JP2971803B2 - Method for simultaneous separation of radioactive carbon and radioactive iodine - Google Patents

Method for simultaneous separation of radioactive carbon and radioactive iodine

Info

Publication number
JP2971803B2
JP2971803B2 JP8100129A JP10012996A JP2971803B2 JP 2971803 B2 JP2971803 B2 JP 2971803B2 JP 8100129 A JP8100129 A JP 8100129A JP 10012996 A JP10012996 A JP 10012996A JP 2971803 B2 JP2971803 B2 JP 2971803B2
Authority
JP
Japan
Prior art keywords
radioactive
solution
iodine
carbon
stage absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8100129A
Other languages
Japanese (ja)
Other versions
JPH09288195A (en
Inventor
利幸 近藤
之彦 木村
英明 大箕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAKUNENRYO SAIKURU KAIHATSU KIKO
Original Assignee
KAKUNENRYO SAIKURU KAIHATSU KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAKUNENRYO SAIKURU KAIHATSU KIKO filed Critical KAKUNENRYO SAIKURU KAIHATSU KIKO
Priority to JP8100129A priority Critical patent/JP2971803B2/en
Publication of JPH09288195A publication Critical patent/JPH09288195A/en
Application granted granted Critical
Publication of JP2971803B2 publication Critical patent/JP2971803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Gas Separation By Absorption (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、放射性炭素と放
射性ヨウ素を他の放射性核種とともに含む放射性溶液、
例えば使用済核燃料の再処理施設や放射性同位元素使用
施設から発生する放射性廃液等から、放射性炭素
14C)および放射性ヨウ素( 129I)を同時にかつ効
率よく他の放射性核種から分離することができる方法に
関するものである。
The present invention relates to a radioactive solution containing radioactive carbon and radioactive iodine together with other radionuclides,
For example, radioactive carbon ( 14 C) and radioactive iodine ( 129 I) can be simultaneously and efficiently separated from other radionuclides from radioactive liquid waste generated from a reprocessing facility for spent nuclear fuel or a facility using radioisotopes. It is about the method.

【0002】[0002]

【従来の技術】使用済核燃料の再処理施設や原子力発電
所等の原子力施設から発生する放射性廃液、さらには放
射性同位元素を取扱う各種施設から発生する放射性廃液
には、放射性炭素および放射性ヨウ素が核分裂生成物等
の他の放射性核種と共に含まれている。
2. Description of the Related Art Radioactive wastewater generated from nuclear facilities such as spent nuclear fuel reprocessing facilities and nuclear power plants, and radioactive wastewater generated from various facilities that handle radioisotopes contain radioactive carbon and radioactive iodine. Included with other radionuclides such as products.

【0003】かような放射性廃液から放射性炭素および
放射性ヨウ素を分離する方法は、それぞれを単一成分と
して沈殿生成法あるいは溶媒抽出法により他の放射性核
種から分離する方法が従来から採用されている。
As a method of separating radioactive carbon and radioactive iodine from such a radioactive waste liquid, a method of separating each of them as a single component from other radionuclides by a precipitation method or a solvent extraction method has conventionally been adopted.

【0004】すなわち、本願出願人である動力炉・核燃
料開発事業団で従来から行なわれている放射性炭素の分
離方法においては、放射性廃液中に水酸化バリウム(B
a(OH)2 )飽和水溶液を添加して廃液中に炭酸イオ
ンとして存在する14Cを、炭酸バリウム(BaCO3
として沈澱させる。この沈殿をデカンテーションにより
洗浄して 129I等の他の放射性核種の大部分を除去した
後、硝酸を添加することにより炭酸バリウムを分解して
CO2 ガスを発生させる。反応管に窒素ガスを流すこと
により、反応管中のCO2 ガスと置換させ、このCO2
ガスを水酸化ナトリウムに吸収させて炭酸ナトリウム
(Na2 CO3 )として他の放射性核種から分離する。
一方、放射性ヨウ素を分離するには、放射性廃液中に亜
硫酸ナトリウム(Na2 SO3 )を添加して廃液中に含
まれるヨウ素酸イオン(IO3 - )をヨウ素イオン(I
- )に還元した後、さらに過酸化水素(H2 2 )を添
加してヨウ素(I2 )に酸化する。かくして得られたI
2 を含む水相に、四塩化炭素(CCl4 )を加えてI2
を四塩化炭素に抽出せしめたのち四塩化炭素相を分取
し、これに亜硫酸ナトリウムを添加してI2 をI- とし
て亜硫酸ナトリウム中に逆抽出させることにより、放射
性ヨウ素を分離する。
[0004] That is, in the method of separating radioactive carbon conventionally performed by the Power Reactor and Nuclear Fuel Development Corporation of the present applicant, barium hydroxide (B) is contained in the radioactive waste liquid.
a (OH) 2 ) A saturated aqueous solution is added to convert 14 C present in the waste liquid as carbonate ions into barium carbonate (BaCO 3 ).
As a precipitate. After the precipitate is washed by decantation to remove most of the other radionuclides such as 129 I, barium carbonate is decomposed by adding nitric acid to generate CO 2 gas. By flowing nitrogen gas into the reaction tube, was replaced with CO 2 gas in the reaction tube, the CO 2
The gas is absorbed by sodium hydroxide and separated from other radionuclides as sodium carbonate (Na 2 CO 3 ).
On the other hand, to separate radioactive iodine, sodium sulfite (Na 2 SO 3 ) is added to the radioactive waste liquid to convert iodate ions (IO 3 ) contained in the waste liquid into iodine ions (I
-) After reduction, the further addition of hydrogen peroxide (H 2 O 2) to oxidize the iodine (I 2). I thus obtained
The aqueous phase containing 2, I 2 was added to carbon tetrachloride (CCl 4)
Was extracted with carbon tetrachloride, the carbon tetrachloride phase was separated, sodium sulfite was added thereto, and I 2 was converted to I and back-extracted into sodium sulfite to separate radioactive iodine.

【0005】[0005]

【発明が解決しようとする課題】放射性炭素と放射性ヨ
ウ素の両核種をそれぞれ単一成分で放射性廃液から分離
する上述したような従来の方法は、以下のような欠点が
あった。 1)試料の前処理等の他の放射性核種との分離操作が複
雑で、所要時間が長く、手間が掛かって作業者の負担が
大きい。 2)決められた短時間内に両核種の分離回収を行ない、
分析を行なうためには、グローブポックスが2台必要と
なり、作業者も最低2名必要となる。 3)四塩化炭素等の有害な薬品を使用しなければならな
い。 4)抽出剤や沈殿剤等の薬品が数種類必要となる。
The above-mentioned conventional method of separating both radioactive carbon and radioactive iodine nuclides from radioactive waste liquid as single components has the following disadvantages. 1) The operation of separating the sample from other radionuclides, such as pretreatment of the sample, is complicated, takes a long time, is troublesome, and burdens the operator. 2) Separate and collect both nuclides within a fixed time,
In order to perform the analysis, two glove pox are required, and at least two workers are required. 3) Harmful chemicals such as carbon tetrachloride must be used. 4) Several kinds of chemicals such as an extractant and a precipitant are required.

【0006】そこでこの発明は、上述したごとき従来の
方法における欠点を解消し、作業の省力化、迅速化を図
ることができる放射性廃液から放射性炭素と放射性ヨウ
素を同時に分離することができる方法を提供することを
目的としてなされたものである。
Accordingly, the present invention provides a method for simultaneously separating radioactive carbon and radioactive iodine from radioactive waste liquid, which solves the above-mentioned drawbacks of the conventional method and can save labor and speed up the operation. It was done for the purpose of doing.

【0007】[0007]

【課題を解決するための手段】本発明者等は、放射性廃
液中の放射性炭素および放射性ヨウ素が酸性領域下で選
択的に熱により分解されて気化する特性を利用すること
により、これらをガスとして他の放射性核種から同時に
分離できることを見出し、この発明を完成させたもので
ある。
Means for Solving the Problems The present inventors utilize the property that radioactive carbon and radioactive iodine in radioactive waste liquid are selectively decomposed by heat in an acidic region and vaporized, thereby converting them into gas. The inventors have found that they can be separated from other radionuclides at the same time, and have completed the present invention.

【0008】すなわちこの発明による放射性炭素および
放射性ヨウ素の同時分離方法は、放射性炭素と放射性ヨ
ウ素を他の放射性核種とともに含む放射性廃液に硝酸を
添加して酸性化したのち加熱することにより、放射性炭
素はCO2 として、放射性ヨウ素はI2 として放射性廃
液から同時に気化分離させ、この気化物を亜硫酸ナトリ
ウム水溶液を収容した1段目吸収管に通してI2 を亜硫
酸ナトリウム水溶液に吸収させてNaIとして回収し、
1段目吸収管を通過した気化物を引き続き水酸化ナトリ
ウム水溶液を収容した2段目吸収管に通してCO2 を水
酸化ナトリウム水溶液に吸収させてNa2 CO3 として
回収することを特徴とするものである。
That is, the simultaneous separation method of radioactive carbon and radioactive iodine according to the present invention is characterized in that radioactive wastewater containing radioactive carbon and radioactive iodine together with other radionuclides is acidified by adding nitric acid, and then heated, whereby radioactive carbon is removed. The radioactive iodine as CO 2 is simultaneously vaporized and separated from the radioactive waste liquid as I 2 , and the vaporized product is passed through a first-stage absorption tube containing an aqueous sodium sulfite solution to absorb I 2 into the aqueous sodium sulfite solution and recovered as NaI. ,
The vaporized product that has passed through the first-stage absorption tube is successively passed through a second-stage absorption tube containing an aqueous sodium hydroxide solution to absorb CO 2 into the aqueous sodium hydroxide solution and is recovered as Na 2 CO 3. Things.

【0009】前記の放射性廃液中の放射性ヨウ素は、廃
液組成によってはヨウ素イオン(I- )とヨウ素酸イオ
ン(IO3 - )の形態で1:1の割合で存在している場
合がある。この場合には、放射性廃液に亜硝酸ナトリウ
ムを添加してIO3 - をI-に還元した後、この放射性
廃液に硝酸を添加して酸性化し、I2 に酸化して気化さ
せる。
The radioactive iodine in the radioactive liquid waste may be present in the form of iodine ion (I ) and iodate ion (IO 3 ) at a ratio of 1: 1 depending on the composition of the liquid waste. In this case, IO 3 by addition of sodium nitrite in the radioactive liquid waste - the I - was reduced to, and acidified by adding nitric acid to the radioactive liquid waste is vaporized is oxidized to I 2.

【0010】放射性ヨウ素( 129I)の気化反応は、下
記の通りである。 2IO3 - 129I)+2H+ +5HNO2→ 5HN
3 +2H2 O+I2 129I)↑ 2I- 129I)+2H+ +HNO3→ HNO2 +H
2 O+I2 129I)↑ 2I- 129I)+2H+ +2HNO2→ 2NO+2
2 O+I2 129I)↑
The vaporization reaction of radioactive iodine ( 129 I) is as follows. 2IO 3 - (129 I) + 2H + + 5HNO 2 → 5HN
O 3 + 2H 2 O + I 2 ( 129 I) ↑ 2I ( 129 I) + 2H + + HNO 3 → HNO 2 + H
2 O + I 2 ( 129 I) ↑ 2I ( 129 I) + 2H + + 2HNO 2 → 2NO + 2
H 2 O + I 2 ( 129 I) ↑

【0011】一方、放射性廃液中の放射性炭素は、炭酸
塩の形態で存在するので、硝酸で酸性にしてCO2 とし
て気化させる。放射性炭素(14C)の気化反応は、下記
の通りである。 Na2 CO3 14C)+2HNO3→ 2NaNO3
2 O+CO2 14C)↑
On the other hand, since radioactive carbon in radioactive waste liquid exists in the form of carbonate, it is acidified with nitric acid and vaporized as CO 2 . The vaporization reaction of radioactive carbon ( 14 C) is as follows. Na 2 CO 3 ( 14 C) + 2HNO 3 → 2NaNO 3 +
H 2 O + CO 2 ( 14 C) ↑

【0012】かくして放射性廃液から分離したI2 およ
びCO2 からなる気化物を亜硫酸ナトリウム(Na2
3 )水溶液を収容した1段目吸収管に通すことによ
り、下記吸収反応に従って気化物中のI2 をNaIとし
て亜硫酸ナトリウム水溶液に吸収させて分離回収するこ
とができる。 I2 129I)↑+Na2 SO3 +H2 O→ 2NaI
129I)+SO4 2-+2H+
The vaporized product of I 2 and CO 2 thus separated from the radioactive liquid waste is converted into sodium sulfite (Na 2 S).
By passing the aqueous solution through a first-stage absorption tube containing an O 3 ) aqueous solution, I 2 in the vaporized material can be absorbed as NaI in an aqueous sodium sulfite solution and separated and recovered according to the following absorption reaction. I 2 ( 129 I) ↑ + Na 2 SO 3 + H 2 O → 2NaI
( 129 I) + SO 4 2- + 2H +

【0013】かくしてI2 を分離除去した気化物を、次
いで水酸化ナトリウム(NaOH)水溶液を収容した2
段目吸収管に通すことにより、下記吸収反応に従ってC
2をNa2 CO3 として水酸化ナトリウム水溶液に吸
収させて分離回収することができる。 CO2 14C)↑+NaOH→Na2 CO3 14C)+
2
The vaporized product from which I 2 has been separated and removed, and then the aqueous solution containing sodium hydroxide (NaOH) 2
By passing through a stage absorption tube, C
O 2 can be separated and recovered by absorbing Na 2 CO 3 into an aqueous sodium hydroxide solution. CO 2 ( 14 C) ↑ + NaOH → Na 2 CO 3 ( 14 C) +
H 2 O

【0014】1段目でI2 を吸収させ、2段目でCO2
を吸収させる理由は、分離回収した14Cを定量する際
に、 129Iのβ線スペクトルが14Cのβ線スペクトルと
重なってしまい正確な定量ができなくなるため、1段目
の吸収管で 129Iを完全に吸収除去する必要があるから
である。
In the first stage, I 2 is absorbed, and in the second stage, CO 2 is absorbed.
Reason for absorbing, when quantifying 14 C-separated recovered, since the β-ray spectrum of the 129 I can not be accurate quantification will overlap with the β-ray spectrum of 14 C, the absorption pipe of the first stage 129 This is because it is necessary to completely absorb and remove I.

【0015】[0015]

【発明の実施の形態】図1はこの発明を実施するに際し
て好ましく使用できる装置を示している。この装置は、
反応管1と、1段目吸収管2と、2段目吸収管3とから
構成されている。反応管1には三方コック4を備えた注
入管が挿入されており、この三方コックには硝酸注入用
の注射器5と流量バルブ6を備えた窒素ガス注入管7と
が接続されている。この反応管1は、水をいれたビーカ
ー8に浸漬されていて、ビーカーは加熱器9で所望の温
度に加熱できるようにされている。また反応管1と1段
目吸収管2、および1段目吸収管2と2段目吸収管3
は、連結管10、11によりそれぞれ連結されている。
FIG. 1 shows an apparatus which can be preferably used in carrying out the present invention. This device is
It comprises a reaction tube 1, a first-stage absorption tube 2, and a second-stage absorption tube 3. An injection tube having a three-way cock 4 is inserted into the reaction tube 1, and a syringe 5 for injecting nitric acid and a nitrogen gas injection tube 7 having a flow valve 6 are connected to the three-way cock. The reaction tube 1 is immersed in a beaker 8 filled with water, and the beaker can be heated to a desired temperature by a heater 9. Further, the reaction tube 1 and the first-stage absorption tube 2, and the first-stage absorption tube 2 and the second-stage absorption tube 3
Are connected by connecting pipes 10 and 11, respectively.

【0016】この装置を用いてこの発明を実施する際の
操作を以下に図面を参照して説明する。先ず、放射性廃
液の試料を反応管1に採取して亜硝酸ナトリウム水溶液
を添加した後、この反応管をビーカ−8内に図示のよう
にセットする。次いで、l段目吸収管2に亜硫酸ナトリ
ウム水溶液を、2段目吸収管3に水酸化ナトリウム水溶
液をそれぞれ採取して図示のようにセットする。硝酸を
採取した注射器5を反応管1の三方コック4にセット
し、窒素ガス注入管7から窒素ガスを反応管1内に流
す。この状態で、注射器5から硝酸を滴下して試料中の
放射性ヨウ素および放射性炭素を選択的に分解、気化さ
せる。この反応は、硝酸添加の初期に激しく起きて発泡
するため、反応を見ながら徐々に硝酸を滴下する。硝酸
滴下が終了した後、加熱器9のスイッチを入れて約90
℃になるまで30分間加熱する。発生した気化物は窒素
ガスで置換することにより、連結管10を介して反応管
1から1段目吸収管2へ、さらには連結管11を介して
2段目吸収管3へ導入させる。気化物中の放射性ヨウ素
は1段目吸収管2で亜硫酸ナトリウム水溶液に吸収され
て分離回収される。次いで、放射性ヨウ素が分離除去さ
れた気化物はさらに2段目吸収管3へ導入され、ここで
放射性炭素が水酸化ナトリウム水溶液に吸収されて分離
回収される。
The operation of the present invention using this apparatus will be described below with reference to the drawings. First, a sample of the radioactive waste liquid is collected in the reaction tube 1 and an aqueous solution of sodium nitrite is added. Then, the reaction tube is set in the beaker 8 as shown in the figure. Next, an aqueous solution of sodium sulfite is collected in the first-stage absorption tube 2, and an aqueous solution of sodium hydroxide is collected in the second-stage absorption tube 3. The syringe 5 from which nitric acid has been collected is set in the three-way cock 4 of the reaction tube 1, and nitrogen gas flows into the reaction tube 1 from the nitrogen gas injection tube 7. In this state, nitric acid is dropped from the syringe 5 to selectively decompose and vaporize radioactive iodine and radioactive carbon in the sample. Since this reaction occurs violently at the initial stage of nitric acid addition and foams, nitric acid is gradually added dropwise while observing the reaction. After the nitric acid dripping is completed, the heater 9 is turned on and about 90
Heat to 30 ° C. for 30 minutes. By replacing the generated vapor with nitrogen gas, the gas is introduced from the reaction tube 1 to the first-stage absorption tube 2 via the connection tube 10 and further to the second-stage absorption tube 3 via the connection tube 11. The radioactive iodine in the vapor is absorbed by the aqueous sodium sulfite solution in the first absorption pipe 2 and separated and recovered. Next, the vapor from which the radioactive iodine has been separated and removed is further introduced into the second-stage absorption tube 3, where the radioactive carbon is absorbed into the aqueous sodium hydroxide solution and separated and recovered.

【0017】放射性ヨウ素の分離回収率は、1段目吸収
管2の亜硫酸ナトリウム水溶液中のヨウ素イオン濃度と
当初試料中のヨウ素イオン濃度をイオンクロマト装置で
測定することにより算出することができる。同様に、放
射性炭素の分離回収率は、2段目吸収管3の水酸化ナト
リウム水溶液中の炭酸イオン濃度と当初試料中の炭酸イ
オン濃度をイオンクロマト装置で測定することにより算
出できる。また、分離回収した亜硫酸ナトリウム水溶液
中の 129I放射能濃度(Bq/ml)は、γ核種分析装置
を用いて測定することができ、一方、分離回収した水酸
化ナトリウム水溶液中の14C放射能濃度は液体シンチレ
ーションカウンタを使用して測定できる。
The separation and recovery of radioactive iodine can be calculated by measuring the iodine ion concentration in the aqueous sodium sulfite solution in the first-stage absorption tube 2 and the iodine ion concentration in the initial sample with an ion chromatograph. Similarly, the separation and recovery rate of the radioactive carbon can be calculated by measuring the carbonate ion concentration in the aqueous sodium hydroxide solution of the second-stage absorption tube 3 and the carbonate ion concentration in the initial sample using an ion chromatograph. The concentration of 129 I radioactivity (Bq / ml) in the separated and recovered aqueous sodium sulfite solution can be measured using a γ-nuclide analyzer, while the concentration of 14 C radioactivity in the separated and recovered aqueous sodium hydroxide solution can be measured. The concentration can be measured using a liquid scintillation counter.

【0018】[0018]

【実施例】図1に示した分離回収装置を用いて、使用済
核燃料再処理施設から発生した放射性濃縮廃液中の 129
Iおよび14Cを分離回収した。反応管1は直径16.5
mm×長さ100mmのガラス製とし、吸収管2、3は直径
10mm×長さl00mmのガラス製とし、連絡管10、1
1は直径0.8mmのテフロン(登録商標)製チューブか
ら作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Using the separation and recovery apparatus shown in FIG. 1, 129 in radioactive concentrated waste liquid generated from a spent nuclear fuel reprocessing facility was used.
I and 14 C were separated and recovered. The reaction tube 1 has a diameter of 16.5.
The absorption pipes 2 and 3 are made of glass having a diameter of 10 mm and a length of 100 mm.
1 was manufactured from a Teflon (registered trademark) tube having a diameter of 0.8 mm.

【0019】廃液試料の1mlを反応管1に採取し、さら
にこの反応管1に亜硝酸ナトリウム水溶液(50g/
l)0.1mlを添加した後、ビーカー8内にセットし
た。また1段目吸収管2に亜硫酸ナトリウム水溶液
(0.5M)を6.0ml採取し、2段目吸収管3に水酸
化ナトリウム水溶液(2N)を6.0ml採取して、それ
ぞれ装置にセットし、窒素ガス注入管7から窒素ガスを
流した。次いで、注射器5に硝酸を2ml採取して三方コ
ック4にセットし、硝酸をゆっくり反応管1内に滴下し
た後、加熱器9で90℃になるまで30分間加熱して試
料中の 129Iおよび14CをそれぞれI2 ガスおよびCO
2 ガスとして気化させた。この気化物を窒素ガスと置換
させることにより気化物を1段目吸収管2さらには2段
目吸収管3へ導入し、1段目吸収管2では亜硫酸ナトリ
ウム水溶液にI2 ガスを吸収させ、2段目吸収管3では
水酸化ナトリウム水溶液にCO2 ガスを吸収させること
により、 1 29Iおよび14Cをそれぞれ分離回収した。
1 ml of the waste liquid sample was collected in a reaction tube 1 and further added to the reaction tube 1 with an aqueous solution of sodium nitrite (50 g /
l) After adding 0.1 ml, the mixture was set in a beaker 8. Further, 6.0 ml of an aqueous sodium sulfite solution (0.5 M) was collected in the first-stage absorption tube 2, and 6.0 ml of an aqueous sodium hydroxide solution (2 N) was collected in the second-stage absorption tube 3, and each was set in an apparatus. A nitrogen gas was flowed from the nitrogen gas injection pipe 7. Next, 2 ml of nitric acid was collected in the syringe 5 and set in the three-way cock 4. After the nitric acid was slowly dropped into the reaction tube 1, the mixture was heated to 90 ° C. for 30 minutes with the heater 9 to obtain 129 I and 14 C is converted to I 2 gas and CO
It was vaporized as two gases. By replacing this vapor with nitrogen gas, the vapor is introduced into the first-stage absorption tube 2 and further into the second-stage absorption tube 3, and the first-stage absorption tube 2 absorbs I 2 gas in an aqueous sodium sulfite solution. by absorbing the second stage absorber tube 3, CO 2 gas in an aqueous solution of sodium hydroxide, 1 29 I and 14 C were separated and collected, respectively.

【0020】1段目吸収管2中の亜硫酸ナトリウム水溶
液の約2mlを試料ビンに採取してγ核種分析装置で 129
I放射能を測定した。また、残りの亜硫酸ナトリウム水
溶液を用いてイオンクロマト装置によりヨウ素イオン濃
度を測定し、当初試料中のヨウ素イオン濃度に対する割
合から 129I分離回収率を算出した。
[0020] The approximately 2ml of aqueous sodium sulfite in the first stage in the absorption tube 2 at collected by γ nuclide analyzer sample bottle 129
I radioactivity was measured. Using the remaining aqueous sodium sulfite solution, the iodine ion concentration was measured by an ion chromatograph, and the 129 I separation and recovery rate was calculated from the ratio to the iodine ion concentration in the sample initially.

【0021】一方、2段目吸収管3中の水酸化ナトリウ
ム水溶液の約2mlを試料ビンに採取して液体シンチレー
ションカウンタで14C放射能を測定した。また、残りの
水酸化ナトリウム水溶液を用いてイオンクロマト装置に
より炭酸イオン濃度を測定し、当初試料中の炭酸イオン
濃度に対する割合から14C分離回収率を算出した。
On the other hand, about 2 ml of the aqueous sodium hydroxide solution in the second-stage absorption tube 3 was collected in a sample bottle, and 14 C radioactivity was measured by a liquid scintillation counter. Using the remaining sodium hydroxide aqueous solution, the carbonate ion concentration was measured by an ion chromatograph, and the 14 C separation and recovery rate was calculated from the ratio to the carbonate ion concentration in the sample initially.

【0022】試料である放射性濃縮廃液として、中レベ
ル放射性濃縮廃液(MAW)と低レベル放射性濃縮廃液
(LAW)を使用し、それぞれにつき上記の操作を5回
繰り返して放射能濃度および分離回収率の平均値を求め
た。結果を表1に示す。
As the radioactive concentrated waste liquid as a sample, a medium-level radioactive concentrated waste liquid (MAW) and a low-level radioactive concentrated waste liquid (LAW) are used. The average was determined. Table 1 shows the results.

【0023】 [0023]

【0024】なお表1中の変動率(%)は、5回の試験
で得られた放射能濃度平均値と標準偏差をもとに、標準
偏差(1σ)を放射能濃度平均値で除して百分率で示し
たものであり、測定される放射能濃度に対する相対的な
誤差(%)を表わしている。
The fluctuation rate (%) in Table 1 is obtained by dividing the standard deviation (1σ) by the average radioactivity concentration based on the average radioactivity concentration and the standard deviation obtained in five tests. And expressed as a percentage, and represents a relative error (%) with respect to the measured radioactivity concentration.

【0025】[0025]

【発明の効果】以上の説明からわかるようにこの発明に
よれば、核分裂生成物等の各種の放射性核種を含む放射
性廃液から簡単な操作で放射性炭素と放射性ヨウ素の2
成分を他の放射性核種からの妨害なく同時に気化、分離
でき、この気化物を別個の吸収液に吸収させることによ
りそれぞれの成分を効率よく分離回収することができ
る。
As can be understood from the above description, according to the present invention, radioactive wastewater containing various radionuclides such as fission products can be easily removed from radioactive wastewater containing radioactive nuclides such as radiocarbon and radioactive iodine.
The components can be vaporized and separated at the same time without interference from other radionuclides, and the components can be efficiently separated and recovered by absorbing the vaporized product in a separate absorbing solution.

【0026】また放射性炭素と放射性ヨウ素の気化物を
吸収液に吸収させるに際して、1段目の吸収管で放射性
ヨウ素気化物を吸収分離することによって、2段目の吸
収管で放射性炭素気化物を吸収した水酸化ナトリウム水
溶液の放射性炭素のβ線(156 Kev)を測定する際
に、ヨウ素のβ線(154 Kev)の妨害を受けることな
く正確な測定が可能となる。
When the vapor of radioactive carbon and radioactive iodine is absorbed by the absorbing solution, the radioactive iodine vapor is absorbed and separated by the first-stage absorption tube, whereby the radiocarbon vaporized product is separated by the second-stage absorption tube. When measuring the beta ray (156 Kev) of the radioactive carbon of the absorbed sodium hydroxide aqueous solution, accurate measurement can be performed without being hindered by the beta ray (154 Kev) of iodine.

【0027】上述したようにこの発明の方法は、簡単な
操作で効率よく実施できるため、放射性炭素および放射
性ヨウ素の分離回収操作をそれぞれ別個に行なっていた
従来の方法に比べて、分析所要時間が例えば180分か
ら45分に短縮でき、グローブボックス内操作時間も例
えば165分から15分に短縮できた。また、従来の方
法では2名の分析作業員と2台のグローブボックスが必
要であったが、この発明の方法では1名の作業員と1台
のグローブボックスで行なうことができる。
As described above, the method of the present invention can be carried out efficiently with a simple operation, so that the time required for analysis is shorter than that of a conventional method in which radiocarbon and radioactive iodine are separated and recovered separately. For example, it could be reduced from 180 minutes to 45 minutes, and the operation time in the glove box could be reduced from 165 minutes to 15 minutes, for example. In addition, the conventional method requires two analysis workers and two glove boxes, but the method of the present invention can be performed with one worker and one glove box.

【0028】さらにまた、従来の方法では四塩化炭素を
抽出溶媒に使用して有害で処理困難な二次廃液を発生さ
せていたが、この発明の方法ではかような二次廃液が発
生することがない。またこの発明の方法は、単純な器具
構成の分離回収装置を使用して実施できるため、グロー
ブボックス以外に遠隔での操作にも適用することが可能
となる。
Further, in the conventional method, harmful and difficult-to-treat secondary waste liquid is generated by using carbon tetrachloride as an extraction solvent. However, such a secondary waste liquid is generated in the method of the present invention. There is no. Further, since the method of the present invention can be carried out using a separation and recovery device having a simple instrument configuration, it can be applied to remote operations other than the glove box.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の方法を実施するために好ましく使
用できる装置の1例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of an apparatus that can be preferably used to carry out the method of the present invention.

【符号の説明】[Explanation of symbols]

1: 反応管 2: 1段目吸収管 3: 2段目吸収管 4: 三方コック 5: 注射器 1: Reaction tube 2: First stage absorption tube 3: Second stage absorption tube 4: Three-way cock 5: Syringe

フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/72 C02F 1/72 Z G21F 9/08 511 G21F 9/08 511B (56)参考文献 特開 昭49−89099(JP,A) (58)調査した分野(Int.Cl.6,DB名) G21F 9/06 G21F 9/08 Continuation of the front page (51) Int.Cl. 6 identification code FI C02F 1/72 C02F 1/72 Z G21F 9/08 511 G21F 9/08 511B (56) References JP-A-49-89099 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) G21F 9/06 G21F 9/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放射性炭素と放射性ヨウ素を他の放射性
核種とともに含む放射性溶液に硝酸を添加して酸性化し
たのち加熱することにより、放射性炭素はCO2 とし
て、放射性ヨウ素はI2 として放射性溶液から同時に気
化分離させ、この気化物を亜硫酸ナトリウム水溶液を収
容した1段目吸収管に通してI2 を亜硫酸ナトリウム水
溶液に吸収させてNaIとして回収し、1段目吸収管を
通過した気化物を引き続き水酸化ナトリウム水溶液を収
容した2段目吸収管に通してCO2を水酸化ナトリウム
水溶液に吸収させてNa2 CO3 として回収することを
特徴とする放射性炭素および放射性ヨウ素の同時分離方
法。
1. A radioactive solution containing radioactive carbon and radioactive iodine together with other radionuclides is acidified by adding nitric acid, and then heated, whereby radioactive carbon is converted into CO 2 and radioactive iodine is converted into I 2 from the radioactive solution. vaporized simultaneously separated, the vapor product and through a first-stage absorption tube containing the aqueous sodium sulfite solution to absorb the I 2 in aqueous solution of sodium sulfite was recovered as NaI, continuing care product that has passed through the first-stage absorption tube A simultaneous separation method for radioactive carbon and radioactive iodine, wherein CO 2 is absorbed in an aqueous sodium hydroxide solution and recovered as Na 2 CO 3 through a second-stage absorption tube containing an aqueous sodium hydroxide solution.
【請求項2】 前記放射性溶液に亜硝酸ナトリウムを添
加してIO3 - として含まれる放射性ヨウ素をI- に還
元した後、この放射性溶液に硝酸を添加して酸性化する
ことを特徴とする請求項1記載の放射性炭素および放射
性ヨウ素の同時分離方法。
2. A IO by adding sodium nitrite to the radioactive solution 3 - radioiodine I included as - after reduction in, characterized in that the acidified by adding nitric acid to the radioactive solution according Item 6. The method for simultaneous separation of radioactive carbon and radioactive iodine according to Item 1.
JP8100129A 1996-04-22 1996-04-22 Method for simultaneous separation of radioactive carbon and radioactive iodine Expired - Fee Related JP2971803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8100129A JP2971803B2 (en) 1996-04-22 1996-04-22 Method for simultaneous separation of radioactive carbon and radioactive iodine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8100129A JP2971803B2 (en) 1996-04-22 1996-04-22 Method for simultaneous separation of radioactive carbon and radioactive iodine

Publications (2)

Publication Number Publication Date
JPH09288195A JPH09288195A (en) 1997-11-04
JP2971803B2 true JP2971803B2 (en) 1999-11-08

Family

ID=14265716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8100129A Expired - Fee Related JP2971803B2 (en) 1996-04-22 1996-04-22 Method for simultaneous separation of radioactive carbon and radioactive iodine

Country Status (1)

Country Link
JP (1) JP2971803B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244122A (en) * 2008-03-31 2009-10-22 Fuji Electric Holdings Co Ltd Pretreatment method for activated carbon analysis
JP2012250198A (en) * 2011-06-03 2012-12-20 Kaneka Corp Method for removing/adsorbing iodate ion
KR101415173B1 (en) * 2012-11-30 2014-07-04 한국원자력연구원 Separation and recovery device for wet waste including radionuclide, and the separation and recovery method using the same
JP6438770B2 (en) * 2015-01-07 2018-12-19 日宝化学株式会社 How to recover iodine
CN113865947B (en) * 2021-08-20 2024-05-14 中国原子能科学研究院 Online sampling device and method for low-concentration molecular iodine in gas circulation loop

Also Published As

Publication number Publication date
JPH09288195A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
Hou Radioanalysis of ultra-low level radionuclides for environmental tracer studies and decommissioning of nuclear facilities
JP2971803B2 (en) Method for simultaneous separation of radioactive carbon and radioactive iodine
Comte et al. Determination of selenium-79 in solutions of fission products after pre-treatment by ion exchange chromatography and ETV-ICP-MS
Greendale et al. A Rapid Radiochemical Procedure for Tin.
Law et al. Demonstration of a SREX flowsheet for the partitioning of strontium and lead from actual ICPP sodium-bearing waste
Jubin et al. Testing of an iodine and tritium removal system for advanced tritium pretreatment off-gas
Attrep et al. Separation and purification of plutonium in uranium ores for mass spectrometric measurement
Bucur et al. 14C content in candu spent ion exchange resins and its release under alkaline conditions
Burriey Separation of macro-quantities of actinide elements at Savannah River by high-pressure cation exchange
Cooper et al. Aqueous Processes for Separation and Decontamination of Irradiated Fuels
Galluccio et al. Preliminary development of a radiochemical separation method to determine 135Cs and 135Cs/137Cs isotopic ratio by a non-radiometric technique
Marsh et al. Improved two-column ion exchange separation of plutonium, uranium, and neodymium in mixed uranium--plutonium fuels for burnup measurement
Burney Separation of Milligram Quantities of 252Cf from Multigram Quantities of 244Cm and 243Am
Rimshaw et al. Volatility of ruthenium-106, technetium-99, and iodine-129, and the evolution of nitrogen oxide compounds during the calcination of high-level, radioactive nitric acid waste
Guo et al. Summary of methods for studying the chemical states of nuclides in nuclear Energy systems
Vajda et al. Simultaneous determination of long-lived radionuclides in environmental samples
Maeck Burnup Determination of Nuclear Fuels: 1964 Annual Report
Oliveira et al. Determination of 93Zr in radioactive waste from nuclear power plants using Inductively Coupled Plasma Mass Spectrometry
Gudelis et al. Application of LSC for the determination of some radionuclides in waste matrices from the Ignalina NPP
Leudet et al. Balance and behavior of gaseous radionuclides released during initial PWR fuel reprocessing operations
Samsahl et al. Simultaneous determination of 30 trace elements in cancerous and noncancerous human tissue samples with gamma-ray spectrometry
Dewberry et al. Tests of Cs-137 removal from DWPF samples prior to analysis
Dewberry et al. Measured 63 Ni contents in Savannah River Site high level waste and Defense Waste Processing Facility glass product by Ni-selective ion exchange purification and β-decay counting
Kuleff et al. Determination of the 129 I content of the primary coolant of nuclear power reactors
Jäggi et al. Radioanalytical methods of long-lived radionuclides

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees