JP2984138B2 - Continuous cast slab of Fe-Cu alloy - Google Patents

Continuous cast slab of Fe-Cu alloy

Info

Publication number
JP2984138B2
JP2984138B2 JP4070906A JP7090692A JP2984138B2 JP 2984138 B2 JP2984138 B2 JP 2984138B2 JP 4070906 A JP4070906 A JP 4070906A JP 7090692 A JP7090692 A JP 7090692A JP 2984138 B2 JP2984138 B2 JP 2984138B2
Authority
JP
Japan
Prior art keywords
slab
thickness
alloy
weight
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4070906A
Other languages
Japanese (ja)
Other versions
JPH05277666A (en
Inventor
利明 溝口
良之 上島
紀代美 塩
一美 安田
哲 西村
浩作 潮田
憲一 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4070906A priority Critical patent/JP2984138B2/en
Publication of JPH05277666A publication Critical patent/JPH05277666A/en
Application granted granted Critical
Publication of JP2984138B2 publication Critical patent/JP2984138B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はCuを20〜90重量%
含有するFe−Cu系合金の連続鋳造鋳片に関する。こ
のFe−Cu系合金の連続鋳造鋳片は薄板に圧延し、電
子、磁気部品材料例えばリードフレーム材として用いる
事ができる。
BACKGROUND OF THE INVENTION The present invention relates to a Cu-containing material of 20 to 90% by weight.
The present invention relates to a continuous cast slab of a contained Fe-Cu alloy. The continuous cast slab of this Fe-Cu alloy can be rolled into a thin plate and used as a material for electronic and magnetic parts, for example, a lead frame material.

【0002】[0002]

【従来の技術】例えば、特願平2−93440号、特願
平3−73265号は、本発明者等の出願に係る発明
で、連続鋳造鋳片を用いたFe−Cu系合金薄板が記載
されている。即ち合金成分を特定することにより微細な
金属組織を有する厚さ2.2〜10mmの連続鋳造鋳片
を製造し、これを冷間圧延してFe−Cu系合金薄板を
製造する。
2. Description of the Related Art For example, Japanese Patent Application Nos. 2-93440 and 3-73265 are inventions filed by the present inventors and describe Fe-Cu alloy thin plates using continuous cast slabs. Have been. That is, by specifying an alloy component, a continuous cast slab having a fine metal structure and a thickness of 2.2 to 10 mm is manufactured and cold-rolled to manufacture an Fe-Cu-based alloy thin plate.

【0003】本発明者等の知見によると、鋳造した直後
のFe−Cu系合金の鋳片は強度が小さく、このため冷
却に際して鋳片内に発生する熱応力により鋳片の表面に
ワレ疵が発生し易いという問題点がある。溶湯の成分を
特願平2−93440号、特願平3−73265号に記
載の成分範囲に選定するとこの問題点も若干改善され
て、厚さが10mm以下の連続鋳造鋳片の製造は可能と
なる。
According to the knowledge of the present inventors, the slab of the Fe-Cu alloy immediately after casting has a low strength, and therefore, cracks are formed on the surface of the slab due to thermal stress generated in the slab during cooling. There is a problem that it easily occurs. If the components of the molten metal are selected within the ranges described in Japanese Patent Application Nos. 2-93440 and 3-73265, this problem is slightly improved, and the production of continuous cast slabs having a thickness of 10 mm or less is possible. Becomes

【0004】しかしながら、成分の選定のみでは、ワレ
疵を十分に防止する事が難しく、従って鋳片の冷却時に
大きい熱応力が発生する厚さが10mm超の鋳片は、ワ
レ疵が多発するために、従来は製造されていなかった。
[0004] However, it is difficult to sufficiently prevent cracks only by selecting the components. Therefore, a slab having a thickness of more than 10 mm, which generates a large thermal stress when cooling the slab, has many cracks. Conventionally, it has not been manufactured.

【0005】[0005]

【発明が解決しようとする課題】電子、磁気部品材料と
してのFe−Cu系合金は、板厚が0.5mm以下の薄
板として使用される場合が多い。従って厚さが2.2〜
10mmの鋳片を圧延して製造する事もできる。厚さが
薄い鋳片を製造する際は鋳造速度(m/分)を上昇さ
せ、高速度で連続鋳造を行う。しかし高速度で鋳造して
も厚さが薄いために、従来の厚さが2.2〜10mmの
鋳片では連続鋳造の生産性(トン/分)が小さく、高い
生産性で連続鋳造を行う事は難しい。
The Fe-Cu based alloy as a material for electronic and magnetic parts is often used as a thin plate having a thickness of 0.5 mm or less. Therefore, the thickness is 2.2-
It can also be manufactured by rolling a 10 mm slab. When producing a thin slab, the casting speed (m / min) is increased and continuous casting is performed at a high speed. However, since the thickness is small even when cast at a high speed, the productivity (ton / min) of the continuous casting is small with a conventional slab having a thickness of 2.2 to 10 mm, and the continuous casting is performed with high productivity. Things are difficult.

【0006】冷却に際してワレ疵を発生させないで、厚
さが10mm超の鋳片を製造できると、連続鋳造の生産
性が大幅に向上する。本発明は、厚さが10mm超のF
e−Cu系合金の鋳片であって、冷却に際してワレ疵が
発生し難い鋳片の提供を課題としている。
If a slab having a thickness of more than 10 mm can be produced without causing cracks during cooling, the productivity of continuous casting is greatly improved. The present invention relates to F
An object of the present invention is to provide a cast slab of an e-Cu-based alloy, in which cracks are less likely to occur during cooling.

【0007】[0007]

【課題を解決するための手段】本発明は(1)Cuが2
0重量%以上、Crが1〜10重量%、Feが10重量
%以上で、厚さが10mm超〜80mmの連続鋳造鋳片
であって、鋳片の表層部が鋳片の厚さの1/3以上の厚
さの柱状組織で形成されていることを特徴とする、Fe
−Cu系合金の連続鋳造鋳片である。また(2)Cuが
20重量%以上、Crが1〜10重量%、Feが10重
量%以上で、更にMo、Al、La、Si、Ti、Z
r、C、Bから選ばれる1または2以上の元素を合計で
10重量%以下含有し、厚さが10mm超〜80mmの
連続鋳造鋳片であって、鋳片の表層部が鋳片の厚さの1
/3以上の厚さの柱状組織で形成されていることを特徴
とする、Fe−Cu系合金の連続鋳造鋳片である。
According to the present invention, (1) Cu is 2
0% by weight or more, Cr is 1 to 10% by weight, Fe is 10% by weight
% Or more, and is a continuous cast slab having a thickness of more than 10 mm to 80 mm, wherein the surface layer portion of the slab is formed of a columnar structure having a thickness of 1/3 or more of the thickness of the slab. , Fe
-A continuous cast slab of a Cu-based alloy. (2) Cu
20% by weight or more, 1 to 10% by weight of Cr, 10% by weight of Fe
Mo, Al, La, Si, Ti, Z
one or more elements selected from r, C and B in total
Contains not more than 10% by weight and has a thickness of more than 10 mm to 80 mm
A continuous cast slab, wherein the surface layer of the slab has a thickness of 1
It is characterized by being formed of a columnar structure with a thickness of / 3 or more
It is a continuous cast slab of an Fe-Cu alloy.

【0008】本発明のFe−Cu合金は、電子、磁気部
品材料としての電気伝導度や放熱性を高めるために少な
くとも20重量%のCuを含有せしめる。合金中のFe
分は合金に強度を付与する。Feの含有量が過少となる
、強度が不十分となる。Cuの含有量とFeの含有量
の割合は、電気伝導度等と強度とのバランスに基づき用
途に応じて選定するがFeは10重量%以上含有せしめ
る。
[0008] The Fe-Cu alloy of the present invention contains at least 20% by weight of Cu in order to improve electric conductivity and heat dissipation as materials for electronic and magnetic parts. Fe in alloy
The minutes impart strength to the alloy . The content of F e is too small
And, the strength becomes insufficient. The ratio of the content of Cu to the content of Fe is selected according to the application based on the balance between electric conductivity and the like, but the content of Fe is 10% by weight or more.

【0009】Crは合金に耐食性を付与するために含有
せしめる。1重量%未満ではその改善効果が小さいため
に1重量%以上含有せしめる。しかしCrを含有せしめ
ると、鋳片に粗大結晶粒が発生し易くなる。このため含
有量は10重量%以下とする。
[0009] Cr is added to impart corrosion resistance to the alloy. If the content is less than 1% by weight, the effect of improvement is small, so that the content is 1% by weight or more. However, when Cr is contained, coarse crystal grains are likely to be generated in the slab. Therefore, the content is set to 10% by weight or less.

【0010】本発明では必須とするものではないが、更
にMo,Al,La,Si,Ti,Zr,C,Bから選
ばれる1または2以上の元素を合計で10重量%以下含
有せしめることができる。MoはCrと同様に合金に耐
食性を付与し、Al,La,Si,Ti,Zr,C,B
は、鋳片に粗大結晶粒が発生することを防止する。しか
しこれ等の元素を過剰に含有せしめると、CuとFeの
合計の含有量が低下し、Fe−Cu合金の電気伝導度等
や強度が損なわれる。このため含有量は合計で10重量
%以下、望ましくは5重量%以下とする。
Although not essential in the present invention, one or more elements selected from Mo, Al, La, Si, Ti, Zr, C, and B may be further contained in a total amount of 10% by weight or less. it can. Mo, like Cr, imparts corrosion resistance to the alloy, and Al, La, Si, Ti, Zr, C, B
Prevents the generation of coarse crystal grains in the slab. However, if these elements are excessively contained, the total content of Cu and Fe decreases, and the electric conductivity and the strength of the Fe—Cu alloy are impaired. Therefore, the content is 10% by weight or less in total, and preferably 5% by weight or less.

【0011】図2は双ベルト式連続鋳造装置の例の説明
図である。4はプーリー1,2,3の間に張り渡された
金属ベルトで矢印方向に走行する。金属ベルト4'もプ
ーリー1',2',3'の間に張り渡されて走行する。金
属ベルト4と4'とは図2の如くに対面させ、1〜2の
間と1'〜2'の間は相互に略平行に配して走行させる。
FIG. 2 is an explanatory view of an example of a twin belt type continuous casting apparatus. Reference numeral 4 denotes a metal belt stretched between the pulleys 1, 2, 3 and runs in the direction of the arrow. The metal belt 4 'also runs while being stretched between the pulleys 1', 2 ', 3'. The metal belts 4 and 4 'face each other as shown in FIG. 2, and the belts 1 and 2 and 1' and 2 'are run substantially parallel to each other.

【0012】平行に走行している金属ベルト4と4'の
間には、金属ベルトの両端(紙面上方端部と紙面下方端
部)には図示しない側堰が配されている。溶湯7は平行
に走行している金属ベルト4,4'と側堰で形成された
スペースに注入する。注入された溶湯は、金属ベルト上
に凝固シェル6と6'を形成し、凝固シェル6と6'は金
属ベルト4と4'の走行に追従して下方に移動し、鋳片
8となって取り出される。図2の双ベルト式連続鋳造装
置を用いると厚さが10mm超〜80mmの連続鋳造鋳
片を高い生産性で製造することができる。
Between the metal belts 4 and 4 'running in parallel, side dams (not shown) are provided at both ends (upper end and lower end of the paper) of the metal belt. The molten metal 7 is injected into a space formed by the metal belts 4, 4 'running in parallel and the side dam. The poured molten metal forms solidified shells 6 and 6 ′ on the metal belt, and the solidified shells 6 and 6 ′ move downward following the movement of the metal belts 4 and 4 ′ to become cast pieces 8. Taken out. When the twin-belt continuous casting apparatus of FIG. 2 is used, a continuous cast slab having a thickness of more than 10 mm to 80 mm can be manufactured with high productivity.

【0013】本発明の鋳片は、鋳片の表層部が鋳片の厚
さの1/3以上の厚さの柱状組織で形成されていること
を特徴とする。即ち例えば厚さが30mmの鋳片の場合
は、鋳片の表層部には厚さが10mm以上の柱状組織が
形成されている。本発明で柱状組織とは、鋳片の横断面
を、アルミナ研磨仕上げし、この研磨面をH2O:50
cc,HNO3:25cc,酢酸:25ccの溶液で1
分〜2分間に亘ってマクロエッチして目視観察した際に
見られる、鋳片の表面から鋳片の厚さの中心に向いた延
伸状の金属組織の集合部をいう。
[0013] The slab of the present invention is characterized in that the surface layer of the slab is formed of a columnar structure having a thickness of 1/3 or more of the thickness of the slab. That is, for example, in the case of a slab having a thickness of 30 mm, a columnar structure having a thickness of 10 mm or more is formed on the surface layer of the slab. In the present invention, the columnar structure means that the cross section of the slab is polished with alumina and the polished surface is made of H 2 O: 50.
cc, HNO 3 : 25cc, acetic acid: 25cc solution 1
It refers to an aggregated portion of a metal structure extending from the surface of the slab toward the center of the thickness of the slab, which is observed when the surface of the slab is macro-etched and visually observed for 2 to 2 minutes.

【0014】後で詳述するが、鋳片の表層部が鋳片の厚
さの1/3以上の厚さの柱状組織で形成されている鋳片
は、例えばCuの含有量が約50%,Feの含有量が約
50%でCrの含有量が0.5%の組成のFe−Cu系
合金の場合は、図2の双ベルト式連続鋳造装置に注入す
る溶湯の温度を1450℃以上に制御することによって
得られる。この組成の溶湯の温度が例えば1300℃以
下の場合は、鋳片の表層部には柱状組織は全く観察され
ないで、横断面の全体が粒状組織のみで形成された鋳片
となる。
As will be described later in detail, a slab in which the surface layer of the slab has a columnar structure having a thickness of 1/3 or more of the thickness of the slab has a Cu content of about 50%, for example. In the case of a Fe-Cu alloy having a composition of about 50% Fe and 0.5% Cr, the temperature of the molten metal injected into the twin-belt continuous casting apparatus shown in FIG. To be obtained. When the temperature of the molten metal having this composition is, for example, 1300 ° C. or less, no columnar structure is observed in the surface layer portion of the slab, and the entire cross section is a slab formed of only the granular structure.

【0015】[0015]

【作用および実施例】本発明者等は、図2に示した双ベ
ルト式連続鋳造装置によって、表1の番号1〜4に示し
た、Fe−Cu系合金鋳片を製造した。
The present inventors manufactured Fe-Cu alloy slabs shown in Tables 1 through 4 using the twin-belt continuous casting apparatus shown in FIG.

【0016】鋳片は冷延し、目視検査により表面のワレ
疵の有無を観察した。本発明者等の知見によると、長さ
50mm以下のワレ疵は、深さが浅く容易に手入除去す
る事が可能で、後工程の圧延で大きな障害とはならない
が、長さが50mm超のワレ疵は手入除去する事が難し
い。従って図1でワレ疵なしは長さが50mm超のワレ
疵がなかった鋳片を、またワレ疵有りは長さが50mm
超のワレ疵があった鋳片を指す。
The slab was cold-rolled, and the surface was visually inspected for cracks. According to the knowledge of the present inventors, cracks having a length of 50 mm or less have a shallow depth and can be easily removed and removed, and do not become a major obstacle in rolling in a later step, but have a length of more than 50 mm. It is difficult to remove the cracks. Therefore, in FIG. 1, a slab having no cracks having a length of more than 50 mm was obtained without cracks, and a length of 50 mm was obtained without cracks in FIG. 1.
Refers to a slab with excessive cracks.

【0017】[0017]

【表1】 [Table 1]

【0018】本発明者等はまた、各鋳片の長さ方向の略
中央部から横断面のマクロエッチ用の試料を採取し、鋳
片の表層部の柱状組織の厚さを調査した。鋳片の柱状組
織の厚さと鋳片のワレの観察結果を対応させて図1に示
した。
The present inventors also took a macroetch sample of a cross section from a substantially central portion in the longitudinal direction of each slab, and examined the thickness of the columnar structure in the surface layer of the slab. FIG. 1 shows the correspondence between the thickness of the columnar structure of the slab and the observation result of cracks in the slab.

【0019】図1にみられる如く、柱状組織が薄く
{(柱状組織厚)/(鋳片厚)×100}が20以下の場合
は、全ての鋳片はワレ疵有であり、極端な場合は破断し
ている。一方{(柱状組織厚)/(鋳片厚)×100}が3
0以上の場合には鋳片にワレ疵の発生はなかった。
As shown in FIG. 1, when the columnar structure is thin and {(columnar structure thickness) / (slab thickness) × 100} is 20 or less, all the slabs have cracks, and in extreme cases, Is broken. On the other hand, {(columnar structure thickness) / (slab thickness) × 100} is 3
When it was 0 or more, no crack was generated on the slab.

【0020】本発明者等は、これ等の鋳片の金属組織を
更に調査した結果、下記の知見を得た。即ちワレ疵の発
生した鋳片のワレ疵の近傍には、鋳片の表層部で鋳片の
厚さの1/3以内に、約3000μ以上の大きさの巨大
な異常組織が散在する。この巨大な異常組織は柱状組織
の部分には観察される事はなく、専ら粒状晶の組織の中
に散在する。従って鋳片の表層部が鋳片の厚さの1/3
以上の厚さの柱状組織で形成されている鋳片には、鋳片
の表層部に巨大な異常組織がなく、またこの鋳片には破
断やワレ疵が発生しない。
The present inventors have further investigated the metallographic structure of these slabs and have obtained the following findings. That is, in the vicinity of the crack of the slab where the crack has occurred, a huge abnormal structure having a size of about 3000 μ or more is scattered in the surface layer portion of the slab within 1/3 of the thickness of the slab. This huge abnormal structure is not observed in the columnar structure, but is scattered exclusively in the structure of granular crystals. Therefore, the surface layer of the slab is 1/3 of the slab thickness.
The cast slab having the columnar structure having the above thickness does not have a huge abnormal structure in the surface layer portion of the cast slab, and the cast slab does not cause breakage or cracks.

【0021】巨大な異常組織が専ら粒状晶の組織の中に
発生し、柱状組織には発生しない理由は、必ずしも詳か
ではないが、本発明者等は下記の如くに想考している。
既に述べた如くCu:約50%,Fe:約50%,C
r:0.5%の溶湯を1300℃で鋳造すると、全体が
粒状晶の組織の鋳片となるが、この鋳片の表層には多数
の巨大な異常組織が観察される。
The reason why the huge abnormal structure is generated exclusively in the structure of the granular crystal and not in the columnar structure is not necessarily elucidated, but the present inventors have conceived as follows.
As already described, Cu: about 50%, Fe: about 50%, C
When the molten metal of r: 0.5% is cast at 1300 ° C., the whole becomes a slab having a granular crystal structure, and a large number of huge abnormal structures are observed on the surface layer of the slab.

【0022】図5は公知のFe−Cuの状態図である。
Cu:約50%,Fe:約50%,Cr:0.5%の組
成で温度が1300℃の溶湯は図5のイの状態として示
される。即ちイの溶湯は(融液+γ)の状態で、鋳造前
の溶湯中には既に凝固したγの粒子が浮遊状態で含有さ
れている。この溶湯は凝固に際して浮遊しているγの粒
子のそれぞれが核となって結晶生長する。従って全体が
自由晶の組織となる。
FIG. 5 is a state diagram of a known Fe-Cu.
A melt having a composition of Cu: about 50%, Fe: about 50%, Cr: 0.5% and a temperature of 1300 ° C. is shown as a state a in FIG. That is, the molten metal of (a) is in a state of (melt + γ), and the molten metal before casting contains already solidified γ particles in a floating state. In this molten metal, each of the floating γ particles becomes a nucleus at the time of solidification, and the crystal grows. Therefore, the whole structure has a free crystal structure.

【0023】溶湯は1080℃近傍に達して凝固を完了
するが、イの溶湯はγの粒子と融液の混合物であるた
め、融液は凝固に際してγの粒子の隙間を充満して相互
に連結し巨大な異常組織のε相となって、鋳片の表層近
傍にも散在することとなる。
The molten metal reaches around 1080 ° C. and completes solidification. However, since the molten metal (a) is a mixture of γ particles and a melt, the melt fills the gaps between the γ particles during solidification and is interconnected. Then, the ε phase becomes a huge abnormal structure and is scattered also in the vicinity of the surface layer of the cast slab.

【0024】既に述べた如く、この溶湯を1450℃以
上で鋳造すると、柱状組織で形成された鋳片となるが、
この鋳片の表層には巨大な異常組織は観察されない。図
5でロはこの溶湯の例である。この溶湯は鋳造前にはγ
の粒子を含有しないで、注入された後、液相線近傍の温
度に達してγの核が発生する。溶湯は金属ベルトとの接
触部が最も早く冷却されて液相線近傍の温度に達する。
従ってγの核は先ず鋳片の表層部に相応する部分に発生
し、温度が降下すると、このγの核は鋳片の厚さ方向の
中心に向かって樹枝状に生長する。
As described above, when this molten metal is cast at a temperature of 1450 ° C. or higher, a cast slab having a columnar structure is obtained.
No giant abnormal structure is observed in the surface layer of this slab. FIG. 5B shows an example of this molten metal. This molten metal is γ before casting.
After the injection without containing the particles of, the temperature reaches near the liquidus line and nuclei of γ are generated. The molten metal is cooled most quickly at the contact portion with the metal belt and reaches a temperature near the liquidus line.
Accordingly, the nucleus of γ is first generated in a portion corresponding to the surface layer of the slab, and when the temperature is lowered, the nucleus of γ grows in a dendritic manner toward the center in the thickness direction of the slab.

【0025】このために方向性をもった柱状組織が得ら
れる。γの核が樹枝状に生長するに伴い融液は樹枝状晶
の間に捕らえれ、1080℃近傍に達して凝固するが、
樹枝状晶の間に捕らえられた融液は微細であり、従って
凝固したε相は微細で、巨大な異常組織にはならない。
For this reason, a columnar structure having directionality is obtained. As the nucleus of γ grows in dendrites, the melt is trapped between dendrites and reaches around 1080 ° C and solidifies,
The melt trapped between the dendrites is fine, so the solidified ε-phase is fine and does not become a giant abnormal structure.

【0026】柱状晶の厚さが不十分な鋳片は、鋳片の表
層部に巨大な異常組織が散在しているが、この巨大な異
常組織はCuの含有量が高く強度が小さいε相であるた
め、鋳片はこの異常組織を起点としてワレ疵を発生させ
る。柱状晶が十分に厚い鋳片は表層部に巨大な異常組織
がなく、ε相は細かく均一に分散している。従って材質
強度は均一であり、ワレ疵の起点となる欠陥がないため
に、ワレ疵が発生し難い。
In a slab having an insufficient columnar crystal thickness, a huge abnormal structure is scattered on the surface layer of the slab, and this huge abnormal structure has a high Cu content and a low strength ε phase. Therefore, the slab generates cracks starting from the abnormal structure. The slab having sufficiently thick columnar crystals has no huge abnormal structure in the surface layer, and the ε phase is finely and uniformly dispersed. Accordingly, the material strength is uniform, and there is no defect serving as a starting point of cracks, so that cracks are unlikely to occur.

【0027】図5で、Cu:約50%,Fe:約50%
の例を述べたが、他の成分の溶湯の場合も、液相線の温
度以上の溶湯を連続鋳造装置の湯溜りに注入すると、鋳
片の表層部が鋳片の厚さの1/3以上の厚さの柱状組織
で形成された鋳片を得ることができる。
In FIG. 5, Cu: about 50%, Fe: about 50%
In the case of molten metal of other components, if a molten metal having a temperature equal to or higher than the temperature of the liquidus line is poured into a pool of a continuous casting apparatus, the surface layer of the slab becomes 1/3 of the thickness of the slab. A cast piece having a columnar structure having the above thickness can be obtained.

【0028】図3は、Crを3%含有するFe−Cu系
合金について本発明者等が作成した、表層部に鋳片の厚
さの1/3以上の厚さの柱状組織を有する鋳片を鋳造す
る際の溶湯温度の例を示す図で、点線で示したよりも高
温の溶湯を用いる事によって、本発明の柱状組織を有す
る鋳片が得られる。図4は、Crを6%含有するFe−
Cu系合金の例で、図3と同様に使用して、本発明の柱
状組織を有する鋳片が得られる。
FIG. 3 shows a slab having a columnar structure having a thickness of 1/3 or more of the slab thickness in the surface layer, which was prepared by the present inventors for an Fe-Cu-based alloy containing 3% of Cr. FIG. 5 is a diagram showing an example of the temperature of the molten metal at the time of casting. By using a molten metal having a higher temperature than that indicated by the dotted line, a cast piece having a columnar structure of the present invention can be obtained. FIG. 4 shows Fe-containing 6% Cr.
Using a Cu-based alloy as an example in the same manner as in FIG. 3, a cast slab having a columnar structure of the present invention is obtained.

【0029】図3〜図5で述べた如く、溶湯の成分が変
わると、本発明の柱状組織を有する鋳片を製造するため
に必要な、溶湯の下限温度は変化するが、この下限温度
は予め実験等で把握する事は容易であり、溶湯の温度を
この下限温度よりも高温に保つ事によって、本発明の柱
状組織を有する鋳片は容易に得られる。
As described with reference to FIGS. 3 to 5, when the composition of the molten metal changes, the lower limit temperature of the molten metal required for manufacturing the cast slab having the columnar structure of the present invention changes. It is easy to grasp in advance by an experiment or the like, and by maintaining the temperature of the molten metal at a temperature higher than the lower limit temperature, the cast slab having the columnar structure of the present invention can be easily obtained.

【0030】以上本発明を図2の双ベルト式連続鋳造装
置で製造した鋳片について述べたが、本発明の鋳片の効
果は、本発明の冶金的な新たな知見に基づき鋳造温度を
制御することによって他の連続鋳造装置の場合にも容易
に得られる。従って本発明は、双ベルト式連続鋳造装置
による鋳片に限定されるものではなく、本発明には本発
明で限定した性状のFe−Cu系合金の全て鋳片が含ま
れる。
Although the present invention has been described with reference to the slab manufactured by the twin-belt continuous casting apparatus shown in FIG. 2, the effect of the slab of the present invention is controlled by controlling the casting temperature based on the new metallurgical knowledge of the present invention. By doing so, it can be easily obtained in other continuous casting apparatuses. Therefore, the present invention is not limited to the slab by the twin-belt continuous casting apparatus, and the present invention includes all slabs of the Fe—Cu-based alloy having the properties limited by the present invention.

【0031】[0031]

【発明の効果】本発明のFe−Cu系合金の連続鋳造鋳
片を用いると、鋳造後にコイラーに搬送する際に、ある
いはコイラーで巻き取る際に、割れ疵や破断の発生を防
止することができる。
By using the continuous cast slab of the Fe-Cu alloy of the present invention, it is possible to prevent the occurrence of cracks or breakage when transported to a coiler after winding or when wound up by a coiler. it can.

【図面の簡単な説明】[Brief description of the drawings]

図1は鋳片の柱状組織とワレ疵・破断との関係を示す
図、図2は双ベルト式連続鋳造装置の説明図、図3はC
rを3%含有する本発明のFe−Cu系合金の鋳片を製
造するのに適した溶湯温度の例を示す図、図4はCrを
6%含有する本発明のFe−Cu系合金の鋳片を製造す
るのに適した溶湯温度の例を示す図、図5はFe−Cu
状態図、である。
FIG. 1 is a view showing the relationship between the columnar structure of a slab and cracks / breaks, FIG. 2 is an explanatory view of a twin-belt continuous casting apparatus, and FIG.
FIG. 4 is a diagram showing an example of the temperature of a molten metal suitable for producing a slab of the Fe—Cu-based alloy of the present invention containing 3% of r, and FIG. 4 is a diagram of the Fe—Cu-based alloy of the present invention containing 6% of Cr. FIG. 5 is a view showing an example of a melt temperature suitable for manufacturing a slab, and FIG.
FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 一美 千葉県富津市新富20−1 新日本製鐵株 式会社技術開発本部内 (72)発明者 西村 哲 千葉県富津市新富20−1 新日本製鐵株 式会社技術開発本部内 (72)発明者 潮田 浩作 千葉県富津市新富20−1 新日本製鐵株 式会社技術開発本部内 (72)発明者 宮沢 憲一 千葉県君津市君津1番地 新日本製鐵株 式会社君津製鐵所内 (56)参考文献 特開 平2−251345(JP,A) 特開 平4−333538(JP,A) 特開 平3−243244(JP,A) 特開 平5−138301(JP,A) 特開 平5−277652(JP,A) 特許2614381(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B22D 11/06 340 B22D 11/00 C22C 9/00 C22C 38/00 302 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Kazumi Yasuda 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division (72) Inventor Satoshi Nishimura 20-1 Shintomi, Futtsu City, Chiba Prefecture New Nippon Steel Corporation Technology Development Division (72) Inventor Hirosaku Shioda 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division (72) Inventor Kenichi Miyazawa 1 Kimitsu, Kimitsu City, Chiba Prefecture Nippon Steel Corporation Kimitsu Works (56) References JP-A-2-251345 (JP, A) JP-A-4-333538 (JP, A) JP-A-3-243244 (JP, A) JP-A-5-138301 (JP, A) JP-A-5-277652 (JP, A) Patent 2614381 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B22D 11/06 340 B22D 11/00 C22C 9/00 C22C 38/00 302

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cuが20重量%以上、Crが1〜10重
量%、Feが10重量%以上で、厚さが10mm超〜8
0mmの連続鋳造鋳片であって、鋳片の表層部が鋳片の
厚さの1/3以上の厚さの柱状組織で形成されているこ
とを特徴とする、Fe−Cu系合金の連続鋳造鋳片。
(1) Cu is 20% by weight or more and Cr is 1 to 10 weights.
%, Fe is 10% by weight or more, and the thickness is more than 10 mm to 8 %.
A continuous cast slab of 0 mm, wherein the surface layer of the slab is formed of a columnar structure having a thickness of 1/3 or more of the thickness of the slab. Cast slab.
【請求項2】Cuが20重量%以上、Crが1〜10重2. Cu is 20% by weight or more, and Cr is 1 to 10 weight%.
量%、Feが10重量%以上で、更にMo、Al、L%, Fe is 10% by weight or more, and Mo, Al, L
a、Si、Ti、Zr、C、Bから選ばれる1または21 or 2 selected from a, Si, Ti, Zr, C and B
以上の元素を合計で10重量%以下含有し、厚さが1010% by weight or less of the above elements in total, and a thickness of 10%
mm超〜80mmの連続鋳造鋳片であって、鋳片の表層A continuous cast slab of more than 80 mm to 80 mm, and the surface layer of the slab
部が鋳片の厚さの1/3以上の厚さの柱状組織で形成さThe part is formed with a columnar structure with a thickness of 1/3 or more of the thickness of the slab.
れていることを特徴とする、Fe−Cu系合金の連続鋳Continuous casting of Fe-Cu alloy
造鋳片。Slab.
JP4070906A 1992-03-27 1992-03-27 Continuous cast slab of Fe-Cu alloy Expired - Lifetime JP2984138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4070906A JP2984138B2 (en) 1992-03-27 1992-03-27 Continuous cast slab of Fe-Cu alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4070906A JP2984138B2 (en) 1992-03-27 1992-03-27 Continuous cast slab of Fe-Cu alloy

Publications (2)

Publication Number Publication Date
JPH05277666A JPH05277666A (en) 1993-10-26
JP2984138B2 true JP2984138B2 (en) 1999-11-29

Family

ID=13445035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4070906A Expired - Lifetime JP2984138B2 (en) 1992-03-27 1992-03-27 Continuous cast slab of Fe-Cu alloy

Country Status (1)

Country Link
JP (1) JP2984138B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614381B2 (en) 1992-03-27 1997-05-28 新日本製鐵株式会社 Thin slab of Fe-Cu alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614381B2 (en) 1992-03-27 1997-05-28 新日本製鐵株式会社 Thin slab of Fe-Cu alloy

Also Published As

Publication number Publication date
JPH05277666A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
JP2008255371A (en) Method for manufacturing aluminum alloy thick plate, and aluminum alloy thick plate
JP4740941B2 (en) Method for producing aluminum alloy plate
JP4174526B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
WO1991009697A1 (en) Sheet of titanium-aluminum intermetallic compound and process for producing the same
JP3286982B2 (en) Mold material
JP2984138B2 (en) Continuous cast slab of Fe-Cu alloy
JPH0693397A (en) Production of aluminum foil excellent in strength and foil rollability
JPS63195253A (en) Manufacture of phosphor bronze sheet metal
JP2614381B2 (en) Thin slab of Fe-Cu alloy
JP3973540B2 (en) Aluminum alloy sheet having excellent wear resistance and method for producing the same
JP2572807B2 (en) Manufacturing method of lead free-cutting steel by continuous casting method
JP2013071155A (en) Copper alloy ingot, copper alloy sheet, and method for manufacturing copper alloy ingot
JP3416503B2 (en) Hypereutectic Al-Si alloy die casting member and method of manufacturing the same
JPS643939B2 (en)
JPH05277652A (en) Cast piece in continuous casting of fe-cu system
JPH06101004A (en) Manufacture of aluminum foil excellent in strength and foil rollability
JPS5911381B2 (en) Continuous casting method for Al and Al alloys
KR100573781B1 (en) Flux for the Melting Treatment Method of Copper and Copper Alloy
JPH0693396A (en) Production of aluminum foil excellent in strength and foil rollability
JPS5884641A (en) Mold material for continuous casting
JPH05277656A (en) Thin plate of alloy containing ti3al group intermetallic compound and manufacture thereof
JPH0314541B2 (en)
JPH07150283A (en) Aluminum alloy thin slab and its production
JPH0220649A (en) Production of wear resistant aluminum alloy
JP2011012301A (en) Copper alloy and method for producing copper alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990907