JP2980756B2 - Ultra high purity nitrogen production method and apparatus - Google Patents

Ultra high purity nitrogen production method and apparatus

Info

Publication number
JP2980756B2
JP2980756B2 JP33745491A JP33745491A JP2980756B2 JP 2980756 B2 JP2980756 B2 JP 2980756B2 JP 33745491 A JP33745491 A JP 33745491A JP 33745491 A JP33745491 A JP 33745491A JP 2980756 B2 JP2980756 B2 JP 2980756B2
Authority
JP
Japan
Prior art keywords
liquid
gas
nitrogen
rectification column
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33745491A
Other languages
Japanese (ja)
Other versions
JPH05172456A (en
Inventor
孝 長村
隆夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON EA RIKIIDO KK
Original Assignee
NIPPON EA RIKIIDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON EA RIKIIDO KK filed Critical NIPPON EA RIKIIDO KK
Priority to JP33745491A priority Critical patent/JP2980756B2/en
Publication of JPH05172456A publication Critical patent/JPH05172456A/en
Application granted granted Critical
Publication of JP2980756B2 publication Critical patent/JP2980756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/94Details relating to the withdrawal point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • F25J2215/44Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/42Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体の製造工程等で使
用される、水素,ヘリウム,ネオン等の低沸点成分の含
有が少ない超高純度窒素の製造方法及びその装置であっ
て、詳しくは、原料空気を複式精留塔の下部精留塔に供
給し、前記下部精留塔で原料空気から精留分離された気
体窒素を凝縮器で凝縮液化し、前記凝縮器で凝縮液化さ
れた液体窒素を還流液として前記下部精留塔頂部に導入
し、前記還流液の一部を前記下部精留塔から導出して製
品液体窒素を製造する超高純度窒素製造方法及びその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing ultra-high-purity nitrogen having a low content of low-boiling components such as hydrogen, helium and neon used in a semiconductor production process and the like. Feeding the raw air to the lower rectification column of the double rectification column, condensing and liquefying the gaseous nitrogen rectified and separated from the raw air in the lower rectification column with the condenser, and condensed and liquefied with the condenser The present invention relates to an ultrapure nitrogen production method and an apparatus for producing a product liquid nitrogen by introducing nitrogen as a reflux liquid to the top of the lower rectification column, and extracting a part of the reflux liquid from the lower rectification column.

【0002】[0002]

【従来の技術】高純度窒素製造方法及びその装置とし
て、従来、原料空気から精留分離された気体窒素を凝縮
器で凝縮するとともに、このとき凝縮液化しなかった低
沸点成分が多く含まれる未凝縮気体を排出して精留塔か
らの気体窒素中に含まれていた低沸点成分を除去した
後、その凝縮液化された低沸点成分の少ない液体窒素を
還流液として精留塔頂部に導入し、還流液として導入さ
れた液体窒素の一部を前記精留塔頂部の精留板よりも数
段下の精留板から導出して当該液体窒素中に含まれてい
た低沸点成分を精留分離して、高純度の製品窒素を製造
する技術が提案されている(例えば、実開昭64−45
290公報参照)。
2. Description of the Related Art Conventionally, as a method and apparatus for producing high-purity nitrogen, gaseous nitrogen rectified and separated from raw material air is conventionally condensed in a condenser, and at the same time, a large amount of low-boiling components not condensed and liquefied are contained. After discharging the condensed gas and removing the low-boiling components contained in the gaseous nitrogen from the rectification column, the condensed and liquefied liquid nitrogen with low low-boiling components is introduced as a reflux liquid into the top of the rectification column. A part of the liquid nitrogen introduced as the reflux liquid is derived from a rectification plate several stages below the rectification plate at the top of the rectification column to rectify the low-boiling components contained in the liquid nitrogen. Techniques for producing high-purity product nitrogen by separation have been proposed (for example, Japanese Utility Model Laid-Open No. 64-45).
290 publication).

【0003】[0003]

【発明が解決しようとする課題】前記従来技術は、凝縮
器で凝縮液化しなかった未凝縮気体を排出すること、及
び、還流液として導入された液体窒素の一部を精留塔頂
部の精留板よりも数段下の精留板から導出することで低
沸点成分を除去して、高純度の製品窒素を製造するもの
であるが、精留塔内で低沸点成分を精留分離するにあた
って、還流液として導入された液体窒素の一部を精留塔
頂部の精留板よりも下方の精留板から導出する程、低沸
点成分の少ない製品窒素を得られる反面、高沸点成分で
ある酸素が不純物として製品窒素中に残留し易くなる欠
点があり、製品窒素の一層の高純度化を図る上でその程
度に限度があった。本発明は上記実情に鑑みてなされた
ものであって、原料空気並びに精留塔頂部の精留板より
も数段下の精留板から導出した液体窒素の処理工程を工
夫することにより、製品液体窒素の一層の高純度化を図
ることができるようにすることを目的とする。
The above prior art discloses a method of discharging uncondensed gas which has not been condensed and liquefied in a condenser, and a method of purifying a portion of liquid nitrogen introduced as a reflux liquid at the top of a rectification column. Low-boiling components are removed by extracting from the rectifying plate several stages below the rectifying plate to produce high-purity product nitrogen, but rectifying and separating the low-boiling components in the rectification column. On the other hand, as part of the liquid nitrogen introduced as the reflux liquid is led out from the rectification plate below the rectification plate at the top of the rectification column, product nitrogen with a low boiling point component can be obtained. There is a disadvantage that certain oxygen tends to remain in the product nitrogen as an impurity, and there is a limit to the extent of further purifying the product nitrogen. The present invention has been made in view of the above circumstances, and by devising a process for treating raw air and liquid nitrogen derived from a rectification plate several stages below the rectification plate at the top of the rectification column, the product It is an object of the present invention to further purify liquid nitrogen.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する為の
本発明の第1の特徴構成は、原料空気を複式精留塔の下
部精留塔に供給し、前記下部精留塔で原料空気から精留
分離された気体窒素を凝縮器で凝縮液化し、前記凝縮器
で凝縮液化された液体窒素を還流液として前記下部精留
塔頂部に導入し、前記還流液の一部を前記下部精留塔か
ら導出して製品液体窒素を製造する超高純度窒素製造方
法であって、 A.原料空気中の水素及び一酸化炭素を酸化する工程 B.水素及び一酸化炭素の酸化で生成された水分と炭酸
ガス及び原料空気中に元来含まれている水分と炭酸ガス
を原料空気中から除去する工程 C.水分及び炭酸ガスが除去された原料空気を前記下部
精留塔に供給する工程 D.前記凝縮器で凝縮液化しなかった未凝縮気体を排出
して前記気体窒素中に含まれていた低沸点成分を除去す
る工程 E.前記還流液として導入された液体窒素の一部を前記
下部精留塔頂部の精留板よりも数段下の精留板から導出
して当該液体窒素中に含まれていた低沸点成分を精留分
離する工程 F.前記数段下の精留板から導出した液体窒素を過冷却
して自由膨張後、気液分離器で気液分離して超高純度液
体窒素と廃ガスとを発生させ、分離した前記廃ガスを排
出して前記液体窒素中に含まれていた低沸点成分を除去
する工程G.前記超高純度液体窒素の一部を、前記気液分離器よ
りも下位置に設けられた貯槽に、前記気液分離器と前記
貯槽との高さ位置の差を利用して流入し、製品液体窒素
として貯留する工程 H.前記超高純度液体窒素の残部を、前記低圧精留塔頂
部に導入させ、低圧精留塔の精留部の還流液となって低
圧精留塔を上昇するガスを精留する工程 上記A乃至Hの工程を有する点にある。
A first feature of the present invention to achieve the above object is to supply raw air to a lower rectification column of a double rectification column, and to supply the raw air to the lower rectification column. The gaseous nitrogen rectified and separated from the liquid nitrogen is condensed and liquefied in a condenser, and the liquid nitrogen condensed and liquefied in the condenser is introduced as a reflux liquid into the top of the lower rectification column, and a part of the reflux liquid is partially purified by the lower rectification column. An ultrapure nitrogen production method for producing a product liquid nitrogen derived from a distillation tower, comprising: Step of oxidizing hydrogen and carbon monoxide in raw air B. B. a step of removing from the raw material air the water and carbon dioxide gas generated by the oxidation of hydrogen and carbon monoxide and the water and carbon dioxide gas originally contained in the raw material air; Step of supplying raw air from which water and carbon dioxide have been removed to the lower rectification column. E. a step of discharging uncondensed gas that has not been condensed and liquefied in the condenser to remove low-boiling components contained in the gaseous nitrogen; A part of the liquid nitrogen introduced as the reflux liquid is led out from a rectification plate several stages below the rectification plate at the top of the lower rectification column, and the low-boiling components contained in the liquid nitrogen are purified. Step of fractionation F. After supercooling and freely expanding liquid nitrogen derived from the rectification plate at the lower stage , ultra-high purity liquid is separated by gas-liquid separation by a gas-liquid separator.
To generate and body nitrogen and waste gas, process which is discharged the separated the waste gas removing low-boiling components contained in the liquid nitrogen G. A part of the ultra-high purity liquid nitrogen is transferred from the gas-liquid separator.
The gas-liquid separator and the storage tank provided at
Using the height difference between the storage tank and the inflow, the product liquid nitrogen
H. as a storage step The remaining part of the ultra-high purity liquid nitrogen is transferred to the top of the low pressure rectification column.
Into the rectification section of the low-pressure rectification column
Step of rectifying gas ascending in the pressure rectification tower The above steps A to H are included.

【0005】上記目的を達成する為の本発明の第2の特
徴構成は、原料空気を複式精留塔の下部精留塔に供給
し、前記下部精留塔で原料空気から精留分離された気体
窒素を凝縮器で凝縮液化し、前記凝縮器で凝縮液化され
た液体窒素を還流液として前記下部精留塔頂部に導入
し、前記還流液の一部を前記下部精留塔から導出して製
品液体窒素を製造する超高純度窒素製造装置であって、I. 原料空気中の水素及び一酸化炭素を酸化する酸化手
段と、J. 前記酸化手段で生成された水分と炭酸ガス及び原料
空気中に元来含まれている水分と炭酸ガスを原料空気中
から除去する除去手段と、K. 水分及び炭酸ガスが除去された原料空気を前記下部
精留塔に供給する供給路と、L. 前記凝縮器で凝縮液化しなかった未凝縮気体を排出
する排出路と、M. 前記還流液として導入された液体窒素の一部を前記
下部精留塔頂部の精留板よりも数段下の精留板から導出
する導出路と、N. 前記数段下の精留板から導出した液体窒素を過冷却
して自由膨張後、気液分離器で気液分離して超高純度液
体窒素と廃ガスとを発生させ、分離した前記廃ガスを排
出して前記液体窒素中に含まれていた低沸点成分を除去
する手段と、 O.前記超高純度液体窒素の一部を、前記気液分離器よ
りも下位置に設けられた貯槽に、前記気液分離器と前記
貯槽との高さ位置の差を利用して流入し、製品液体窒素
として貯留する手段と、 P.前記超高純度液体窒素の残部を、前記低圧精留塔頂
部に導入させ、低圧精留塔の精留部の還流液となって低
圧精留塔を上昇するガスを精留する手段上記I乃至Pの
構成にある。
A second feature of the present invention to achieve the above object is that raw air is supplied to a lower rectification column of a double rectification column and rectified and separated from the raw air in the lower rectification column. Gaseous nitrogen is condensed and liquefied in a condenser, and liquid nitrogen condensed and liquefied in the condenser is introduced as a reflux liquid into the top of the lower rectification column, and a part of the reflux liquid is derived from the lower rectification column. to produce a product liquid nitrogen to a ultra high purity nitrogen production device, I. An oxidation means to oxidize hydrogen and carbon monoxide in the feed air, J. Removing means for removing, from the raw material air, the water and carbon dioxide gas generated by the oxidizing means and the water and carbon dioxide gas originally contained in the raw material air; K. And the feed air moisture and carbon dioxide are removed supply path for supplying to said lower rectification column, L. A discharge passage for discharging the uncondensed gas which has not condensed and liquefied by the condenser, M. A lead-out passage for deriving a portion of the liquid nitrogen introduced as the reflux liquid from the rectification plate under several stages than fine Tomeban of the lower rectification column top, N. After supercooling and freely expanding liquid nitrogen derived from the rectification plate at the lower stage , ultra-high purity liquid is separated by gas-liquid separation by a gas-liquid separator.
Generates body nitrogen and waste gas, and discharges the separated waste gas.
To remove low boiling components contained in the liquid nitrogen
Means for performing A part of the ultra-high purity liquid nitrogen is transferred from the gas-liquid separator.
The gas-liquid separator and the storage tank provided at
Using the height difference between the storage tank and the inflow, the product liquid nitrogen
Means for storing as P. The remaining part of the ultra-high purity liquid nitrogen is transferred to the top of the low pressure rectification column.
Into the rectification section of the low-pressure rectification column
Means for rectifying gas rising in the pressure rectification column
In the configuration.

【0006】[0006]

【作用】前記A,B,Cの構成により、原料空気中の低
沸点成分の一つである水素を酸化して水が生成され、原
料空気中の水素が水分として除去されて、水素の含有量
が極めて少ない原料空気が下部精留塔に供給される。そ
して、前記Dの構成により、凝縮器で凝縮液化しなかっ
た低沸点成分が多く含まれる未凝縮気体を排出して下部
精留塔からの気体窒素中に含まれていた低沸点成分を除
去した後、その凝縮液化された低沸点成分の少ない液体
窒素が還流液として下部精留塔頂部に導入され、前記E
の構成により、還流液として導入された液体窒素の一部
を下部精留塔頂部の精留板よりも数段下の精留板から導
出して当該液体窒素中に含まれていた低沸点成分が精留
分離され、前記Fの構成により、気化し易い低沸点成分
を多く含む分離気体を排出して精留板で精留分離できな
かった低沸点成分が更に除去され、前記Gの構成によ
り、気液分離器で分離された超高純度液体窒素の一部
を、前記気液分離器よりも下位置に設けられた貯槽に、
前記気液分離器と前記貯槽との高さ位置の差を利用して
流入し、製品液体窒素として貯留することで、ポンプ等
を一切使用しないことともあいまって、製品液体窒素の
超高純度が維持され、前記Hの構成により、気液分離器
で分離された超高純度液体窒素の残部を、低圧精留塔頂
部に導入させ、低圧精留塔の精留部の還流液となって低
圧精留塔を上昇するガスを精留する構成を採用すること
で、前記低圧精留内部への不純物の混入を避けながら、
低圧精留塔の上下中央部に導入される酸素リッチ液体、
及び、低圧精留塔の上部に導入される液体窒素とあいま
って、低圧精留塔における精留を促進させることがで
き、従来に比べて高純度の液体窒素が製出される。
According to the constitutions A, B and C, hydrogen, which is one of the low-boiling components in the raw air, is oxidized to produce water, and the hydrogen in the raw air is removed as moisture, thus containing hydrogen. A very small amount of feed air is fed to the lower rectification column. Then, by the configuration of D, uncondensed gas containing a large amount of low-boiling components not condensed and liquefied in the condenser was discharged to remove low-boiling components contained in gaseous nitrogen from the lower rectification column. Thereafter, the condensed and liquefied liquid nitrogen having a low boiling point component is introduced into the top of the lower rectification column as a reflux liquid,
According to the configuration, a part of the liquid nitrogen introduced as the reflux liquid is derived from the rectification plate several stages below the rectification plate at the top of the lower rectification column, and the low boiling point component contained in the liquid nitrogen There are rectification separation, the configuration of the F, low-boiling components which can not be rectified separated by rectification plate to drain separated gas rich in gasified easily the lower boiling point components have been further removed, the structure of the G Yo
Of ultra-high-purity liquid nitrogen separated by a gas-liquid separator
Into a storage tank provided below the gas-liquid separator,
Utilizing the difference in height between the gas-liquid separator and the storage tank
Pump, etc. by flowing in and storing as product liquid nitrogen
The use of liquid nitrogen
The ultra-high purity is maintained, and the configuration of H allows the gas-liquid separator
Of the ultra-high-purity liquid nitrogen separated in
Into the rectification section of the low-pressure rectification column
Adopt a configuration to rectify gas rising in the pressure rectification tower
In, while avoiding the contamination of impurities into the low-pressure rectification,
An oxygen-rich liquid introduced into the upper and lower center of the low pressure rectification column,
And liquid nitrogen introduced into the upper part of the low pressure rectification column.
Therefore, rectification in the low-pressure rectification column can be promoted.
As a result, liquid nitrogen with higher purity than before is produced.

【0007】又、前記I,J,K,L,M,N,O,P
の構成によっても、原料空気中の低沸点成分の一つであ
る水素を酸化して原料空気中の水素が水分として除去さ
れ、水素の含有量が極めて少ない原料空気が下部精留塔
に供給されるとともに、凝縮器で凝縮液化しなかった低
沸点成分が多く含まれる未凝縮気体を排出して下部精留
塔からの気体窒素中に含まれていた低沸点成分を除去し
た後、その凝縮液化された低沸点成分の少ない液体窒素
が還流液として下部精留塔頂部に導入され、還流液とし
て導入された液体窒素の一部を下部精留塔頂部の精留板
よりも数段下の精留板から導出して当該液体窒素中に含
まれていた低沸点成分が精留分離され、更に、気液分離
器による気液分離により、気化し易い低沸点成分を多く
含む分離気体を排出して精留板で精留分離できなかった
低沸点成分が更に除去され、更に、気液分離で分離され
た超高純度液体窒素の一部を、前記気液分離器よりも下
位置に設けられた貯槽に、前記気液分離器と前記貯槽と
の高さ位置の差を利用して流入し、製品液体窒素として
貯留することで、ポンプ等を一切使用しないことともあ
いまって、製品液体窒素の超高純度が維持され、更に、
気液分離器で分離された超高純度液体窒素の残部を、低
圧精留塔頂部に導入させ、低圧精留塔の精留部の還流液
となって低圧精留塔を上昇するガスを精留する構成を採
用することで、前記低圧精留内部への不純物の混入を避
けながら、低圧精留塔の上下中央部に導入される酸素リ
ッチ液体、及び、低圧精留塔の上部に導入される液体窒
素とあいまって、低圧精留塔における精留を促進させる
ことができ、従来に比べて高純度の液体窒素が製出され
る。
Further, the I, J, K, L, M, N, O, P
According to the above structure , hydrogen, which is one of the low-boiling components in the raw air, is oxidized to remove the hydrogen in the raw air as moisture, and the raw air having a very low hydrogen content is supplied to the lower rectification column. And removes the low-boiling components contained in the gaseous nitrogen from the lower rectification column by discharging uncondensed gas containing a large amount of low-boiling components that were not condensed and liquefied by the condenser. Liquid nitrogen having a low boiling point component is introduced as a reflux liquid into the top of the lower rectification column, and a part of the liquid nitrogen introduced as the reflux liquid is purified a few stages below the rectification plate at the top of the lower rectification column. low boiling point component contained in the liquid nitrogen is rectified separated derives from Tomeban further gas-liquid separation
Separation gas containing a large amount of low-boiling components that are easily vaporized is discharged by gas-liquid separation by a vessel to further remove low-boiling components that could not be rectified and separated by the rectification plate, and further separated by gas-liquid separation.
Part of the ultra-high purity liquid nitrogen below the gas-liquid separator
In the storage tank provided at the position, the gas-liquid separator and the storage tank
Using the difference in the height position of the product, as product liquid nitrogen
By storing, there is no need to use any pumps etc.
In short, the ultra-high purity of the product liquid nitrogen is maintained,
The remaining ultra-pure liquid nitrogen separated by the gas-liquid separator is
Introduced to the top of the pressure rectification column, and the reflux liquid in the rectification section of the low pressure rectification column
To rectify the gas that rises in the low-pressure rectification tower.
To avoid the entry of impurities into the low-pressure rectification.
While oxygen is being introduced into the upper and lower central portions of the low-pressure rectification column.
Liquid and liquid nitrogen introduced at the top of the low pressure rectification column.
Promotes rectification in low-pressure rectification towers
As a result , liquid nitrogen having a higher purity than before can be produced.

【0008】[0008]

【発明の効果】低沸点成分を精留分離した後の液体窒素
の一部を高沸点成分である酸素の残留が少ない状態で下
部精留塔頂部の精留板よりも数段下の精留板から導出し
て、精留分離しきれなかった低沸点成分を、気液分離で
分離した気体を排出することで除去でき、製品液体窒素
の一層の高純度化を図ることができる。特に本発明で
は、水素の含有量が極めて少ない原料空気を使用するか
ら、低沸点成分の一つである水素の除去効率が高く、こ
のことによっても、製品液体窒素の一層の高純度化を図
ることができる。
According to the present invention, a part of liquid nitrogen after rectifying and separating low-boiling components is rectified several stages below the rectifying plate at the top of the lower rectifying column with little residual high-boiling components, oxygen. The low-boiling components that have been removed from the plate and have not been rectified and separated can be removed by discharging the gas separated by gas-liquid separation, and the product liquid nitrogen can be further purified. In particular, in the present invention, since the raw material air having a very low hydrogen content is used, the removal efficiency of hydrogen, which is one of the low-boiling components, is high, and thus the product liquid nitrogen is further purified. be able to.

【0009】[0009]

【実施例】図1,図2は本発明による超高純度窒素製造
方法及びその装置の実施例を示すフローダイヤグラム
で、原料空気を複式精留塔の下部精留塔である中圧精留
塔5に供給し、中圧精留塔5で原料空気から精留分離し
た気体窒素を複式精留塔の上部精留塔である低圧精留塔
6底部に設けた凝縮器15で凝縮液化し、凝縮液化され
た液体窒素を還流液として再び中圧精留塔5頂部に導入
して、この還流液の一部を中圧精留塔5頂部の精留板よ
りも数段下の精留板から導出し、更に、過冷却器9で過
冷却して自由膨張後気液分離器10で気液分離して超高
純度液体窒素の一部を製品液体窒素として導出するもの
である。
1 and 2 are flow diagrams showing an embodiment of an ultrapure nitrogen production method and apparatus according to the present invention, in which a raw air is fed to a medium pressure rectification column which is a lower rectification column of a double rectification column. 5, gaseous nitrogen rectified and separated from the raw material air in the medium pressure rectification tower 5 is condensed and liquefied in a condenser 15 provided at the bottom of the low pressure rectification tower 6 which is the upper rectification tower of the double rectification tower. The condensed and liquefied liquid nitrogen is introduced again as a reflux into the top of the medium-pressure rectification column 5, and a part of the reflux liquid is rectified several stages below the rectification plate at the top of the medium-pressure rectification column 5. , And further supercooled by a supercooler 9, free-expanded, then gas-liquid separated by a gas-liquid separator 10, and a part of ultrahigh-purity liquid nitrogen is derived as product liquid nitrogen.

【0010】前記原料空気は空気瀘過器1を通過して空
気中の塵埃が除去され、配管P1で空気圧縮機2に導かれ
て圧力約5Kg/cm2Gに圧縮され、原料空気中の一
酸化炭素及び水素を酸化する装置の一例としての、白
金,パラジウム等の酸化反応触媒が充填されたコンバー
ター3aに導入される。前記コンバーター3aで原料空
気中の一酸化炭素及び水素の大部分が酸化されて炭酸ガ
スと水になり、配管P2で冷却除炭乾燥吸蔵ユニット3b
に導かれて、冷却及び原料空気中の炭酸ガスと水分の除
去が行われ、更に、コンバーター3aで酸化せずに残っ
た未反応水素が吸蔵されて、水素の含有が極めて少ない
原料空気が配管P3で熱交換器4に導入される。前記冷却
除炭乾燥吸蔵ユニット3bは、炭酸ガス(二酸化炭
素),水を吸着する合成ゼオライト,アルミナのような
吸着剤に加えて、チタン−鉄系,マグネシウム−ニッケ
ル系のような水素吸蔵合金が充填された吸着塔を設け
て、水分と炭酸ガスの除去装置及び水素吸蔵装置に構成
され、この吸着塔において原料空気中の炭酸ガスと水分
及び未反応水素の除去が行われる。
The raw air passes through an air filter 1 to remove dust from the air. The raw air is led to an air compressor 2 through a pipe P1 and compressed to a pressure of about 5 kg / cm 2 G. As an example of a device for oxidizing carbon monoxide and hydrogen, it is introduced into a converter 3a filled with an oxidation reaction catalyst such as platinum or palladium. Most of the carbon monoxide and hydrogen in the raw air is oxidized by the converter 3a to carbon dioxide and water, and the decarburized dry storage unit 3b is cooled by the pipe P2.
The cooling and removal of carbon dioxide gas and water in the raw material air are carried out, and the unreacted hydrogen remaining without being oxidized by the converter 3a is occluded. It is introduced into the heat exchanger 4 at P3. The cooling and decarburizing dry storage unit 3b includes a hydrogen storage alloy such as a titanium-iron system and a magnesium-nickel system in addition to an adsorbent such as carbon dioxide (carbon dioxide), synthetic zeolite for adsorbing water, and alumina. A packed adsorption tower is provided to constitute a device for removing moisture and carbon dioxide and a hydrogen storage device. In this adsorption tower, carbon dioxide, moisture and unreacted hydrogen in the raw material air are removed.

【0011】前記熱交換器4に導入された原料空気は、
低圧精留塔6頂部から配管P19、過冷却器9、配管P
20を通って熱交換器4に導入される高純度窒素ガス
と、低圧精留塔6からの廃ガスを過冷却器7に導入する
廃ガス配管P12 に気液分離器10からの廃ガスを導出す
る廃ガス配管P31,P32を接続して、過冷却器7か
ら配管P33を通って熱交換器4に導入される低圧精留
塔6及び気液分離器10からの廃ガスと、低圧精留塔6
から配管P21を通って熱交換器4に導入される酸素ガ
スと、中圧精留塔5から配管P22を通って熱交換器4
に導入される窒素ガスとで熱交換して液化点近くにまで
冷却され、配管P4で中圧精留塔5底部に導入され、こ
の中圧精留塔5内の精留部A,B,Cで精留されて頂部
に窒素ガス及び液体窒素、底部に酸素リッチ液体が製出
する。
The raw material air introduced into the heat exchanger 4 is:
From the top of the low-pressure rectification tower 6, pipe P19, supercooler 9, pipe P
The high-purity nitrogen gas introduced into the heat exchanger 4 through 20 and the waste gas from the gas-liquid separator 10 are supplied to a waste gas pipe P12 for introducing the waste gas from the low-pressure rectification tower 6 to the supercooler 7. The exhaust gas pipes P31 and P32 to be connected are connected to each other, and the waste gas from the low-pressure rectification tower 6 and the gas-liquid separator 10 introduced into the heat exchanger 4 through the pipe P33 from the supercooler 7 and the low-pressure Stay tower 6
Oxygen gas introduced into the heat exchanger 4 from the intermediate pressure rectification tower 5 through the pipe P22 through the pipe P22.
The mixture is cooled to near the liquefaction point by exchanging heat with the nitrogen gas introduced into the column, and is introduced into the bottom of the medium-pressure rectification tower 5 through the pipe P4, and the rectification sections A, B, and It is rectified by C to produce nitrogen gas and liquid nitrogen at the top and oxygen-rich liquid at the bottom.

【0012】中圧精留塔5の底部に溜まった酸素リッチ
液体は、切換え使用される液体空気瀘過器8a,8bに
配管P5で導入して酸素リッチ液体中に濃縮された炭化
水素分が除去されたあと、配管P6で過冷却器7に導入
されて低圧精留塔6及び気液分離器10からの廃ガスと
熱交換して過冷却され、配管P7に設けた膨張弁V1で
自由膨張させて冷却され、配管P8で低圧精留塔6の上
下中央部に導入される。中圧精留塔5の上下中央部にで
きる液体窒素は液溜R3から配管P9で過冷却器7に導
入され、低圧精留塔6及び気液分離器10からの廃ガス
と熱交換して過冷却され、配管P10で膨張弁V2に導
かれて自由膨張させて更に冷却され、配管P11で低圧
精留塔6の上部に導入される。
The oxygen-rich liquid accumulated at the bottom of the medium-pressure rectification column 5 is introduced into the liquid air filters 8a and 8b to be used by switching through a pipe P5, and the hydrocarbon content concentrated in the oxygen-rich liquid is reduced. After being removed, it is introduced into a supercooler 7 through a pipe P6, exchanges heat with the waste gas from the low-pressure rectification tower 6 and the gas-liquid separator 10, and is supercooled, and is freely cooled by an expansion valve V1 provided in the pipe P7. After being expanded and cooled, it is introduced into the upper and lower central portions of the low-pressure rectification column 6 via a pipe P8. Liquid nitrogen formed in the upper and lower central portions of the medium pressure rectification tower 5 is introduced into the supercooler 7 from the liquid reservoir R3 via the pipe P9, and exchanges heat with waste gas from the low pressure rectification tower 6 and the gas-liquid separator 10. It is supercooled, is guided to an expansion valve V2 by a pipe P10, expands freely, is further cooled, and is introduced into the upper part of the low-pressure rectification column 6 by a pipe P11.

【0013】前記コンバーター3aで水素の大部分を除
去した後の原料空気中の低沸点成分(ヘリウム(H
e)、水素(H2)、ネオン(Ne))は一般に、ヘリ
ウムが約5,000容積PPB(VPPB)、水素が約
1容積PPB(VPPB)、ネオンが約15,000容
積PPB(VPPB)であるが、中圧精留塔5の底部に
溜まった酸素リッチ液体中には、ヘリウムが約20VP
PB、水素が0VPPB、ネオンが約400VPPB溶
け込み、残りが中圧精留塔5頂部の窒素ガス中に濃縮さ
れる。そして、中圧精留塔5頂部に製出された窒素ガス
は、精留塔内の配管P35で低圧精留塔6底部に設けた
凝縮器15に導入されて、低圧精留塔6の液体酸素との
熱交換で凝縮液化される。このとき、窒素ガスと一緒に
凝縮器15に導入された低沸点成分の大部分は液化され
ずにガス状で凝縮器15の下部から排出路としての配管
P58を通り、合計約1,000,000VPPB乃至
20,000,000VPPB (約0.1乃至2.0容
積%)の低沸点成分を含む未凝縮窒素ガスとして弁V8
を通って排気される。
[0013] The low boiling components (helium (H) in the feed air after removing most of the hydrogen by the converter 3a.
e), hydrogen (H 2 ), neon (Ne)) are generally about 5,000 vol. PPB (VPPB) for helium, about 1 vol. PPB (VPPB) for hydrogen, and about 15,000 vol. PPB (VPPB) for neon. However, in the oxygen-rich liquid accumulated at the bottom of the medium pressure rectification column 5, helium contains about 20 VP.
PB and hydrogen are dissolved at 0 VPPB and neon is dissolved at about 400 VPPB, and the remainder is concentrated in nitrogen gas at the top of the medium pressure rectification column 5. Then, the nitrogen gas produced at the top of the medium-pressure rectification tower 5 is introduced into a condenser 15 provided at the bottom of the low-pressure rectification tower 6 via a pipe P35 in the rectification tower, and the liquid in the low-pressure rectification tower 6 It is condensed and liquefied by heat exchange with oxygen. At this time, most of the low-boiling components introduced into the condenser 15 together with the nitrogen gas are not liquefied but gaseous and pass from the lower part of the condenser 15 through a pipe P58 as a discharge path, and a total of about 1,000,000 The valve V8 is used as uncondensed nitrogen gas containing low boiling components of 2,000 VPPB to 20,000,000 VPPB (about 0.1 to 2.0% by volume).
Exhausted through.

【0014】凝縮器15で凝縮液化された液体窒素は還
流液として配管P36で中圧精留塔5の液溜R1に導入
されるのであるが、当該液体窒素中には合計約200,
000VPPBの低沸点成分を含んでいるので、この低
沸点成分を更に少なくする為に中圧精留塔5頂部に設け
られている数段の精留板からなる精留部Cで精留し、合
計約330VPPBの低沸点成分を含む液体窒素として
精留部Cの下部に設けた液溜R2に溜める。液溜R2から導
出路としての配管P13で導出された液体窒素は、過冷
却器9で低圧精留塔6頂部から配管P19で導出されて
きた高純度窒素ガス(低沸点成分合計約1,000VP
PB)と熱交換して過冷却され、配管P14で取り出し
て膨張弁V4で自由膨張させて更に温度を下げ、一部が
気化した気液混合状態の液体窒素を配管P15で気液分
離器10に導入する。気液分離器10に導入された気液
混合状態の液体窒素は気液分離され、分離された窒素ガ
スには合計約3,000VPPBの低沸点成分を含んで
いるので、排出路としての配管P31に導入して弁V5
で圧力を調節し、配管P32から排出する。この結果、
気液分離器10で分離された液体窒素は、合計約10V
PPBの低沸点成分(低沸点成分がヘリウムと水素であ
る場合は、ヘリウムが0.05VPPB程度、水素が
0.00VPPBていどの合計約0.05VPPB)が
含まれるに過ぎない超高純度に精製されたものとなって
いる。
The liquid nitrogen condensed and liquefied in the condenser 15 is introduced as a reflux liquid into the liquid reservoir R1 of the medium-pressure rectification column 5 through a pipe P36.
Since it contains a low boiling point component of 000 VPPB, it is rectified in a rectification section C consisting of several rectification plates provided at the top of the medium pressure rectification column 5 in order to further reduce the low boiling point component. Liquid nitrogen containing low-boiling components of about 330 VPPB in total is stored in a liquid reservoir R2 provided below the rectification section C. The liquid nitrogen led out of the liquid reservoir R2 by the pipe P13 as a lead-out path is a high-purity nitrogen gas (low boiling point component totaling about 1,000 VP
PB) is supercooled by heat exchange with PB, taken out through a pipe P14, freely expanded by an expansion valve V4 to further lower the temperature, and partially vaporized liquid-liquid mixed nitrogen is connected to a gas-liquid separator 10 through a pipe P15. To be introduced. The liquid nitrogen in a gas-liquid mixed state introduced into the gas-liquid separator 10 is subjected to gas-liquid separation, and the separated nitrogen gas contains a low boiling point component of about 3,000 VPPB in total. To the valve V5
To adjust the pressure, and discharge from the pipe P32. As a result,
The liquid nitrogen separated by the gas-liquid separator 10 has a total of about 10 V
PPB is purified to ultra-high purity containing only low-boiling components (when helium and hydrogen are helium and hydrogen, helium is about 0.05 VPPB and hydrogen is 0.00 VPPB, for a total of about 0.05 VPPB). It has become.

【0015】気液分離器10で分離される液体窒素の量
が略一定になるよう、気液分離器10の液面制御器LI
Cと膨張弁V4とが連係され、分離された超高純度の液
体窒素は、その一部が製品液体窒素として流量制御器付
弁V6で流量制御される配管P16,P51で貯槽(図
示せず)に貯留される。尚、気液分離器10から貯槽へ
の製品液体窒素の導出はヘッド差、つまり、気液分離器
10と貯槽との高さ位置の差によって行われ、ポンプ等
は一切使用しないので、製品液体窒素の超高純度が維持
される。また、気液分離器10で分離された超高純度液
体窒素のうちの製品液体窒素とされなかった残りの超高
純度液体窒素は、流量制御器付弁V7で流量制御される配
管P17,P18で一定の流量に制御して低圧精留塔6
頂部に導入され、低圧精留塔6の精留部Fの還流液とな
って低圧精留塔6を上昇するガスを精留する。
The liquid level controller LI of the gas-liquid separator 10 is controlled so that the amount of liquid nitrogen separated by the gas-liquid separator 10 becomes substantially constant.
C and the expansion valve V4 are linked to each other, and the separated ultrahigh-purity liquid nitrogen is stored as a product liquid nitrogen in storage tanks (not shown) in pipes P16 and P51 whose flow rate is controlled by a valve V6 with a flow controller. ). The product liquid nitrogen is led out from the gas-liquid separator 10 to the storage tank by a head difference, that is, a difference in the height position between the gas-liquid separator 10 and the storage tank. Ultra high purity of nitrogen is maintained. Further, of the ultra-high purity liquid nitrogen separated by the gas-liquid separator 10, the remaining ultra-high purity liquid nitrogen which has not been converted into the product liquid nitrogen is supplied to the pipes P17 and P18 whose flow rates are controlled by the flow controller valve V7. To control the flow rate to a constant level,
The gas which is introduced at the top and becomes the reflux liquid of the rectification section F of the low-pressure rectification column 6 and rectifies the gas which rises in the low-pressure rectification column 6 is rectified.

【0016】配管P19で低圧精留塔6頂部から過冷却
器9に導かれた高純度窒素ガスは、配管P20、熱交換
器4を経て、常温低圧の高純度窒素ガスとなり、配管P
52で高純度の製品窒素ガスとして取り出される。中圧
精留塔5頂部から配管P22で導出され、熱交換器4で
熱交換して常温になった中圧高純度窒素ガスは、一部が
配管P24からの分岐配管P53を介して製品窒素ガス
として取り出される。低圧精留塔6はその底部で中圧精
留塔5からの熱を授受して精留部D,E,Fで精留し、
頂部に高純度窒素ガスを、下部に液体酸素を製出して、
配管P54で製品液体酸素が取り出される。また、低圧
精留塔6の下部に製出した酸素ガスは、配管P21、熱
交換器4、配管P55を経て取り出すことができる。
The high-purity nitrogen gas introduced into the supercooler 9 from the top of the low-pressure rectification column 6 through the pipe P19 passes through the pipe P20 and the heat exchanger 4 to become high-purity nitrogen gas at normal temperature and low pressure.
At 52, it is extracted as high-purity product nitrogen gas. Medium-pressure high-purity nitrogen gas, which is led out from the top of the medium-pressure rectification tower 5 through a pipe P22 and exchanged heat with the heat exchanger 4 to become a normal temperature, is partially converted into product nitrogen through a branch pipe P53 from a pipe P24. Extracted as gas. The low pressure rectification tower 6 transfers heat from the medium pressure rectification tower 5 at the bottom thereof and rectifies it in the rectification sections D, E and F.
Producing high purity nitrogen gas at the top and liquid oxygen at the bottom,
Product liquid oxygen is taken out through a pipe P54. The oxygen gas produced at the lower part of the low-pressure rectification column 6 can be taken out through the pipe P21, the heat exchanger 4, and the pipe P55.

【0017】超高純度液体窒素や液体酸素等を液体製品
として大量に取り出すためには寒冷を補給しなければな
らない。そこで、中圧精留塔5から配管P22、熱交換
器4を経て常温になった中圧高純度窒素ガスは、配管P
24で圧縮機12に導入して圧縮され、高圧になった高
純度窒素ガスを配管P26で熱交換器11に供給して一
部液化するまで冷却し、配管P29で膨張弁V3に導出
して中圧まで自由膨張させ、一部はガスで、残部は液体
で配管P30を通って中圧精留塔5に導入し、寒冷を補
給するよう構成してある。圧縮機12から配管P26で
熱交換器11に供給された高圧の高純度窒素ガスはその
一部が配管P27で膨張機13に分岐供給され、膨張機
13で断熱膨張させて冷却したあと配管P28で導出し
て、熱交換器4に入る前に配管P22から配管P23に
分岐された中圧高純度窒素ガスに合流させ、熱交換器1
1に供給して配管P26からの高圧高純度窒素ガスの冷
熱源となり、常温になった中圧高純度窒素ガスは配管P
25から配管P24の中圧高純度窒素ガスに合流して圧
縮機12に導入される。
In order to take out ultra-high-purity liquid nitrogen, liquid oxygen, and the like in large quantities as liquid products, it is necessary to supply cold. Therefore, the medium-pressure high-purity nitrogen gas, which has become normal temperature from the medium-pressure rectification tower 5 through the pipe P22 and the heat exchanger 4, is supplied to the pipe P
The high-purity nitrogen gas that has been introduced into the compressor 12 at 24 and has been compressed and has become high pressure is supplied to the heat exchanger 11 via a pipe P26 and cooled until it is partially liquefied, and is led out to an expansion valve V3 via a pipe P29. Free expansion is performed to medium pressure, a part is gas, and the remainder is liquid and introduced into the medium pressure rectification tower 5 through the pipe P30 to replenish the cold. Part of the high-purity high-purity nitrogen gas supplied from the compressor 12 to the heat exchanger 11 via the pipe P26 is branched and supplied to the expander 13 via the pipe P27, and after being adiabatically expanded and cooled by the expander 13, the pipe P28 is cooled. Before entering the heat exchanger 4 and merging with the medium-pressure high-purity nitrogen gas branched from the pipe P22 to the pipe P23.
1 and becomes a cold source of high-pressure and high-purity nitrogen gas from the pipe P26.
From the pipe 25, the pipe P24 joins the medium-pressure high-purity nitrogen gas and is introduced into the compressor 12.

【0018】過冷却器7から配管P33を通って熱交換
器4に導入された低圧精留塔6及び気液分離器10から
の廃ガスは、配管P56から排出されるとともに、その
一部は配管P34で冷却除炭乾燥吸蔵ユニット3bに供
給されてその再生に使用された後、配管P57から排出
される。
The waste gas from the low-pressure rectification tower 6 and the gas-liquid separator 10 introduced from the subcooler 7 to the heat exchanger 4 through the pipe P33 is discharged from the pipe P56, and a part of the waste gas is discharged. After being supplied to the cooled decarburization drying storage unit 3b through the pipe P34 and used for its regeneration, it is discharged from the pipe P57.

【0019】〔別実施例〕実施例において、配管P35
からの窒素ガスを窒素凝縮器15で冷却してから別途設
けた気液分離器に導いて凝縮液化した液体窒素と凝縮液
化しなかった未凝縮窒素ガスとに気液分離し、その液体
窒素を配管P36で中圧精留塔5の液溜R1に導入すると
ともに、未凝縮窒素ガスを配管P58で排出しても良
い。
[Another embodiment] In the embodiment, the pipe P35
Is cooled in a nitrogen condenser 15 and then introduced into a separately provided gas-liquid separator to separate the condensed and liquefied liquid nitrogen and non-condensed non-condensed nitrogen gas into gas and liquid. The pipe P36 may be introduced into the liquid reservoir R1 of the intermediate pressure rectification tower 5 and the uncondensed nitrogen gas may be discharged through the pipe P58.

【0020】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】超高純度窒素製造方法及びその装置を示すフロ
ーダイヤグラム
FIG. 1 is a flow diagram showing an ultrapure nitrogen production method and its apparatus.

【図2】超高純度窒素製造方法及びその装置を示すフロ
ーダイヤグラム
FIG. 2 is a flow diagram showing a method and an apparatus for producing ultra-high purity nitrogen.

【符号の説明】[Explanation of symbols]

3a 酸化手段 3b 除去手段 5 下部精留塔 10 気液分離器 15 凝縮器 P3 供給路 P4 供給路 P13 導出路 P31 排出路 P58 排出路 3a Oxidizing means 3b Removing means 5 Lower rectification column 10 Gas-liquid separator 15 Condenser P3 supply path P4 supply path P13 outlet path P31 discharge path P58 discharge path

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25J 1/00 - 5/00 C01B 21/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) F25J 1/00-5/00 C01B 21/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料空気を複式精留塔の下部精留塔
(5)に供給し、前記下部精留塔(5)で原料空気から
精留分離された気体窒素を凝縮器(15)で凝縮液化
し、前記凝縮器(15)で凝縮液化された液体窒素を還
流液として前記下部精留塔(5)頂部に導入し、前記還
流液の一部を前記下部精留塔(5)から導出して製品液
体窒素を製造する超高純度窒素製造方法であって、原料
空気中の水素及び一酸化炭素を酸化する工程と、水素及
び一酸化炭素の酸化で生成された水分と炭酸ガス及び原
料空気中に元来含まれている水分と炭酸ガスを原料空気
中から除去する工程と、水分及び炭酸ガスが除去された
原料空気を前記下部精留塔(5)に供給する工程と、前
記凝縮器(15)で凝縮液化しなかった未凝縮気体を排
出して前記気体窒素中に含まれていた低沸点成分を除去
する工程と、前記還流液として導入された液体窒素の一
部を前記下部精留塔(5)頂部の精留板よりも数段下の
精留板から導出して当該液体窒素中に含まれていた低沸
点成分を精留分離する工程と、前記数段下の精留板から
導出した液体窒素を過冷却して自由膨張後、気液分離器
(10)で気液分離して超高純度液体窒素と廃ガスとを
発生させ、分離した前記廃ガスを排出して前記液体窒素
中に含まれていた低沸点成分を除去する工程と、前記超
高純度液体窒素の一部を、前記気液分離器(10)より
も下位置に設けられた貯槽に、前記気液分離器(10)
と前記貯槽との高さ位置の差を利用して流入し、製品液
体窒素として貯留する工程と、前記超高純度液体窒素の
残部を、前記低圧精留塔(6)頂部に導入させ、低圧精
留塔(6)の精留部の還流液となって低圧精留塔(6)
を上昇するガスを精留する工程とを有する超高純度窒素
製造方法。
1. A feed air is supplied to a lower rectification column (5) of a double rectification column, and gaseous nitrogen rectified and separated from the feed air in the lower rectification column (5) is supplied to a condenser (15). Liquid nitrogen condensed and liquefied and condensed and liquefied in the condenser (15) is introduced as a reflux liquid to the top of the lower rectification column (5), and a part of the reflux liquid is removed from the lower rectification column (5). An ultrapure nitrogen production method for producing and producing product liquid nitrogen, comprising the steps of oxidizing hydrogen and carbon monoxide in raw material air, and water and carbon dioxide generated by oxidation of hydrogen and carbon monoxide and Removing the moisture and carbon dioxide gas originally contained in the raw air from the raw air, supplying the raw air from which the moisture and carbon dioxide have been removed to the lower rectification column (5), The uncondensed gas that has not been condensed and liquefied in the condenser (15) is discharged and contained in the gaseous nitrogen. A step of removing the low-boiling components that have been contained, and extracting a part of the liquid nitrogen introduced as the reflux liquid from a rectification plate several stages below the rectification plate at the top of the lower rectification column (5). Rectifying and separating the low-boiling components contained in the liquid nitrogen by subjecting the liquid nitrogen derived from the rectification plate several stages below to supercooling and free expansion .
The gas and liquid are separated in (10) to separate ultra-high purity liquid nitrogen and waste gas.
Raises, removing the low-boiling component is discharged the separated the waste gas contained in the liquid nitrogen, the greater
Part of the high-purity liquid nitrogen is removed from the gas-liquid separator (10).
The gas-liquid separator (10) is also stored in a storage tank provided at a lower position.
Using the difference in height between the tank and the storage tank,
Storing it as body nitrogen; and
The remainder is introduced into the top of the low pressure rectification column (6),
Low-pressure rectification tower (6)
And a step of rectifying a gas that rises in temperature.
【請求項2】 原料空気を複式精留塔の下部精留塔
(5)に供給し、前記下部精留塔(5)で原料空気から
精留分離された気体窒素を凝縮器(15)で凝縮液化
し、前記凝縮器(15)で凝縮液化された液体窒素を還
流液として前記下部精留塔(5)頂部に導入し、前記還
流液の一部を前記下部精留塔(5)から導出して製品液
体窒素を製造する超高純度窒素製造装置であって、原料
空気中の水素及び一酸化炭素を酸化する酸化手段(3
a)と、前記酸化手段(3a)で生成された水分と炭酸
ガス及び原料空気中に元来含まれている水分と炭酸ガス
を原料空気中から除去する除去手段(3b)と、水分及
び炭酸ガスが除去された原料空気を前記下部精留塔
(5)に供給する供給路(P3),(P4)と、前記凝縮
器(15)で凝縮液化しなかった未凝縮気体を排出する
排出路(P58)と、前記還流液として導入された液体
窒素の一部を前記下部精留塔(5)頂部の精留板よりも
数段下の精留板から導出する導出路(P13)と、前記
数段下の精留板から導出した液体窒素を過冷却して自由
膨張後、気液分離器(10)で気液分離して超高純度液
体窒素と廃ガスとを発生させ、分離した前記廃ガスを排
出して前記液体窒素中に含まれていた低沸点成分を除去
する手段と、前記超高純度液体窒素の一部を、前記気液
分離器(10)よりも下位置に設けられた貯槽に、前記
気液分離器(10)と前記貯槽との高さ位置の差を利用
して流入し、製品液体窒素として貯留する手段と、前記
超高純度液体窒素の残部を、前記低圧精留塔(6)頂部
に導入させ、低圧精留塔(6)の精留部の還流液となっ
て低圧精留塔(6)を上昇するガスを精留する手段とが
備えられている超高純度窒素製造装置。
2. A feed air is supplied to a lower rectification column (5) of a double rectification column, and gaseous nitrogen rectified and separated from the feed air in the lower rectification column (5) is passed through a condenser (15). Liquid nitrogen condensed and liquefied and condensed and liquefied in the condenser (15) is introduced as a reflux liquid to the top of the lower rectification column (5), and a part of the reflux liquid is removed from the lower rectification column (5). An ultrapure nitrogen production apparatus for producing a product liquid nitrogen by licensing out hydrogen and carbon monoxide in raw material air.
a) removing means (3b) for removing, from the raw material air, water and carbon dioxide produced by the oxidizing means (3a), and moisture and carbon dioxide originally contained in the raw material air; Supply paths (P3) and (P4) for supplying raw air from which gas has been removed to the lower rectification column (5), and a discharge path for discharging uncondensed gas that has not been condensed and liquefied in the condenser (15). (P58), and a lead-out path (P13) for leading a part of the liquid nitrogen introduced as the reflux liquid from a rectification plate several stages below the rectification plate at the top of the lower rectification column (5); After supercooling and freely expanding the liquid nitrogen derived from the rectification plate several stages below, the liquid nitrogen is separated into gas and liquid by a gas-liquid separator (10) to produce an ultra-high purity liquid.
Generates body nitrogen and waste gas, and discharges the separated waste gas.
To remove low boiling components contained in the liquid nitrogen
And a part of the ultra-high purity liquid nitrogen,
The storage tank provided below the separator (10) is
Utilizing the difference in height between the gas-liquid separator (10) and the storage tank
Means for flowing and storing as product liquid nitrogen;
The remainder of the ultra-high purity liquid nitrogen is transferred to the top of the low pressure rectification column (6).
Into the rectification section of the low-pressure rectification column (6).
And a means for rectifying gas rising in the low-pressure rectification column (6) .
JP33745491A 1991-12-20 1991-12-20 Ultra high purity nitrogen production method and apparatus Expired - Lifetime JP2980756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33745491A JP2980756B2 (en) 1991-12-20 1991-12-20 Ultra high purity nitrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33745491A JP2980756B2 (en) 1991-12-20 1991-12-20 Ultra high purity nitrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JPH05172456A JPH05172456A (en) 1993-07-09
JP2980756B2 true JP2980756B2 (en) 1999-11-22

Family

ID=18308790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33745491A Expired - Lifetime JP2980756B2 (en) 1991-12-20 1991-12-20 Ultra high purity nitrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JP2980756B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101915495B (en) * 2010-08-25 2013-02-27 开封空分集团有限公司 Full liquid-air separation unit using liquefied natural gas cold energy and method thereof

Also Published As

Publication number Publication date
JPH05172456A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
US4566886A (en) Process and apparatus for obtaining pure CO
CA1164334A (en) Method of producing gaseous oxygen and a cryogenic plant in which said method can be performed
JP2966999B2 (en) Ultra high purity nitrogen / oxygen production equipment
JPH04222381A (en) Manufacture of high-purity argon
JPH0731004B2 (en) Air distillation method and plant
JP2776461B2 (en) Air separation method by cryogenic distillation to produce ultra-high purity oxygen
JP2579261B2 (en) Method and apparatus for producing crude neon
JP2000088455A (en) Method and apparatus for recovering and refining argon
JPH05187767A (en) Method and apparatus for manufacturing ultrahigh purity nitrogen
JPH0861843A (en) Low-temperature rectification method and equipment for separating product flow mainly comprising low volatile component from gas mixture
EP0589766B1 (en) Method and apparatus for producing ultra-high purity nitrogen
JPH11228116A (en) Recovering and purifying method of argon and device therefor
JP2980756B2 (en) Ultra high purity nitrogen production method and apparatus
JP3097064B2 (en) Ultra-pure liquid oxygen production method
JP3364724B2 (en) Method and apparatus for separating high purity argon
JPH07133982A (en) Method and apparatus for preparing high purity argon
JPH06137755A (en) Method and device for manufacturing boosted ultrahigh nitrogen
JP3424101B2 (en) High purity argon separation equipment
JPH07127971A (en) Argon separator
JP3256811B2 (en) Method for purifying krypton and xenon
JPH0942831A (en) Highly pure nitrogen gas producing apparatus
JP3082092B2 (en) Oxygen purification method and apparatus
JPH05187766A (en) Method and apparatus for manufacturing ultrahigh purity nitrogen
JPH02183789A (en) Method and apparatus for manufacturing ultra purity nitrogen
JP2693220B2 (en) Ultra high purity oxygen production method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100917

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120917

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120917