JP3381840B2 - Viscosity determination method for density measurement - Google Patents

Viscosity determination method for density measurement

Info

Publication number
JP3381840B2
JP3381840B2 JP27807399A JP27807399A JP3381840B2 JP 3381840 B2 JP3381840 B2 JP 3381840B2 JP 27807399 A JP27807399 A JP 27807399A JP 27807399 A JP27807399 A JP 27807399A JP 3381840 B2 JP3381840 B2 JP 3381840B2
Authority
JP
Japan
Prior art keywords
viscosity
vibration
order
damping constant
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27807399A
Other languages
Japanese (ja)
Other versions
JP2000186992A (en
Inventor
敏郎 喜多
賢治 川口
俊之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP27807399A priority Critical patent/JP3381840B2/en
Publication of JP2000186992A publication Critical patent/JP2000186992A/en
Priority to AT16072000A priority patent/AT409551B/en
Application granted granted Critical
Publication of JP3381840B2 publication Critical patent/JP3381840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、振動式密度計にお
ける密度測定において、被検物質の密度を粘度にに基づ
いて補正する際の粘度の決定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the viscosity when correcting the density of a test substance based on the viscosity in the density measurement of a vibration type densitometer.

【0002】[0002]

【従来の技術とその課題】基端部(U字の上部両端)を
固定したU字管に被検物質(液体またはガス)を充填し
て、該U字管に対して機械的な振動を与えると、該振動
は該U字管に充填した被検物質の密度に応じた周波数で
振動する。従って、該振動周波数(あるいは振動周期)
を測定すると被検物質の密度が得られることになる。振
動式密度計はこの原理を応用したものである。
2. Description of the Related Art A U-shaped tube having fixed base ends (both upper ends of U-shape) is filled with a substance to be tested (liquid or gas) and mechanical vibration is applied to the U-shaped tube. When given, the vibration will occur at a frequency corresponding to the density of the test substance filled in the U-shaped tube.
Vibrate . Therefore, the vibration frequency (or vibration period)
Is measured, the density of the test substance can be obtained. The vibrating densitometer applies this principle.

【0003】図2は従来の振動式密度計の基本的な構成
を示すものである。U字管10の先端部(U字の下部)
に永久磁石11が固定され、該永久磁石の近辺に配設さ
れた駆動コイル14に所定周波数の電流を流すことによ
って、上記U字管10が振動する。このU字管10の振
動はセンサ13によって検出され、該センサ13よりの
検出信号は増幅器12で増幅されて駆動コイル14に返
される。この構成によって上記U字管は上記駆動コイル
に流れる電流の周波数に共振して振動することになる。
また、上記センサ13よりの出力信号に基づいて、上記
U字管の振動周期が測定され、演算手段15での密度演
算に供されるようになっている。
FIG. 2 shows the basic structure of a conventional vibrating density meter. Tip of U-shaped tube 10 (lower part of U-shaped)
The permanent magnet 11 is fixed to the U-shaped tube 10 and the U-shaped tube 10 is vibrated by passing a current of a predetermined frequency through the drive coil 14 arranged near the permanent magnet. The vibration of the U-shaped tube 10 is detected by the sensor 13, and the detection signal from the sensor 13 is amplified by the amplifier 12 and returned to the drive coil 14. With this configuration, the U-shaped tube resonates at the frequency of the current flowing through the drive coil and vibrates.
Further, the vibration cycle of the U-shaped tube is measured based on the output signal from the sensor 13 and is used for the density calculation in the calculation means 15.

【0004】ところで、上記のように単純に振動周波数
から得られる密度は、図4に示すように被検物質の粘度
に依存する密度誤差が発生する。すなわち粘度ηが大き
い程、図4でΔρ/ρ1 で示される誤差率が大きくなる
(密度の真値をρ0 、測定値をρ1 としたとき、Δρ=
ρ1 −ρ0 )。
By the way, in the density obtained simply from the vibration frequency as described above, a density error depending on the viscosity of the test substance occurs as shown in FIG. That is, the larger the viscosity η, the larger the error rate indicated by Δρ / ρ 1 in FIG. 4 (when the true value of the density is ρ 0 and the measured value is ρ 1 , Δρ =
ρ 1 −ρ 0 ).

【0005】この粘度ηに依存する密度誤差を補正する
ためには、被検物質の粘度を求める必要があるが、ここ
で、粘度ηは上記振動の減衰定数との関係から求まるこ
とが、IEE TRANSACTIONAL ON INDUSTRIAL ELECTRONICS
AND CONTROL INSTRUMENTATION, VOL.IEC1-27,NO.3,AUGU
ST 1980, 247〜253 (文献1)に示されている。すなわ
ち、粘度−減衰定数特性は例えば、後に説明する0次の
振動のとき、あるいは1次の振動のときでそれぞれ図5
に示すように関数b0 =f(η)、b1 =g (η)で表
される。ここで、0次の発振とは、図6にi=1で示す
ようにU字管の基端部を振動の節としたモードであり、
通常このモードでの周波数より密度が求められる。ま
た、1次の振動とは図6にi=2で示すように上記基端
部と、先端から1/4程度基端よりの位置を節とする振
動である。また更に高次の振動モード(i=3,i=
4)もある。
In order to correct the density error depending on the viscosity η, it is necessary to obtain the viscosity of the test substance. Here, the viscosity η can be obtained from the relationship with the damping constant of the vibration. TRANSACTIONAL ON INDUSTRIAL ELECTRONICS
AND CONTROL INSTRUMENTATION, VOL.IEC1-27, NO.3, AUGU
ST 1980, 247-253 (reference 1). That is, the viscosity-damping constant characteristic is, for example, as shown in FIG.
As shown in, the functions are represented by b0 = f (η) and b1 = g (η). Here, the 0th order oscillation is a mode in which the base end portion of the U-shaped tube is a node of vibration as shown by i = 1 in FIG.
Usually, the density is obtained from the frequency in this mode. Further, the primary vibration is vibration having a node at the base end portion and a position about 1/4 from the base end to the base end as shown by i = 2 in FIG. In addition, higher-order vibration modes (i = 3, i =
There is also 4).

【0006】上記の各モードの振動を形成するために、
上記文献1には図7に示すような回路で駆動する構成と
なっている。
In order to form the vibrations of the above modes,
The above-mentioned Document 1 has a configuration driven by a circuit as shown in FIG.

【0007】すなわち、センサーとしての圧電素子21
の出力すなわち検出電圧Udが可変ゲインアンプ22と
電圧制御位相調整器23を介して信号Uとして変調器2
4と位相シフト器25に入力される。
That is, the piezoelectric element 21 as a sensor
Of the modulator 2 as a signal U via the variable gain amplifier 22 and the voltage control phase adjuster 23.
4 and the phase shifter 25.

【0008】更に、上記信号Uは整流器26と積分器2
7を介して上記可変ゲインアンプ22のコントロール信
号Ucを形成している。この可変ゲインアンプ22→電
圧制御位相調整器23→整流器26→積分器27→可変
ゲインアンプ22のループは検出電圧の大きさに係わら
ず出力Uの大きさを一定にする機能を備えている。
Further, the signal U is supplied to the rectifier 26 and the integrator 2.
The control signal Uc of the variable gain amplifier 22 is formed via the signal line 7. The loop of the variable gain amplifier 22, the voltage control phase adjuster 23, the rectifier 26, the integrator 27, and the variable gain amplifier 22 has a function of making the magnitude of the output U constant regardless of the magnitude of the detected voltage.

【0009】上記変調器24は基本信号Uの振幅に変調
係数εを掛け合わせた値を出力し、上記位相シフト器2
5は基本信号Uの位相を−θ(例えば45°)シフトさ
せた信号を出力する。この2つの信号はミキサー28で
加え合わされて、図8に示すように変調係数εの大きさ
に対応した分だけ位相がシフトされた信号Ueを得るこ
とになり、この信号を用いて、励起電流Iexc を得るよ
うになっている。すなわち、信号Uを位相シフト器25
を介して45°遅らせるとともに、係数ε1 あるいはε
2 を掛け合わせた信号ε1 U、ε2 U(図8ではε1
ε2 )と基本信号Uとを加え合わせた信号Ue1 ,信号
Ue2 はε1 >ε2 のとき、遅れ角θ1>θ2 となる。
The modulator 24 outputs a value obtained by multiplying the amplitude of the basic signal U by the modulation coefficient ε, and the phase shifter 2
Reference numeral 5 outputs a signal obtained by shifting the phase of the basic signal U by −θ (for example, 45 °). These two signals are added by the mixer 28 to obtain a signal Ue whose phase is shifted by an amount corresponding to the magnitude of the modulation coefficient ε as shown in FIG. I'm supposed to get Iexc. That is, the signal U is transferred to the phase shifter 25.
Through 45 ° and the coefficient ε 1 or ε
Signal multiplied by the 2 ε 1 U, the epsilon 2 U (Fig. 8 epsilon 1>
The signals Ue 1 and Ue 2 obtained by adding ε 2 ) and the basic signal U have a delay angle θ 1 > θ 2 when ε 1 > ε 2 .

【0010】尚、上記変調係数εは上記変調器24に入
力するコントロール信号ω/NのNの値を調整すること
で変化させることができる。
The modulation coefficient ε can be changed by adjusting the value of N of the control signal ω / N input to the modulator 24.

【0011】このように位相シフトされた信号が得られ
ると、当然新しい位相での共振周波数が得られることに
なり、一次高調波すなわちi=2の振動あるいは更に高
次の振動も得られることになる。
When the signal thus phase-shifted is obtained, the resonance frequency at a new phase is naturally obtained, and the first harmonic, that is, the vibration of i = 2 or the higher-order vibration is also obtained. Become.

【0012】上記のような装置で実際に粘度−減衰定数
の関係を0次の振動で測定すると、図3(a) のようにま
た、1次の振動で測定すると、図3(b) のようになり、
上記図5はこの2つのグラフを重ね合わせて現したもの
である。
When the relationship between the viscosity and the damping constant is actually measured by the above-mentioned apparatus by the 0th order vibration, as shown in FIG. 3 (a), and by the first order vibration, the result of FIG. 3 (b) is obtained. Becomes,
FIG. 5 shows the two graphs superimposed on each other.

【0013】ここで、上記密度の粘度による密度誤差を
補正するために、上記0次の振動時の粘度−減衰定数特
性b0 =f(η)を用いるとすると、粘度η1 (具体的
には100mPas程度)で減衰定数はピークを持つため、
同じ減衰定数に対して2つの粘度を持つことになり、い
ずれの値を用いるのかが問題となる。1次の粘度−減衰
定数特性b1 =g (η)を用いると、比較的広い範囲で
減衰定数から1義的に粘度を得ることができるが、それ
でも粘度η2 (700mPas程度)の部分でピークを持つ
ので、上記0次の振動を用いた場合と同じような問題に
直面する。
Here, in order to correct the density error due to the viscosity of the density, if the viscosity-damping constant characteristic b 0 = f (η) at the 0th vibration is used, the viscosity η 1 (specifically, Since the damping constant has a peak at about 100 mPas),
It has two viscosities for the same damping constant, and which value to use becomes a problem. If the first-order viscosity-damping constant characteristic b1 = g (η) is used, the viscosity can be uniquely obtained from the damping constant in a relatively wide range, but the peak still occurs at the portion of the viscosity η 2 (about 700 mPas). Therefore, it faces the same problem as when the 0th order vibration is used.

【0014】粘度が700mPas程度以下か以上かを予測
できる物質については、1次の振動より得られた粘度を
用いることができるが、密度を0次の振動で測定してお
きながら、1次の振動より得られる粘度を用いて密度誤
差を補正する方法では高い精度を期待することができな
い欠点がある。
As for a substance whose viscosity can be predicted to be about 700 mPas or less, the viscosity obtained from the first-order vibration can be used. The method of correcting the density error using the viscosity obtained from the vibration has a drawback that high accuracy cannot be expected.

【0015】本発明は上記従来の事情を考慮して提案さ
れたものであって、特定の次数の振動の粘度−減衰定数
特性にピークを持つ場合であっても、他の特定次数の粘
度−減衰定数特性を利用することによって当該特定の次
数の振動における粘度を決定する方法を提供することを
目的とするものである。
The present invention has been proposed in view of the above-mentioned conventional circumstances. Even if the viscosity of vibration of a specific order has a peak in the damping constant characteristic, the viscosity of another specific order- It is an object of the present invention to provide a method for determining the viscosity in the vibration of the specific order by utilizing the damping constant characteristic.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明は以下の手段を採用している。すなわち、特
定の次数の振動における被検物質の粘度−減衰定数特性
がピーク点を有する場合、他の特定の次数の振動での被
検物質の減衰定数が上記ピーク点に対応する値より大き
いか小さいかに基づいて、上記特定の次数の周波数で得
られた減衰定数が上記ピーク点のいずれの領域に属する
かを判断することによって粘度を決定するようにしてい
る。
In order to achieve the above object, the present invention employs the following means. That is, if the viscosity-damping constant characteristic of the test substance at a vibration of a specific order has a peak point, is the damping constant of the test substance at a vibration of another specific order larger than the value corresponding to the peak point? The viscosity is determined by determining to which region of the peak point the damping constant obtained at the frequency of the specific order belongs, based on the smallness.

【0017】上記特定の次数として密度測定に直接用い
る0次を用い、上記他の特定の次数として1次を用いる
と、密度測定に用いる振動モードで粘度測定もすること
ができ、精度の向上が期待できる。
When the 0th order used directly for the density measurement is used as the above-mentioned specific order and the 1st order is used as the above-mentioned other specific order, the viscosity can be measured in the vibration mode used for the density measurement, and the accuracy is improved. Can be expected.

【0018】[0018]

【実施の形態】図1は本発明の概要を示す図である。1 is a diagram showing an outline of the present invention.

【0019】図5で示したと同様、振動式密度計のU字
管を0次のモードで被検物質の粘度を変化させて駆動し
た場合、粘度η=η1 でピークを持つ粘度−減衰定数曲
線b0 =f(η)が得られる。この曲線を用いて減衰定
数f(η0 )の被検物質の粘度を求めようとした場合、
粘度はη10とη20の2つの値を得ることになる。
As shown in FIG. 5, when the U-shaped tube of the vibration type densitometer is driven by changing the viscosity of the test substance in the 0th mode, the viscosity has a peak at viscosity η = η 1 The curve b0 = f (.eta.) Is obtained. When the viscosity of the test substance having the attenuation constant f (η 0 ) is obtained using this curve,
The viscosity will have two values, η 10 and η 20 .

【0020】そこで、上記0次の振動モードによる粘度
−減衰定数曲線に加えて1次の振動モードを用い、粘度
を変化させて粘度−減衰定数曲線b1 =g(η)を求め
ておく。この粘度−減衰定数曲線b1 =g(η)におい
て、上記粘度η=η1 に対応する減衰定数はg(η1
となる。従って、上記粘度−減衰定数曲線b0 =f
(η)の減衰定数f(η0 )より得られる2つの粘度η
10とη20の中いずれの値を採用するかは1次の駆動モー
ドでの減衰定数g(η)がg(η1 )より大きいか小さ
いかで決定することができる。すなわち、減衰定数g
(η)がg(η1 )より大きいときはピークの右側の粘
度η20が、また、減衰定数g(η)がg(η1)より小
さいときはピークの左側の粘度η10が得られるべき値で
ある。
Therefore, the viscosity-damping constant curve b1 = g (η) is obtained by changing the viscosity by using the first-order vibration mode in addition to the viscosity-damping constant curve by the 0th-order vibration mode. The viscosity - the attenuation constant curve b1 = g (η), the attenuation constant which corresponds to the viscosity η = η 1 g (η 1 )
Becomes Therefore, the above viscosity-damping constant curve b0 = f
Two viscosities η obtained from the damping constant f (η 0 ) of (η)
Which of 10 and η 20 is used can be determined by whether the damping constant g (η) in the first-order drive mode is larger or smaller than g (η 1 ). That is, the damping constant g
When (η) is larger than g (η 1 ), the viscosity η 20 on the right side of the peak is obtained, and when the damping constant g (η) is smaller than g (η 1 ), the viscosity η 10 on the left side of the peak is obtained. It is a power value.

【0021】上記においては、0次の粘度−減衰定数曲
線b0 =f(η)より粘度を決定する場合に、1次の粘
度−減衰定数曲線b1 =g(η)を利用することについ
て説明したが、同様の考え方で、1次の粘度−減衰定数
曲線b1 =g(η)より粘度を決定する場合に0次の粘
度−減衰定数曲線b0 =f(η)を利用することもでき
る。
In the above, when the viscosity is determined from the zero-order viscosity-damping constant curve b0 = f (η), the use of the first-order viscosity-damping constant curve b1 = g (η) is explained. However, in the same way, when determining the viscosity from the first-order viscosity-damping constant curve b1 = g (η), the zero-order viscosity-damping constant curve b0 = f (η) can be used.

【0022】すなわち、1次の粘度−減衰定数曲線b1
=g(η)は粘度η2 の近辺でピークとなり、粘度η1
を越えたあたりから同じ減衰定数に対して2つの粘度を
呈する曲線となっている。従って、減衰定数g(η0
より得られる2つの粘度η30とη40の中いずれの値を採
用するかは0次のモードでの粘度−減衰定数曲線b0=
f(η)より判断する。すなわち、同じ被検物質につい
て0次の粘度−減衰定数曲線b0 =f(η)より得られ
る減衰定数f (η)がf (η2 )より大きいときはピー
クの左側の粘度η30が、また、減衰定数f(η)がf
(η2 )より小さいときはピークの右側の粘度η40が得
られるべき値である。
That is, the first-order viscosity-damping constant curve b1
= G (η) peaks near the viscosity η 2 and the viscosity η 1
A curve showing two viscosities for the same damping constant from around the point where is exceeded. Therefore, the damping constant g (η 0 )
Which of the two viscosities η 30 and η 40 obtained above is to be used is determined by the viscosity-damping constant curve b 0 =
Judge from f (η). That is, 0-order viscosity for the same analyte - attenuation constant curve b0 = f (η) from the resulting attenuation constant f (eta) is f (η 2) left viscosity eta 30 peaks when larger, but also , The damping constant f (η) is f
When it is smaller than (η 2 ), the viscosity η 40 on the right side of the peak is a value to be obtained.

【0023】例えば、上記0次の振動で上記U字管10
が200 〜350Hz 程度の周波数で振動しているとすると、
上記1次の振動では上記0次の振動の6.2673倍として約
1253〜2194Hz程度の周波数で振動することになり、測定
対象によってはこの2つの周波数帯域で、粘性の特性が
変化することも考えられる。一方、上記密度の測定は振
幅の大きな0次の振動を用いてなされるのが現状であ
り、0次の振動で密度測定がなされている以上、密度誤
差の原因となる粘度も0次の振動下での粘度を用いた方
が精度のよい補正ができることが期待できる。
For example, the U-shaped tube 10 is caused by the 0th order vibration.
Is oscillating at a frequency of about 200 to 350 Hz,
The above first-order vibration is 6.2673 times that of the above-mentioned zero-order vibration.
It vibrates at a frequency of about 1253 to 2194 Hz, and it is conceivable that the viscosity characteristic may change in these two frequency bands depending on the measurement target. On the other hand, the above-mentioned density measurement is currently performed by using the 0th-order vibration having a large amplitude. Since the density measurement is performed by the 0th-order vibration, the viscosity that causes a density error is also the 0th-order vibration. It can be expected that accurate correction can be achieved by using the viscosity below.

【0024】表1は以上の観点からの実験データをまと
めた表である。すなわち、粘度標準液(試料A)〔ニュ
−トン物質〕と試料B〜試料Eのそれぞれについて、0
次の振動と1次の振動について減衰定数を測定し、図3
(a) 、(b) のグラフ(あるいは特定の式)を用いて粘度
を得る一方、上記各試料についてそれぞれ0次の振動で
密度を測定した。上記のようにして得られた密度を、上
記0次および1次の振動で得た粘度でそれぞれ図4のグ
ラフ(あるいは特定の式)を用いて補正することによっ
て補正密度を得る。
Table 1 is a table summarizing the experimental data from the above viewpoints. That is, 0 for each of the viscosity standard solution (Sample A) [Newtonian substance] and Samples B to E.
The damping constant was measured for the next vibration and the first vibration, and
While the viscosity was obtained using the graphs (a) and (b) (or a specific formula), the density of each sample was measured by zero-order vibration. The density obtained as described above is corrected with the viscosities obtained by the 0th-order vibration and the 1st-order vibration, respectively, by using the graph of FIG. 4 (or a specific equation) to obtain the corrected density.

【0025】このようにして得られた補正された密度と
密度の真値(ワードン比重びん法で得た)とを比較する
と、特に、試料B〜Eの物質については0次の振動より
得られた粘度を用いて得た補正密度の方が遙に精度が高
いことが理解できる。
Comparing the corrected density thus obtained with the true value of the density (obtained by the Wardung pycnometer method), in particular, for the substances of Samples B to E, it was obtained from the zero-order vibration. It can be understood that the corrected density obtained by using the viscosity is much higher in accuracy.

【0026】尚、上記ニュートン物質とはずり速度(せ
ん断速度)がずり応力(せん断応力)に比例する液体を
いい、また、周波数帯域によって粘度特性が変化しない
液体でもある。また非ニュートン物質とは高分子物質の
ようにずり速度(せん断速度)がずり応力(せん断応
力)に比例しない液体をいい、また、周波数帯域によっ
て粘度特性が変化しない液体でもある。
The Newtonian substance and a liquid whose shear rate (shear rate) are proportional to shear stress (shear stress) are liquids whose viscosity characteristics do not change depending on the frequency band. A non-Newtonian substance is a liquid whose shear rate (shear rate) is not proportional to shear stress (shear stress) like a polymer substance, and is also a liquid whose viscosity characteristics do not change depending on the frequency band.

【0027】[0027]

【表1】 [Table 1]

【0028】以上のように本発明によると、ある特定の
次数の粘度−減衰定数特性がピークを持つ場合であって
も、すなわち、ある減衰定数に対して2つの粘度値を持
つ場合であっても、他の次数の粘度−減衰定数特性を利
用して、粘度を決定することができることになる。ま
た、密度の測定と粘度の測定について同じ次数の振動を
用いることができ、測定精度の向上を図ることができる
ことになる。
As described above, according to the present invention, even when the viscosity-damping constant characteristic of a specific order has a peak, that is, when the viscosity has two viscosity values with respect to a certain damping constant. Also, the viscosity can be determined by using the viscosity-damping constant characteristics of other orders. Further, vibration of the same order can be used for the measurement of the density and the measurement of the viscosity, and the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明する各モードにおける粘度
−減衰定数特性グラフである。
FIG. 1 is a viscosity-damping constant characteristic graph in each mode for explaining the principle of the present invention.

【図2】振動式密度計の概念図である。FIG. 2 is a conceptual diagram of a vibration type densitometer.

【図3】0次振動と、1次の振動における粘度による密
度誤差を示すグラフである。
FIG. 3 is a graph showing a density error due to viscosity in zero-order vibration and first-order vibration.

【図4】図3の2つのグラフをまとめて表示したグラフ
である。
FIG. 4 is a graph in which the two graphs of FIG. 3 are displayed together.

【図5】各モードにおける粘度−減衰定数特性グラフで
ある。
FIG. 5 is a viscosity-damping constant characteristic graph in each mode.

【図6】U字管の振動モードのモデルを示す図である。FIG. 6 is a diagram showing a model of a vibration mode of a U-shaped tube.

【図7】従来回路図である。FIG. 7 is a conventional circuit diagram.

【図8】従来技術による位相シフトを示す波形図であ
る。
FIG. 8 is a waveform diagram showing a phase shift according to the related art.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−184950(JP,A) 特開 平9−166465(JP,A) 特開 昭59−99332(JP,A) 特開 平9−222387(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 9/00 G01N 11/00 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-57-184950 (JP, A) JP-A-9-166465 (JP, A) JP-A-59-99332 (JP, A) JP-A-9- 222387 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 9/00 G01N 11/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 振動式密度計の測定結果に対して被検物
質の粘度に基づく密度誤差の補正を行う際に必要な粘度
の決定方法において、 特定の次数の振動における被検物質の粘度−減衰定数特
性がピーク点を有する場合、他の特定の次数の振動での
被検物質の粘度−減衰定数特性を用いて測定された減衰
定数が上記ピーク点に対応する減衰定数より大きいか小
さいかに基づいて、上記特定の次数の振動で得られた減
衰定数より求められた粘度が、上記ピークより大きい側
または小さい側のいずれの領域に属するかを判断するこ
とによって粘度を決定することを特徴とする粘度決定方
法。
1. A method for determining a viscosity required when correcting a density error based on a viscosity of a test substance with respect to a measurement result of a vibration type densitometer, wherein the viscosity of the test substance in a vibration of a specific order- If the damping constant characteristic has a peak point, whether the damping constant measured using the viscosity-damping constant characteristic of the test substance at the vibration of another specific order is larger or smaller than the damping constant corresponding to the peak point. Based on, the viscosity determined from the damping constant obtained by the vibration of the specific order, the viscosity is determined by determining which region of the larger side or the smaller side the peak belongs to. Viscosity determination method.
【請求項2】 上記特定の次数として0次を用い、上記
他の特定の次数として1次を用いる請求項1に記載の粘
度決定方法。
2. The viscosity determining method according to claim 1, wherein the 0th order is used as the specific order, and the 1st order is used as the other specific order.
JP27807399A 1998-10-15 1999-09-30 Viscosity determination method for density measurement Expired - Fee Related JP3381840B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27807399A JP3381840B2 (en) 1998-10-15 1999-09-30 Viscosity determination method for density measurement
AT16072000A AT409551B (en) 1999-09-30 2000-09-22 Viscosity decision procedure for density measurement, involves taking peak point of vibration of oscillating type density meter as reference point

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29402698 1998-10-15
JP10-294026 1998-10-15
JP27807399A JP3381840B2 (en) 1998-10-15 1999-09-30 Viscosity determination method for density measurement

Publications (2)

Publication Number Publication Date
JP2000186992A JP2000186992A (en) 2000-07-04
JP3381840B2 true JP3381840B2 (en) 2003-03-04

Family

ID=26552708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27807399A Expired - Fee Related JP3381840B2 (en) 1998-10-15 1999-09-30 Viscosity determination method for density measurement

Country Status (1)

Country Link
JP (1) JP3381840B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911191B2 (en) * 2002-04-26 2007-05-09 株式会社アルバック Analysis method
AT505937B1 (en) * 2007-11-16 2009-05-15 Messtechnik Dr Hans Stabinger METHOD FOR DETERMINING THE ACTUAL DENSITY OF FLUID MEDIA
FR2962220B1 (en) * 2010-07-02 2012-07-27 Instrumentation Scient De Laboratoire Isl METHOD FOR PRECISE MEASUREMENT OF DENSITY OF A SAMPLE

Also Published As

Publication number Publication date
JP2000186992A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US7191667B2 (en) Vibration meter and method of measuring a viscosity of a fluid
KR101609753B1 (en) Vibratory meter and method for determining resonant frequency
US8396674B2 (en) Vibration-type measuring device
US8165830B2 (en) Meter electronics and methods for determining a phase difference between a first sensor signal and a second sensor signal of a flow meter
US7974792B2 (en) Meter electronics and methods for determining a liquid flow fraction in a gas flow material
US5907104A (en) Signal processing and field proving methods and circuits for a coriolis mass flow meter
JP2914395B2 (en) Vibrating tube densimeter
EP0083144B1 (en) Improved method and apparatus for mass flow measurement
JP2012208131A (en) High speed frequency and phase estimation for flow meter
US10119895B2 (en) Method, circuit and flexural resonator for measuring the density of fluids
JP4261348B2 (en) Viscosity meter
JPH09126851A (en) Vibration type measuring device
US8143894B2 (en) Method for operating a resonance measuring system and a resonance measuring system
EP2019295A1 (en) Calibrated Coriolis mass flow meter
JP3381840B2 (en) Viscosity determination method for density measurement
KR102352194B1 (en) Frequency spacing to prevent intermodulation distortion signal interference
AU744821B2 (en) Signal processing and field proving methods and circuits for a coriolis mass flow meter
KR101605695B1 (en) Method and apparatus for vibrating a flow tube of a vibrating flow meter
US6334356B1 (en) Method for deciding the viscosity in the density measurement
JP2021519931A (en) Flowmeter Phase fraction and concentration measurement adjustment method and equipment
SU857783A1 (en) Automatic liquid density meter
RU2113693C1 (en) Mass flowmeter
CA2547699A1 (en) Coriolis mass flow measuring device
JP2000111380A (en) Coriolis-type mass flowmeter
JPH0328740A (en) Method for measuring viscosity of liquid and vibration type viscometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees