JP2977130B1 - Mass flow meter flow conversion method and flow conversion device - Google Patents

Mass flow meter flow conversion method and flow conversion device

Info

Publication number
JP2977130B1
JP2977130B1 JP10299478A JP29947898A JP2977130B1 JP 2977130 B1 JP2977130 B1 JP 2977130B1 JP 10299478 A JP10299478 A JP 10299478A JP 29947898 A JP29947898 A JP 29947898A JP 2977130 B1 JP2977130 B1 JP 2977130B1
Authority
JP
Japan
Prior art keywords
signal
value
flow rate
turned
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10299478A
Other languages
Japanese (ja)
Other versions
JP2000131115A (en
Inventor
大一 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP10299478A priority Critical patent/JP2977130B1/en
Application granted granted Critical
Publication of JP2977130B1 publication Critical patent/JP2977130B1/en
Publication of JP2000131115A publication Critical patent/JP2000131115A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

【要約】 【課題】 質量流量計の流量値を移動零点値で補正す
る。 【解決手段】 流体が流れる測定管を加振し、該測定管
に作用するコリオリの力に比例した位相差をもつ信号を
センサ1,1′から得て、アナログ信号処理回路3,
3′で処理して雑音成分を除去し、S/C切換部4で交
互に切換え、コンパレータ5で前記信号を位相差パルス
信号に変換し、CPU6で前記コリオリの力を流量値に
変換する。CPU6からの指令により、流量が無い時、
即ち制御回路2がオン(SW1:オン、SW2:オフ)
時に零点値を求め、流量が有る時、即ち制御回路2がオ
フ(SW1:オフ、SW2:オン)時に前記零点値から
の移動零点値を求め、質量流量計の実測値を前記移動零
点値で補正する。レイジャビリテイの広い質量流量計に
おいて信頼性を確保できる。
Abstract: PROBLEM TO BE SOLVED: To correct a flow value of a mass flowmeter with a moving zero point value. SOLUTION: A measuring tube through which a fluid flows is vibrated, and a signal having a phase difference proportional to Coriolis force acting on the measuring tube is obtained from sensors 1 and 1 '.
The signal component is processed at 3 'to remove noise components, alternately switched by the S / C switching section 4, the comparator 5 converts the signal into a phase difference pulse signal, and the CPU 6 converts the Coriolis force into a flow rate value. When there is no flow rate by a command from the CPU 6,
That is, the control circuit 2 is on (SW1: on, SW2: off)
When the flow rate is present, that is, when the control circuit 2 is off (SW1: off, SW2: on), the moving zero value from the zero value is obtained, and the measured value of the mass flow meter is calculated by the moving zero value. to correct. Reliability can be secured in a mass flow meter with a wide rage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、質量流量計の流量
変換方法及び流量変換装置に関し、より詳細には、質量
流量計の流量値を移動零点値で補正する質量流量計の流
量変換方法及び流量変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate conversion method and a flow rate conversion device for a mass flow meter, and more particularly, to a flow rate conversion method for a mass flow meter for correcting a flow rate value of a mass flow meter with a moving zero point value. The present invention relates to a flow conversion device.

【0002】[0002]

【従来の技術】コリオリ流量計は、被測定流体が流れる
測定管を両端で支持し、支持された測定管の中央部を支
持線に対し直角な方向に交番駆動したとき、測定管の両
端支持部と中央部との間の対称位置においてコリオリの
力に比例した位相差信号を検出しコリオリの力に比例し
た質量流量を求める直接型の流量計である。
2. Description of the Related Art A Coriolis flowmeter supports a measuring tube through which a fluid to be measured flows at both ends, and when the central portion of the supported measuring tube is driven alternately in a direction perpendicular to a support line, both ends of the measuring tube are supported. This is a direct type flow meter that detects a phase difference signal proportional to the Coriolis force at a symmetric position between a part and a center part and obtains a mass flow rate proportional to the Coriolis force.

【0003】前記測定管の交番駆動の駆動周波数を測定
管の固有振動数と等しくすると、測定管や被測定流体の
密度に応じた一定の駆動周波数が得られ、小さい駆動エ
ネルギで駆動することが可能となる。位相差信号は、質
量流量に比例している量であるが、駆動周波数を一定に
すると、位相差信号は測定管の観測位置における時間差
信号として検出することができる。この位相差信号は、
理論的には流量が零の場合は零であるが、現実には温
度、振動等に基づくノイズが存在するため零にならず、
且つ変動する。
If the driving frequency of the alternating driving of the measuring tube is made equal to the natural frequency of the measuring tube, a constant driving frequency corresponding to the density of the measuring tube and the fluid to be measured can be obtained. It becomes possible. The phase difference signal is an amount proportional to the mass flow rate, but when the driving frequency is fixed, the phase difference signal can be detected as a time difference signal at the observation position of the measuring tube. This phase difference signal is
Theoretically, it is zero when the flow rate is zero, but in reality it does not become zero because there is noise based on temperature, vibration, etc.
And fluctuate.

【0004】このようなコリオリ流量計において、SN
比を向上させるため、ストレート・クロス制御方式が開
発されている(例えば、特許第2583011号公報、
特開平8−219842号公報など)。
In such a Coriolis flowmeter, SN
In order to improve the ratio, a straight-cross control method has been developed (for example, Japanese Patent No. 2583011,
JP-A-8-219842).

【0005】図4は、従来の質量流量計変換装置の全体
回路図であり、図中、1,1′はセンサコイル、3,
3′はアナログ信号処理回路、4はスイッチングコント
ロール切換部(以下、S/C切換部という)、5はコン
パレータ、6は中央演算処理装置(以下、CPUとい
う)である。
FIG. 4 is an overall circuit diagram of a conventional mass flow meter converter. In FIG.
3 'is an analog signal processing circuit, 4 is a switching control switching unit (hereinafter, referred to as S / C switching unit), 5 is a comparator, and 6 is a central processing unit (hereinafter, referred to as CPU).

【0006】以下、信号処理の態様について説明する。
図5は、従来のアナログ信号処理回路3,3′の回路構
成図で、センサコイル1,1′より入力された近似正弦
波を、抵抗R1とR2の比でリニア増幅する増幅器7及び
抵抗R3を介して、増幅器8の反転端子P1に入力し抵抗
3とコンデンサC1で定まる時定数の積分回路に入力す
る。該積分回路の出力P2には低周波雑音が含まれてお
り、これを抵抗R5とコンデンサC2からなる低域フイル
タで低域炉波して増幅器9によりインピーダンス変換す
る。増幅器9から出力された低周波雑音は、更に抵抗R
6を介して、増幅器10の反転入力P3に入力し抵抗
6、コンデンサC3からなる積分回路により積分して積
分出力された低周波雑音成分をP4に出力する。増幅器
8の反転入力P1に入力する低周波雑音信号成分を含む
位相差信号と反対位相の低周波雑音信号が非反転入力
し、出力P2に低周波雑音がほぼ零の正弦波信号A
(A′)が出力される。
Hereinafter, the mode of signal processing will be described.
5, 'the circuit diagram of the sensor coil 1, 1' conventional analog signal processing circuit 3, 3 an approximate sine wave input from the amplifier 7 and the linear amplification by the ratio of resistors R 1 and R 2 through a resistor R 3, to input to the integration circuit of the time constant determined by input to the inverting terminal P 1 resistor R 3 and capacitor C 1 of the amplifier 8. The output P 2 of the integration circuit contains low-frequency noise, which is low-pass filtered by a low-pass filter including a resistor R 5 and a capacitor C 2, and subjected to impedance conversion by an amplifier 9. The low frequency noise output from the amplifier 9 further includes a resistor R
6 through, and outputs the input to the inverting input P 3 resistor R 6, low-frequency noise component which is integrated output with integrated by the integration circuit consisting of the capacitor C 3 of the amplifier 10 to P 4. Low frequency noise signals of the phase difference signal with opposite phase that includes a low frequency noise signal component to be input to the inverting input P 1 of the amplifier 8 is a non-inverting input, a sine wave signal A of the low-frequency noise is substantially zero output P 2
(A ') is output.

【0007】図6は、従来のアナログ信号処理回路3の
出力を切換えるS/C切換部の構成図で、S/C切換部
4は、矩形波信号により切換えられる切換回路からな
り、例えば、矩形波信号が高レベルの場合は、接点1
1,12が閉路し、接点13,14が開路され、従っ
て、A点とB点及びA′点とB′点が接続される。反対
に矩形波信号が低レベルの場合は、接点11,12が開
路し、接点13,14が閉路され、従って、A点とB′
点及びA′点とB点が接続されるタイプのもので、この
ような接点の開閉によりアナログ信号処理回路3,3′
からの信号をそれぞれ逆に後述するコンパレータ5に入
力する。この切換部より該S/C切換部4中心に、その
前段・後段の回路部のノイズを等価に影響させるように
する。
FIG. 6 is a block diagram of a conventional S / C switching unit for switching the output of the analog signal processing circuit 3. The S / C switching unit 4 is composed of a switching circuit switched by a rectangular wave signal. If the wave signal is high, contact 1
1 and 12 are closed, and the contacts 13 and 14 are opened, so that points A and B and points A 'and B' are connected. Conversely, when the square wave signal is at a low level, the contacts 11 and 12 are opened and the contacts 13 and 14 are closed.
The point and the point A 'and the point B are connected, and the analog signal processing circuits 3, 3'
Are input to a comparator 5 described later. The noise of the circuit units at the preceding and subsequent stages is equivalently affected by the switching unit at the center of the S / C switching unit 4.

【0008】図7は、従来のコンパレータ5の回路構成
図で、S/C切換部4を介して入力される正弦波信号
は、抵抗R8とR7との比で定まる増幅率で、飽和増幅す
る増幅器15を介して、台形波信号に変換され、抵抗R
10を介して増幅器16の反転入力に入力する。増幅器1
6の非反転入力には、例えば、正の基準電圧(図示せ
ず)に接続され抵抗R11とR12とで分圧された基準電圧
が印加され台形波信号の正の波高値(+E)を定め、更
に、図示しない比較器により負の波高値(−E)が定め
られ、(+E)、(−E)の波高値をもつ台形波信号が
得られる。
[0008] Figure 7 is a circuit diagram of a conventional comparator 5, the sine wave signal input through the S / C switching section 4, an amplification factor determined by the ratio of the resistor R 8 and R 7, saturated The signal is converted to a trapezoidal wave signal via the amplifier 15 for amplification, and the resistance R
Input to the inverting input of the amplifier 16 via 10 . Amplifier 1
The non-inverting input of 6, for example, a positive reference voltage is connected to the (not shown) resistor R 11 and R 12 and de-divided reference voltage is applied trapezoidal wave signal positive peak value (+ E) Further, a negative peak value (−E) is determined by a comparator (not shown), and a trapezoidal wave signal having peak values of (+ E) and (−E) is obtained.

【0009】図8は、図7で得られた位相差のある台形
波信号から(T+ΔT)パルス及び(T―ΔT)パルス
を得る態様を説明するためのタイムチャートである。図
8において、図8(A)は、前記コンパレータ5で得ら
れた台形波信号で、台形ABCD…(実線)及び台形A
1111…(点線)は時間軸X−Xに対し電圧の絶対
値のピークが等しい(±E)の電圧をもった位相の異な
る測定管の変位信号を示したもので、各々の変位信号は
時間軸上を連続した台形の台形波形である、位相差を表
す基準時間は、一つの台形波形ABCDの、例えば、斜
辺CDのピーク値C(+E)あるいはD(−E)と時間
軸をクロスする位置Oとの時間をTとしている。
FIG. 8 is a time chart for explaining a manner of obtaining (T + ΔT) and (T−ΔT) pulses from the trapezoidal wave signal having the phase difference obtained in FIG. 8A is a trapezoidal wave signal obtained by the comparator 5, and includes a trapezoid ABCD (solid line) and a trapezoid A. FIG.
1 B 1 C 1 D 1 ... (Dotted line) show displacement signals of measuring tubes having different voltages and having a voltage of which the peak of the absolute value of the voltage is equal (± E) with respect to the time axis XX. Each displacement signal is a trapezoidal trapezoidal waveform that is continuous on the time axis. The reference time representing the phase difference is the peak value C (+ E) or D (−E) of one trapezoidal waveform ABCD, for example, the hypotenuse CD. The time between the position and the position O crossing the time axis is represented by T.

【0010】一方、台形波形A1111の基準時間
は、時間軸をクロスする位置O1となる。位相の異なる
前記台形ABCDとA1111の変位信号において、
例えば、辺CD及び辺C11における位相差信号を説明
する。四辺形CC11Dは平行四辺形で、平行辺CDと
11の時間差ΔTは位相差信号であり、辺CC1及び
1Dは時間軸O・O1と等しい長さを持っており、点C
1及びD1から時間軸への投影点を各々O2・O3とする
と、辺O2Oは時間(T―ΔT)、辺OO3は時間(T+
ΔT)を示す。図8(B)に示す1周期Mの期間で、図
8(C)に示す(T―ΔT)パルス及び図8(D)に示
す(T+ΔT)パルスの2パルスが図7の出力端C′,
Cに出力される。
On the other hand, the reference time of the trapezoidal waveform A 1 B 1 C 1 D 1 is the position O 1 crossing the time axis. In the displacement signals of the trapezoid ABCD and A 1 B 1 C 1 D 1 having different phases,
For example, a phase difference signal on the side CD and the side C 1 D 1 will be described. The quadrilateral CC 1 D 1 D is a parallelogram, the time difference ΔT between the parallel side CD and C 1 D 1 is a phase difference signal, and the sides CC 1 and D 1 D have a length equal to the time axis O · O 1. Have, point C
Assuming that the projection points from 1 and D1 to the time axis are O 2 and O 3 , respectively, the side O 2 O is time (T−ΔT), and the side OO 3 is time (T +
ΔT). In the period of one cycle M shown in FIG. 8B, two pulses of the (T-.DELTA.T) pulse shown in FIG. 8C and the (T + .DELTA.T) pulse shown in FIG. ,
Output to C.

【0011】図4のCPU6は、コンパレータ5からの
出力を入力とし、少なくとも内部に図示しない基準電源
と2つの充放電回路を有する演算処理装置であり、充電
の回数をnとすれば、周知の手法により4nΔT倍の時
間差を求める。
The CPU 6 shown in FIG. 4 is an arithmetic processing unit which receives an output from the comparator 5 and has at least a reference power source (not shown) and two charge / discharge circuits therein. The time difference of 4nΔT times is obtained by the method.

【0012】このようにして、アナログ信号処理回路
3,3′によって、入力信号に含まれているノイズを取
り除きドリフト成分を除去した上で、S/C切換部4に
よりアナログ信号処理回路3,3′からの信号を切り替
えて、更にコンパレータ5のデジタル変換回路に含まれ
る誤差を打ち消すようにしている。
In this way, the analog signal processing circuits 3, 3 'remove the noise contained in the input signal and remove the drift component, and then the analog signal processing circuits 3, 3' by the S / C switching unit 4. ′ Are switched to further cancel errors included in the digital conversion circuit of the comparator 5.

【0013】[0013]

【発明が解決しようとする課題】近年、このような制御
方式を使用してレンジャビリテイが従来の1:50から
1:100又は1:200など数倍以上広いコリオリ流
量計の開発が求められているが、零点変動を抑制するこ
とが困難であり、そのため流量計としての信頼性が損な
われるという問題点があった。
In recent years, there has been a demand for the development of a Coriolis flowmeter using such a control method and having a range of several times larger than the conventional range of 1:50 or 1: 100 or 1: 200. However, there is a problem that it is difficult to suppress the zero point fluctuation, and the reliability as a flowmeter is impaired.

【0014】本発明は、上述の実情に鑑みてなされたも
ので、質量流量計の実流量値を移動零点値で補正するこ
とにより、レンジャビリテイの広い質量流量計において
信頼性の得られる流量変換方法及び流量変換装置を提供
するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances. By correcting the actual flow value of a mass flow meter with a moving zero point value, a flow rate which can be reliably obtained in a mass flow meter having a wide range of renewability is obtained. A conversion method and a flow rate conversion device are provided.

【0015】[0015]

【課題を解決するための手段】請求項1の発明は、流体
が流れる測定管を加振し、該測定管に作用するコリオリ
の力に比例した位相差をもつ信号を一対のセンサにより
得て、それぞれアナログ信号処理して雑音成分を除去し
た信号とし、該信号をストレートとクロスに切換えて入
力して位相差パルス信号に変換し、該位相差パルス信号
を処理して前記コリオリの力を流量に変換する質量流量
計の流量変換方法において、前記センサの位相誤差のず
れの成分をTshift,前記アナログ信号処理する過程で
生じる誤差成分をToffとするとき、流量が無い時に
前記質量流量計の零点値TzeroをTzero= Tshift+
Toffとして求める手順と、前記零点値を求めた直後で
あって流量が有る時に複数回のサンプリングにより生じ
る誤差の移動総和値Toffzeを求める手順と、該移動総
和値を一定時間間隔で順次更新して移動平均値Toff′
を求める手順と、流量が有る時の零点値をTzeroxとす
るとき、該零点値Tzeroxを前記移動平均値Toff′と前
記移動総和値Toffzeの比の関数として求める手順とか
らなることを特徴とし、もって、質量流量計の回路部品
や回路に電気的ドリフト等の変動要素があっても、流量
計測中にリアルタイムで零点を補正するので、温度等の
環境条件が変動しても正確な流量測定を行うことがで
き、且つレンジキャビリテイの広い質量流量計において
信頼性を高めるようにするものである。
According to a first aspect of the present invention, a measuring tube through which a fluid flows is vibrated, and a signal having a phase difference proportional to the Coriolis force acting on the measuring tube is obtained by a pair of sensors. Each of the signals is processed by analog signal processing to remove noise components, and the signals are switched between straight and cross, input and converted into a phase difference pulse signal, and the phase difference pulse signal is processed to process the Coriolis force. In the flow rate conversion method of the mass flow meter, the component of the phase error shift of the sensor is Tshift, and the error component generated in the process of processing the analog signal is Toff, and the zero point of the mass flow meter when there is no flow rate. When the value Tzero is Tzero = Tshift +
A procedure for obtaining Toff, a procedure for obtaining a moving total value Toffze of an error caused by a plurality of samplings immediately after obtaining the zero point value and a flow rate is present, and a method for sequentially updating the moving total value at fixed time intervals. Moving average value Toff '
And a procedure for determining the zero value Tzerox as a function of the ratio between the moving average value Toff ′ and the moving sum value Toffze, where Tzerox is a zero value when there is a flow rate, Therefore, even if there are fluctuation elements such as electric drift in the circuit components and circuits of the mass flow meter, the zero point is corrected in real time during flow measurement, so accurate flow measurement can be performed even if environmental conditions such as temperature fluctuate. It is intended to increase the reliability of a mass flowmeter which can be performed and has a wide range capability.

【0016】請求項2の発明は、流体が流れる測定管を
加振し、該測定管に作用するコリオリの力に比例した位
相差をもつ信号を発信する一対のセンサと、該センサか
らの信号をそれぞれアナログ信号処理して雑音成分を除
去するアナログ信号処理手段と、該アナログ信号処理手
段からの信号をストレートとクロスに切換えて出力する
切換手段と、該切換手段を経て入力された前記信号を位
相差パルス信号に変換する変換手段と、該変換手段から
の位相差パルス信号を処理して前記コリオリの力を流量
に変換する中央演算処理手段を有する質量流量計の流量
変換装置において、前記アナログ信号処理手段の入力に
跨って配設された第1のスイッチと、前記一対のセンサ
のいずれかの出力に直列に配置された第2のスイッチか
らなる制御手段を有し、該制御手段は、前記中央演算処
理手段からの指令信号により、該制御手段がオン時には
前記第1のスイッチがオン、前記第2のスイッチがオ
フ、該制御手段がオフ時には前記第2のスイッチがオ
ン、前記第1のスイッチがオフになるよう動作し、前記
中央演算処理手段は、前記制御回路がオフ時に前記セン
サの位相誤差のずれの成分と前記制御回路がオン時に前
記切換手段の前段の信号の誤差成分を求めてそれらの差
から前記質量流量計の零点の構成要素を求め、流量が有
る時であって、前記零点の構成要素を求めた直後に前記
制御手段を複数回オンして前記切換手段の前段の信号の
誤差成分の移動総和値を求め、前記制御手段を一定間隔
で順次オンして前記移動総和値を更新して移動平均値を
求め、前記移動総和値と前記移動平均値とにより補正し
た零点値を求めることを特徴とし、もって、質量流量計
の回路部品や回路に電気的ドリフト等の変動要素があっ
ても、流量計測中にリアルタイムで零点を補正し、温度
等の環境条件が変動しても正確な流量測定を行い、且つ
レンジャビリテイの広い質量流量計において信頼性の高
い質量流量計を提供するようにしたものである。
According to a second aspect of the present invention, there is provided a pair of sensors for vibrating a measuring tube through which a fluid flows and transmitting a signal having a phase difference proportional to the Coriolis force acting on the measuring tube, and a signal from the sensor. Analog signal processing means for removing the noise component by analog signal processing, switching means for switching the signal from the analog signal processing means between straight and cross, and outputting the signal, and converting the signal inputted through the switching means A flow rate conversion device for a mass flow meter having a conversion means for converting the phase difference pulse signal from the conversion means and a central processing means for converting the Coriolis force into a flow rate by processing the phase difference pulse signal from the conversion means; A control means comprising a first switch disposed across the input of the signal processing means and a second switch disposed in series with the output of one of the pair of sensors. When the control means is turned on, the first switch is turned on, the second switch is turned off, and when the control means is turned off, the control means is controlled by the command signal from the central processing means. The central processing unit operates so that the switch is on and the first switch is off. The central processing unit is configured to control the phase error component of the sensor when the control circuit is off and the switching unit when the control circuit is on. The error component of the signal at the previous stage is obtained, the component of the zero point of the mass flow meter is obtained from the difference therebetween, and when there is a flow rate, the control means is turned on a plurality of times immediately after the component of the zero point is obtained. The moving sum of the error component of the signal at the previous stage of the switching means is obtained, the control means is sequentially turned on at regular intervals, the moving sum is updated and the moving average is obtained, and the moving sum and the moving sum are obtained. Moving average It is characterized in that the zero value corrected by the above is obtained, so that even if there is a variable element such as an electric drift in the circuit components and the circuit of the mass flow meter, the zero point is corrected in real time during the flow rate measurement and the environment such as temperature is corrected. The present invention is intended to provide a mass flow meter which performs accurate flow measurement even if the conditions fluctuate and which has a wide range of reliability and has high reliability.

【0017】請求項3の発明は、請求項2の発明におい
て、前記制御手段は、該制御手段がオン時には前記第1
のスイッチが先にオン、前記第2のスイッチが後にオ
フ、該制御手段がオフ時には前記第2のスイッチが先に
オン、前記第1のスイッチが後にオフになるよう動作す
ることを特徴とし、もって、後段回路部への電流を遮断
することなく安定して零点の補正と流量計測を行うよう
にしたものである。
According to a third aspect of the present invention, in the second aspect of the present invention, when the control means is turned on, the first control means outputs the first control signal.
Wherein the second switch is turned on first, the second switch is turned off later, and when the control means is turned off, the second switch is turned on first, and the first switch is turned off later, Thus, the zero point correction and the flow rate measurement can be performed stably without interrupting the current to the subsequent circuit section.

【0018】[0018]

【発明の実施の形態】図1は、本発明の質量流量計の実
施例を説明するための全体回路構成図で、図中、2はC
ALF(Calibration Flag)制御回路、SW1はセンサ
1側回路とセンサ1′側回路に跨って設けられた切換ス
イッチ、SW2はセンサ1′に直列に設けられた切換ス
イッチである。図4と同じ構成部品には同じ参照番号を
付し説明を省略する。図2(A)は、本発明の CAL
F制御回路の構成図で、図中、IC1はDラッチ、IC
2はワンショットマルチである。図2(B)は、本発明
のCALF制御回路によるオン、オフ動作の説明図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall circuit diagram for explaining an embodiment of a mass flow meter according to the present invention.
ALF (Calibration Flag) control circuit, SW 1 is the sensor 1 side circuit and the sensor 1 'changeover switch provided across the side circuit, SW 2 sensor 1' is a changeover switch provided in series. The same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted. FIG. 2A shows the CAL of the present invention.
FIG. 3 is a configuration diagram of an F control circuit, in which IC1 is a D-latch, IC
2 is a one-shot multi. FIG. 2B is an explanatory diagram of the ON / OFF operation by the CALF control circuit of the present invention.

【0019】図1および図2において、CALF制御回
路2の動作は、CPU6からの指令信号によって行われ
る。このためCPU6は、図4と同じ動作を行うほか該
CALF制御回路2への指令信号を発する。
In FIGS. 1 and 2, the operation of the CALF control circuit 2 is performed by a command signal from the CPU 6. Therefore, the CPU 6 performs the same operation as that of FIG. 4 and issues a command signal to the CALF control circuit 2.

【0020】図2(A)において、CPU6から指令信
号(パルス信号)がCALF制御回路2に入力される
と、その立上がり時にSW1がON(閉)、SW2がOF
F(開)となる、即ち、CALF制御回路2がONの状
態(ON時)となり、その立下がり時にSW1がOFF
(開)、SW2がON(閉)となる、即ちCALF制御
回路2がOFFの状態(OFF時)となる。これらの状
態は、それ自体周知のDラッチIC1,ワンショットマ
ルチIC2等により現出することができる。図2(B)
において、CPU6からの指令信号(CALF信号)
は、例えばパルス幅が500msのパルス信号である。
指令信号が入力されると、その立上がりでSW1はON
(閉)となり、そのままパルス幅(500ms)になる
までON(閉)を維持し、その後OFF(開)となる。
SW2は、指令信号の立上がりから若干遅れてOFF
(開)となり、指令信号の立下がりと共にON(閉)と
なる。このようにCALF制御回路2は、ONの状態と
なって、センサ1の出力を後段回路3及び3′の両者に
接続する時には、SW1を先、SW2を後、またOFFの
状態となって、後段回路をセンサ1,1′に接続する時
には、SW2を先、SW1を後のように作動し、後段回路
部に対し電流を遮断することなく作動させる。
In FIG. 2A, when a command signal (pulse signal) is input from the CPU 6 to the CALF control circuit 2, SW 1 is turned on (closed) and SW 2 is turned off at the rise.
F (open), that is, the CALF control circuit 2 is in an ON state (at the time of ON), and at the time of its fall, SW 1 is OFF.
(Open), SW 2 is ON (closed), i.e. CALF control circuit 2 becomes the state of OFF (when OFF). These states can be revealed by a well-known D-latch IC 1 , one-shot multi IC 2, or the like. FIG. 2 (B)
, A command signal (CALF signal) from the CPU 6
Is a pulse signal having a pulse width of 500 ms, for example.
When command signal is input, SW 1 is turned on at the rise
(Closed), and keep ON (closed) until the pulse width (500 ms) is reached, and then turn OFF (open).
SW 2 is turned off slightly after the rise of the command signal
(Open) and turns on (closed) with the fall of the command signal. Thus CALF control circuit 2, a state ON, the turned when connecting the output of the sensor 1 in both the subsequent circuit 3 and 3 ', previously the SW 1, after the SW 2, also the state of OFF Te, when connecting the subsequent circuit in the sensor 1, 1 ', previously the SW 2, and operates as later SW 1, is operated without interrupting the current to a subsequent circuit portion.

【0021】このことにより、結果的には、アナログ信
号処理回路3,3′への入力は時系列的に切断されるこ
とはなく、従って、アナログ信号処理回路3,3′の積
分回路の入力抵抗に対して安定的な信号を供給し、リア
ルタイムで零点チェックと流量計測を行なうことができ
る。
As a result, the input to the analog signal processing circuits 3 and 3 'is not cut off in time series, and therefore, the input to the integration circuit of the analog signal processing circuits 3 and 3'. A stable signal can be supplied to the resistance, and zero point check and flow rate measurement can be performed in real time.

【0022】なお、本実施例では、切換スイッチは、前
記SW1及びSW2の2個所であるが、センサ1(LP
O)側にSW3として追加しても同様な処理ができる。
[0022] In the present embodiment, changeover switch, wherein it is a 2 point of the SW 1 and SW 2, the sensor 1 (LP
O) it can be a similar process be added as SW 3 to the side.

【0023】次に、本発明の一実施例として、2つの時
間位相センサ部を有する場合の零点補正について説明す
る。CALFがない場合、通常の計測時の時間位相差
は、つぎのようになる。ただし、Ta、TbをS/C切換
部4の後段に含まれる雑音成分、Tc、TdをS/C切
換部4の前段に含まれる雑音成分とし、且つ(d/dt・
T+n)、(d/dt・T-n)は各々のセンサが持つ誤差
である。計測値に含まれる信号成分要素を下記のように
定義すると、CPU6への入力時間差は、左右のセンサ
部側をそれぞれLPO、RPOとすれば、 (LPOに対して) TLPO =T+(d/dt・T+n)+Tc+Ta+nΔT …(1) (RPOに対して) TRPO =T+(d/dt・T-n)+Td+Tb+nΔT …(2) ΔT:任意流量で、左右のそれぞれが相等しく持ってい
る位相差、で表わされる。上記2式の時間位相差は、ス
トレート制御時には、(1)-(2)式の計算により d/dt・(T+n-T-n)+(Tc-Td)+(Ta-Tb)+2nΔT …(3) また、クロス制御時には、Ta、Tbが入れ替わるの
で、(1)式-(2)式の計算により、 d/dt・(T+n-T-n)+(Tc-Td)+(Tb-Ta)+2nΔT …(4) となる。従って、ストレート制御とクロス制御を連続し
て交互に行うと、(3)式と(4)式を加えて、 d/dt・2(T+n-T-n)+2(Tc-Td)+4nΔT …(5) となる。この式は、回路にかかわる全ノイズと左右両信
号の始めから保有する時間位相差の和、即ち基本的に当
該回路及びセンサが持つ誤差である。そして、この誤差
が零点の変動をもたらすことになるので、この誤差を形
成する各成分要素の値が分かれば、逆に零点を補正する
事が可能になる。
Next, as one embodiment of the present invention, zero point correction in the case where two time phase sensor units are provided will be described. When there is no CALF, the time phase difference at the time of normal measurement is as follows. Here, Ta and Tb are noise components included in the subsequent stage of the S / C switching unit 4, Tc and Td are noise components included in the preceding stage of the S / C switching unit 4, and (d / dt ·
(T + n) and (d / dt · Tn) are the errors of each sensor. If the signal component elements included in the measured values are defined as follows, the input time difference to the CPU 6 is as follows: LPO and RPO on the left and right sensor units, respectively. dt · T + n) + Tc + Ta + nΔT (1) (for RPO) TRPO = T + (d / dt · T−n) + Td + Tb + nΔT (2) ΔT: At an arbitrary flow rate , And the phase difference between the left and right sides. In the straight control, the time phase difference of the above two equations is calculated by d / dt · (T + n−T−n) + (Tc−Td) + (Ta−Tb) + by the calculation of the equations (1)-(2). 2nΔT (3) Since Ta and Tb are interchanged during the cross control, d / dt · (T + n−T−n) + (Tc−Td) is calculated by the equation (1) − (2). + (Tb−Ta) + 2nΔT (4) Therefore, when the straight control and the cross control are continuously and alternately performed, the equations (3) and (4) are added, and d / dt · 2 (T + n−T−n) +2 (Tc−Td) + 4nΔT (5) This equation is the sum of the total noise relating to the circuit and the time phase difference held from the beginning of both the left and right signals, that is, basically the error of the circuit and the sensor. Then, since this error causes a change in the zero point, if the value of each component element forming this error is known, it is possible to correct the zero point conversely.

【0024】いま、零点補正のために、質量流量計に流
体を流さない、つまり流量が零の状態で、CALF制御
回路2をONすると、 T+n=T-n、4nΔT=0と
なるので、この値をToffとすれば、(5)式は、 Toff=2(Tc-Td) …(6) となり、この式は、S/C切換部4の前段の回路に含ま
れるノイズを表わす。従って、質量流量計の最初の零点
値Tzeroは、前記状態における、S/C切換部4の前段
の回路のノイズToffとセンサ1,1′の位相誤差のず
れ(差)との和であり、これを数式で表せば、Tzero=
Toff+d/dt・(T+n−T−n)となる。ここ
で、d/dt・(T+n−T−n)=Tshiftとする
と、 Tzero=Toff+Tshift …(7) である。前記Toffは、CALF制御回路2を例えば3
2回ONにすることにより、サンプリングして得たTof
fデータを平均化したものとして求める。
When the CALF control circuit 2 is turned on with no fluid flowing through the mass flow meter for zero point correction, that is, when the flow rate is zero, T + n = T-n and 4nΔT = 0. If this value is Toff, the expression (5) is as follows: Toff = 2 (Tc-Td) (6) This expression represents the noise included in the circuit at the preceding stage of the S / C switching unit 4. Therefore, the initial zero value Tzero of the mass flow meter is the sum of the noise Toff of the circuit at the preceding stage of the S / C switching unit 4 and the deviation (difference) of the phase error of the sensors 1 and 1 'in the above state, If this is expressed by an equation, Tzero =
Toff + d / dt · (T + n−T−n). Here, if d / dt · (T + n−T−n) = Tshift, then Tzero = Toff + Tshift (7) The Toff sets the CALF control circuit 2 to, for example, 3
By turning ON twice, the Tof obtained by sampling
Calculate as the average of f data.

【0025】従って、ToffとTshiftを求めればTzero
が決定されるので、例えば温度が変化したとき、これを
もとに補正すればよい。このために、零点決定の直後、
つまりToff及びTshiftを求めた直後に、流量が有る状
態でCALF制御回路2を一定間隔で例えば32回ON
し、32個のToffデータを求めてこれを平均化したも
のを移動総和値Toffzeとする。この移動総和値Toffze
は、前記零点決定時の直後に求められるため、殆ど流体
の温度などの影響を受けていない。従って流量が有る状
態での基準となるものである。該移動総和値Toffze
は、流体が流れ始めて流量測定開始後、時間が経過する
うちに温度などの影響を受け始めるようになる。そこ
で、流体を流し始めた後、一定間隔でCPU6から指令
信号を発し(flagを立て)CALF制御回路2をO
Nとし、前記サンプリングによるToffを該CALF制
御回路2のONによる最新のToffで順次前記移動総和
値を更新して移動平均値Toff′を求める。
Therefore, if Toff and Tshift are obtained, Tzero
Is determined, for example, when the temperature changes, correction may be made based on this. For this reason, immediately after the zero determination,
That is, immediately after obtaining Toff and Tshift, the CALF control circuit 2 is turned on at a certain interval, for example, 32 times in a state where there is a flow rate.
Then, 32 pieces of Toff data are obtained and averaged to obtain a moving total value Toffze. This moving sum value Toffze
Is determined immediately after the determination of the zero point, and is hardly affected by the temperature of the fluid. Therefore, it is a reference when there is a flow rate. The moving sum value Toffze
Starts to be affected by temperature and the like as time elapses after the flow measurement starts after the fluid starts flowing. Therefore, after starting the flow of the fluid, a command signal is issued from the CPU 6 at regular intervals (flag is raised) and the CALF control circuit 2 is turned on.
The moving average value Toff 'is obtained by sequentially updating the moving sum value with the latest Toff obtained by turning on the CALF control circuit 2 as Toff by sampling.

【0026】このようにして移動平均値Toff′を求め
るとき、温度の影響を受けたToffをToffxとすれば、 Toffx=Toff×{[(Toff′−Toffze)/Toffze]+1} …(8) となる。
When the moving average value Toff 'is obtained in this manner, assuming that Toff affected by the temperature is Toffx, Toffx = Toff × {[(Toff'-Toffze) / Toffze] +1} (8) Becomes

【0027】一方、同じようにTshiftも温度の影響を
受けるので、温度の影響を受けたTshiftをTshiftxと
すれば、 Tshiftx=(Toffze/Toff′)×Tshift …(9) と仮定すれば、(7)式より(8),(9)式を加え
て、 Tzerox=(Toffze/Toff′)×Tshift+ (Toffze/Toff′)×Toff …(10) これが補正された零点値である。この零点値で流量の計
測値を補正してやれば正確な計測値を求めることができ
る。勿論、(9)式のTshiftx=一定とすれば、 Tzerox=Tshift+(Toffze/Toff′)×Toff …(10)′ となる。
On the other hand, Tshift is similarly affected by temperature. If Tshift affected by temperature is Tshiftx, assuming that Tshiftx = (Toffze / Toff ') × Tshift (9), (9) Tzerox = (Toffze / Toff ′) × Tshift + (Toffze / Toff ′) × Toff (10) This is the corrected zero value by adding equations (8) and (9) from equation (7). If the measured value of the flow rate is corrected with this zero point value, an accurate measured value can be obtained. Of course, if Tshiftx in equation (9) is constant, then Tzerox = Tshift + (Toffze / Toff ′) × Toff (10) ′.

【0028】図3は、本発明の零点を補正する手順を説
明するためのタイムチャートであり、上述の式で示した
アルゴリズムをタイムチャートに従って説明する。 (イ)質量流量計に流量が無く、CALF制御回路2を
OFFとした状態で、センサの位相誤差の成分Tzeroを
求める(図3(A))。 (ロ)そのために、質量流量計に計量が無くCALF制
御回路2をONとした状態で、CPU6からの指令信号
による該CALF制御回路2を例えば32回ONとする
サンプリングにより、S/C切換部4の前段の回路に含
まれるノイズToffを求める(図3(A))。 (ハ)前記センサの位相誤差の成分Tzeroと前記S/C
切換部4の前段の回路に含まれるノイズToffをCPU
6で減算し、質量流量計の零点値Tshiftを求める。 (ニ)該零点値を求めた直後に、質量流量計に流体に流
して計測状態とし、CPU6からの指令信号によるCA
LF制御回路2を32回ONとするサンプリングによ
り、前記S/C切換部4の前段の回路に含まれるノイズ
Toffの移動総和値Toffzeを求める(図3(B))。 (ホ)該移動総和値を求めた後、一定時間後に、CPU
6からの指令信号によりCALF制御回路2をONし、
前記移動総和値の最前のサンプリングによるToffデー
タ(n1)を該CALF制御回路2のONによる最新の
Toffデータ(n33)と置き換えて移動平均値Toff′を
求める。以後一定時間経過毎に同じようにして移動総和
値の更新を行う(図3(B))。 (ヘ)前記センサの位相誤差の成分Tshiftと前記S/
C切換部4の前段の回路に含まれるノイズToffを前記
移動総和値Toffzeと前記移動平均値Toff′により補正
して零点値Tzeroxとする。
FIG. 3 is a time chart for explaining the procedure for correcting the zero point according to the present invention, and the algorithm shown in the above equation will be described with reference to the time chart. (A) With the mass flow meter having no flow rate and the CALF control circuit 2 being turned off, a component Tzero of the sensor phase error is obtained (FIG. 3A). (B) For this purpose, the S / C switching unit is sampled by turning the CALF control circuit 2 ON, for example, 32 times by a command signal from the CPU 6 in a state where the mass flow meter has no measurement and the CALF control circuit 2 is ON. The noise Toff included in the circuit at the preceding stage of No. 4 is obtained (FIG. 3A). (C) The phase error component Tzero of the sensor and the S / C
The noise Toff included in the circuit at the preceding stage of the switching unit 4 is determined by the CPU.
6 to obtain the zero point value Tshift of the mass flow meter. (D) Immediately after the zero point value is obtained, the mass flow meter is caused to flow into a fluid to be in a measurement state, and CA is determined by a command signal from the CPU 6.
By sampling the LF control circuit 2 to be turned on 32 times, a moving total value Toffze of the noise Toff included in the circuit at the preceding stage of the S / C switching unit 4 is obtained (FIG. 3B). (E) After obtaining the moving sum, after a certain period of time, the CPU
6 turns on the CALF control circuit 2 in response to a command signal,
The moving average value Toff ′ is obtained by replacing the Toff data (n 1 ) obtained by the previous sampling of the moving sum value with the latest Toff data (n 33 ) obtained by turning on the CALF control circuit 2. Thereafter, the movement total value is updated in the same manner every predetermined time (FIG. 3B). (F) The phase error component Tshift of the sensor and the S /
The noise Toff included in the circuit at the preceding stage of the C switching unit 4 is corrected by the moving sum value Toffze and the moving average value Toff ′ to obtain a zero point value Tzerox.

【0029】[0029]

【発明の効果】請求項1の発明によれば、流体が流れる
測定管を加振し、該測定管に作用するコリオリの力に比
例した位相差をもつ信号を一対のセンサにより得て、そ
れぞれアナログ信号処理して雑音成分を除去した信号と
し、該信号をストレートとクロスに切換えて入力して位
相差パルス信号に変換し、該位相差パルス信号を処理し
て前記コリオリの力を流量に変換する質量流量計の流量
変換方法において、前記センサの位相誤差のずれの成分
をTshift,前記アナログ信号処理する過程で生じる誤
差成分をToffとするとき、流量が無い時に前記質量
流量計の零点値TzeroをTzero= Tshift+ Toffとし
て求める手順と、前記零点値を求めた直後であって流量
が有る時に複数回のサンプリングにより生じる誤差の移
動総和値Toffzeを求める手順と、該移動総和値を一定
時間間隔で順次更新して移動平均値Toff′を求める手
順と、流量が有る時の零点値をTzeroxとするとき、該
零点値Tzeroxを前記移動平均値Toff′と前記移動総和
値Toffzeの比の関数として求める手順とからなるの
で、センサからの位相差信号を処理する回路で発生する
電気的ノイズや温度変化による構成電子部品の電気的ド
リフト並びに前記信号を変換、処理する各々の回路での
電気的ドリフト等の変動要素があっても、流量計測中に
リアルタイムで零点を補正するので、温度等の環境条件
が変動しても正確な流量測定を行うことができ、且つレ
ンジャビリテイの広い質量流量計において信頼性を高め
ることができる。
According to the first aspect of the present invention, a measuring pipe through which a fluid flows is vibrated, and a signal having a phase difference proportional to the Coriolis force acting on the measuring pipe is obtained by a pair of sensors. Analog signal processing to convert the signal into a phase difference pulse signal by switching between straight and cross, converting the signal into a phase difference pulse signal, and processing the phase difference pulse signal to convert the Coriolis force into a flow rate In the flow rate conversion method for a mass flow meter, when a component of a shift of the phase error of the sensor is T shift and an error component generated in a process of performing the analog signal processing is T off, a zero point value T zero of the mass flow meter when there is no flow rate. Tzero = Tshift + Toff, and a procedure immediately after obtaining the zero point value and calculating a moving total value Toffze of errors caused by a plurality of samplings when there is a flow rate. And a procedure for sequentially updating the moving sum value at fixed time intervals to obtain a moving average value Toff ', and when a zero point value when there is a flow rate is Tzerox, the zero point value Tzerox is referred to as the moving average value Toff'. And a procedure for obtaining the value as a function of the ratio of the moving sum value Toffze, so that the circuit for processing a phase difference signal from the sensor converts electrical drift of the constituent electronic components due to electrical noise or temperature change and the signal. Even if there is a variable element such as electrical drift in each circuit to be processed, the zero point is corrected in real time during flow measurement, so accurate flow measurement can be performed even if environmental conditions such as temperature fluctuate. In addition, the reliability can be improved in a mass flowmeter having a wide range of renewability.

【0030】請求項2の発明によれば、流体が流れる測
定管を加振し、該測定管に作用するコリオリの力に比例
した位相差をもつ信号を発信する一対のセンサと、該セ
ンサからの信号をそれぞれアナログ信号処理して雑音成
分を除去するアナログ信号処理手段と、該アナログ信号
処理手段からの信号をストレートとクロスに切換えて出
力する切換手段と、該切換手段を経て入力された前記信
号を位相差パルス信号に変換する変換手段と、該変換手
段からの位相差パルス信号を処理して前記コリオリの力
を流量に変換する中央演算処理手段を有する質量流量計
の流量変換装置において、前記アナログ信号処理手段の
入力に跨って配設された第1のスイッチと、前記一対の
センサのいずれかの出力に直列に配置された第2のスイ
ッチからなる制御手段を有し、該制御手段は、前記中央
演算処理手段からの指令信号により、該制御手段がオン
時には前記第1のスイッチがオン、前記第2のスイッチ
がオフ、該制御手段がオフ時には前記第2のスイッチが
オン、前記第1のスイッチがオフになるよう動作し、前
記中央演算処理手段は、前記制御回路がオフ時に前記セ
ンサの位相誤差のずれの成分と前記制御回路がオン時に
前記切換手段の前段の信号の誤差成分を求めてそれらの
差から前記質量流量計の零点の構成要素を求め、流量が
有る時であって、前記零点の構成要素を求めた直後に前
記制御手段を複数回オンして前記切換手段の前段の信号
の誤差成分の移動総和値を求め、前記制御手段を一定間
隔で順次オンして前記移動総和値を更新して移動平均値
を求め、前記移動総和値と前記移動平均値とにより補正
した零点値を求めるので、センサからの位相差信号を処
理する回路で発生する電気的ノイズや温度変化による構
成電子部品の電気的ドリフト並びに前記信号を変換、処
理する各々の回路での電気的ドリフト等の変動要素があ
っても、流量計測中にリアルタイムで零点を補正するの
で、温度等の環境条件が変動しても正確な流量測定を行
うことができ、且つレンジャビリテイの広い質量流量計
において信頼性の高い流量計を提供することができる。
According to the second aspect of the present invention, a pair of sensors for exciting a measuring tube through which a fluid flows and transmitting a signal having a phase difference proportional to the Coriolis force acting on the measuring tube, and Analog signal processing means for removing the noise component by performing analog signal processing on each of the signals, switching means for switching the signal from the analog signal processing means between straight and cross, and outputting the signal, and the signal inputted through the switching means. A conversion means for converting a signal into a phase difference pulse signal, and a flow rate conversion device of a mass flow meter having a central processing means for processing the phase difference pulse signal from the conversion means to convert the Coriolis force into a flow rate. A control comprising a first switch disposed across an input of the analog signal processing means and a second switch disposed in series with an output of one of the pair of sensors. A step, wherein the control means is configured such that, when the control means is on, the first switch is on, the second switch is off, and the control means is off when the control means is off, according to a command signal from the central processing unit. The second switch is turned on, the first switch is turned off, and the central processing unit operates when the control circuit is off, and the phase error component of the sensor and the control circuit are on when the control circuit is on. The error component of the signal at the previous stage of the switching means is obtained, the component of the zero point of the mass flow meter is obtained from the difference therebetween, and when there is a flow rate, immediately after the component of the zero point is obtained, the control means is executed. A plurality of times are turned on to obtain a moving sum value of an error component of a signal at a preceding stage of the switching means, and the control means is sequentially turned on at regular intervals to update the moving sum value to obtain a moving average value. Value and move Since the zero point value corrected by the average value is obtained, the electric noise of the constituent electronic parts due to electric noise or temperature change generated in the circuit for processing the phase difference signal from the sensor and the respective circuits for converting and processing the signal Even if there is a variable element such as electric drift in the flow rate, the zero point is corrected in real time during the flow rate measurement, so that accurate flow rate measurement can be performed even if environmental conditions such as temperature fluctuate, and rangeability is improved. A highly reliable flowmeter can be provided in a mass flowmeter having a large width.

【0031】請求項3の発明によれば、請求項2の発明
の効果に加えて、前記制御手段は、該制御手段がオン時
には前記第1のスイッチが先にオン、前記第2のスイッ
チが後にオフ、該制御手段がオフ時には前記第2のスイ
ッチが先にオン、前記第1のスイッチが後にオフになる
よう動作するので、後段回路部への電流を遮断すること
なく安定して零点の補正と流量計測を行うことができ
る。
According to the third aspect of the present invention, in addition to the effect of the second aspect of the present invention, when the control means is on, the first switch is turned on first and the second switch is turned on. Later, when the control means is off, the second switch is turned on first, and the first switch is turned off later, so that the current to the subsequent circuit section can be stably set without interrupting the current to the subsequent stage. Correction and flow measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の質量流量計の実施例を説明するため
の全体回路構成図である。
FIG. 1 is an overall circuit configuration diagram for explaining an embodiment of a mass flow meter according to the present invention.

【図2】 本発明のCALF制御回路の構成及び動作説
明図である。
FIG. 2 is a diagram illustrating the configuration and operation of a CALF control circuit according to the present invention.

【図3】 本発明の零点を補正する手順を説明するため
の図である。
FIG. 3 is a diagram for explaining a procedure for correcting a zero point according to the present invention.

【図4】 従来の質量流量計変換装置の全体回路図であ
る。
FIG. 4 is an overall circuit diagram of a conventional mass flow meter converter.

【図5】 従来のアナログ信号処理回路の回路構成図で
ある。
FIG. 5 is a circuit diagram of a conventional analog signal processing circuit.

【図6】 従来のスイッチングコントロール切換部の構
成図である。
FIG. 6 is a configuration diagram of a conventional switching control switching unit.

【図7】 従来のコンパレータの回路構成図である。FIG. 7 is a circuit configuration diagram of a conventional comparator.

【図8】 従来の時間位相差信号を得る態様を示すタイ
ムチャートである。
FIG. 8 is a time chart showing a conventional mode for obtaining a time phase difference signal.

【符号の説明】[Explanation of symbols]

1,1′…センサコイル、2…CALF制御回路、3,
3′…アナログ信号処理回路、4…スイッチングコント
ロール切換部、5…コンパレータ、6…中央演算処理装
置(CPU)、7,8,9,10…増幅器、11,1
2,13,14…接点、15,16…増幅器、IC1
Dラッチ、IC2…ワンショットマルチ。
1, 1 '... sensor coil, 2 ... CALF control circuit, 3,
3 ': analog signal processing circuit, 4: switching control switching section, 5: comparator, 6: central processing unit (CPU), 7, 8, 9, 10 ... amplifier, 11, 1
2, 13, 14 ... contact, 15, 16 ... amplifier, IC 1 ...
D latch, IC 2 ... one shot multi.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流体が流れる測定管を加振し、該測定管
に作用するコリオリの力に比例した位相差をもつ信号を
一対のセンサにより得て、それぞれアナログ信号処理し
て雑音成分を除去した信号とし、該信号をストレートと
クロスに切換えて入力して位相差パルス信号に変換し、
該位相差パルス信号を処理して前記コリオリの力を流量
に変換する質量流量計の流量変換方法において、前記セ
ンサの位相誤差のずれの成分をTshift,前記アナログ
信号処理する過程で生じる誤差成分をToffとすると
き、流量が無い時に前記質量流量計の零点値TzeroをT
zero= Tshift+ Toffとして求める手順と、前記零点
値を求めた直後であって流量が有る時に複数回のサンプ
リングにより生じる誤差の移動総和値Toffzeを求める
手順と、該移動総和値を一定時間間隔で順次更新して移
動平均値Toff′を求める手順と、流量が有る時の零点
値をTzeroxとするとき、該零点値Tzeroxを前記移動平
均値Toff′と前記移動総和値Toffzeの比の関数として
求める手順とからなることを特徴とする質量流量計の流
量変換方法。
1. A measuring tube through which a fluid flows is vibrated, a signal having a phase difference proportional to the Coriolis force acting on the measuring tube is obtained by a pair of sensors, and analog signals are processed to remove noise components. The signal is converted to a phase difference pulse signal by switching the signal between straight and cross,
In the flow rate conversion method for a mass flow meter that processes the phase difference pulse signal to convert the Coriolis force into a flow rate, a component of a phase error shift of the sensor is Tshift, and an error component generated in the process of processing the analog signal is Tshift. When Toff is set, the zero point value Tzero of the mass flow meter is set to T when there is no flow rate.
a procedure for obtaining zero = Tshift + Toff, a procedure for obtaining a moving total value Toffze of an error caused by a plurality of samplings immediately after obtaining the zero point value when there is a flow rate, and sequentially calculating the moving total value at fixed time intervals. A procedure for obtaining a moving average value Toff 'by updating, and a procedure for obtaining the zero point value Tzerox as a function of the ratio of the moving average value Toff' to the moving sum value Toffze when a zero value when there is a flow rate is Tzerox. A flow rate conversion method for a mass flow meter, comprising:
【請求項2】 流体が流れる測定管を加振し、該測定管
に作用するコリオリの力に比例した位相差をもつ信号を
発信する一対のセンサと、該センサからの信号をそれぞ
れアナログ信号処理して雑音成分を除去するアナログ信
号処理手段と、該アナログ信号処理手段からの信号をス
トレートとクロスに切換えて出力する切換手段と、該切
換手段を経て入力された前記信号を位相差パルス信号に
変換する変換手段と、該変換手段からの位相差パルス信
号を処理して前記コリオリの力を流量に変換する中央演
算処理手段を有する質量流量計の流量変換装置におい
て、前記アナログ信号処理手段の入力に跨って配設され
た第1のスイッチと、前記一対のセンサのいずれかの出
力に直列に配置された第2のスイッチからなる制御手段
を有し、該制御手段は、前記中央演算処理手段からの指
令信号により、該制御手段がオン時には前記第1のスイ
ッチがオン、前記第2のスイッチがオフ、該制御手段が
オフ時には前記第2のスイッチがオン、前記第1のスイ
ッチがオフになるよう動作し、前記中央演算処理手段
は、前記制御回路がオフ時に前記センサの位相誤差のず
れの成分と前記制御回路がオン時に前記切換手段の前段
の信号の誤差成分を求めてそれらの差から前記質量流量
計の零点の構成要素を求め、流量が有る時であって、前
記零点の構成要素を求めた直後に前記制御手段を複数回
オンして前記切換手段の前段の信号の誤差成分の移動総
和値を求め、前記制御手段を一定間隔で順次オンして前
記移動総和値を更新して移動平均値を求め、前記移動総
和値と前記移動平均値とにより補正した零点値を求める
ことを特徴とする質量流量計の流量変換装置。
2. A pair of sensors for exciting a measuring tube through which a fluid flows and transmitting a signal having a phase difference proportional to the Coriolis force acting on the measuring tube, and processing analog signals from the sensors. Analog signal processing means for removing noise components, switching means for switching the signal from the analog signal processing means between straight and cross, and outputting the signal, and converting the signal input through the switching means into a phase difference pulse signal. A mass flowmeter having a conversion means for converting, and a central processing means for processing the phase difference pulse signal from the conversion means to convert the Coriolis force into a flow rate; And a control unit including a second switch disposed in series with an output of one of the pair of sensors, the control unit comprising: The first switch is turned on when the control means is on, the second switch is off when the control means is on, and the second switch is on when the control means is off by the command signal from the central processing means. 1 is turned off, and the central processing means comprises: a component of a phase error shift of the sensor when the control circuit is off; and an error component of a signal preceding the switching means when the control circuit is on. To determine the zero-point component of the mass flow meter from the difference between them, and when there is a flow rate, immediately after obtaining the zero-point component, the control means is turned on a plurality of times and the switching means The moving sum value of the error component of the signal at the previous stage is obtained, the control means is sequentially turned on at regular intervals, the moving sum value is updated, the moving average value is obtained, and the moving average value is corrected by the moving sum value and the moving average value. Zero Flow rate conversion apparatus of the mass flowmeter and obtains the value.
【請求項3】 前記制御手段は、該制御手段がオン時に
は前記第1のスイッチが先にオン、前記第2のスイッチ
が後にオフ、該制御手段がオフ時には前記第2のスイッ
チが先にオン、前記第1のスイッチが後にオフになるよ
う動作することを特徴とする請求項2に記載の質量流量
計の流量変換装置。
3. The control means, wherein when the control means is on, the first switch is turned on first, the second switch is turned off later, and when the control means is off, the second switch is turned on first. 3. The mass flow meter according to claim 2, wherein the first switch is turned off later.
JP10299478A 1998-10-21 1998-10-21 Mass flow meter flow conversion method and flow conversion device Expired - Fee Related JP2977130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10299478A JP2977130B1 (en) 1998-10-21 1998-10-21 Mass flow meter flow conversion method and flow conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10299478A JP2977130B1 (en) 1998-10-21 1998-10-21 Mass flow meter flow conversion method and flow conversion device

Publications (2)

Publication Number Publication Date
JP2977130B1 true JP2977130B1 (en) 1999-11-10
JP2000131115A JP2000131115A (en) 2000-05-12

Family

ID=17873101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10299478A Expired - Fee Related JP2977130B1 (en) 1998-10-21 1998-10-21 Mass flow meter flow conversion method and flow conversion device

Country Status (1)

Country Link
JP (1) JP2977130B1 (en)

Also Published As

Publication number Publication date
JP2000131115A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP3219122B2 (en) Coriolis mass flowmeter
US5602346A (en) Mass flowmeter converter
EP0629843B1 (en) Electromagnetic flowmeter and method for electromagnetically measuring flow rate
JP4274385B1 (en) Temperature measurement circuit in a flow meter
JP3200827B2 (en) Coriolis mass flowmeter
JP2977130B1 (en) Mass flow meter flow conversion method and flow conversion device
JP5152538B2 (en) Coriolis mass flow meter
EP0759541B1 (en) Mass flowmeter converter
US6304202B1 (en) Delay correction system and method for a voltage channel in a sampled data measurement system
JP2786813B2 (en) Mass flow meter converter
JP2011174731A (en) Coriolis mass flowmeter
US7140246B2 (en) Frequency output type hot-wire flow meter
JP3357582B2 (en) Electromagnetic flow meter
JPH02120621A (en) Flow rate measuring circuit
JP6036864B2 (en) Resonance circuit of measuring device
JP2005241305A (en) Phase adjustment circuit of watthour meter
JP3381840B2 (en) Viscosity determination method for density measurement
JP2966365B2 (en) Mass flow meter converter
JP2965241B2 (en) Coriolis flow meter
JP2786824B2 (en) Mass flow meter converter
JPH07234102A (en) Displacement measuring apparatus
JPH057549Y2 (en)
JP2000214030A (en) Pressure sensor circuit
JP2005189184A (en) Automatic balanced circuit for measuring impedance
AU687223B2 (en) Mass flowmeter converter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees