides from a mixture of radionuclides
US9336913B2 (en) Radioactive organic waste treatment method
US3833469A (en) Process for the production of technetium-99m from neutron irradiated molybdenum trioxide
Vajda et al. Rapid method for the determination of actinides in soil and sediment samples by alpha spectrometry
JPH0552995A (en) Separation method for waste liquid nuclear species
WO2012039037A1 (en) Method and device for separating technetium from technetium-containing molybdenum and purifying same, and method and device for recovering molybdenum
WO2014057900A1 (en) Ri isolation device
Tomioka et al. Cleaning of materials contaminated with metal oxides through supercritical fluid extraction with CO2 containing TBP
JP6554753B1 (en) Technetium 99m isolation system and technetium 99m isolation method
KR100272977B1 (en) Automatic apparatus for ri production by solvent extraction using phase sensor and a method of ri extraction thereby
EP0358431A1 (en) Spent fuel treatment method
Chen et al. Determination of 237Np in marine sediment and seawater
Hölgye Determination of plutonium in soil
Acena et al. Determination of isotopes of uranium and thorium in low-level environmental samples
Kulyako et al. Dissolution of uranium, neptunium, plutonium and americium oxides in tri-n-butyl phosphate saturated with nitric acid
Rotsch et al. Chemical Processing of mini-SHINE Target Solutions for Recovery and Purification of Mo-99
JP2005283415A (en) Processing method and system of radioactive waste
JP2020094255A (en) Method for refining zirconium, and zirconium refiner
JPH10213697A (en) Decontamination method for radio active waste
JPH083556B2 (en) Radioactive waste liquid treatment device
CN113865947B (en) Online sampling device and method for low-concentration molecular iodine in gas circulation loop
WO2023203826A1 (en) Radionuclide production system and radionuclide production method
RU2813760C1 (en) Wet method of obtaining sources for radiation therapy
JP6234033B2 (en) Extraction apparatus and extraction method for radioactive substances contained in incineration fly ash

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831

LAPS Cancellation because of no payment of annual fees